Пример #1
0
static double
strikezHIII (MagComp component, const fault_params *fault, const magnetic_params *mag, double xi, double et, double qq, double y, double z)
{
	double val;
	double h = mag->dcurier;
	double qd = y * sd + (fault->fdepth - h) * cd;
	double K3_val = K3 (component, 1.0, xi, et, qq);
	double log_re_val = log_re (component, 1.0, xi, et, qq);
	double M2_val = M2 (component, 1.0, xi, et, qq);
	double M3_val = M3 (component, 1.0, xi, et, qq);

	val = alpha5 * K3_val + fault->alpha * log_re_val * cd
		+ alpha3 * (qd * M3_val - (z - h) * M2_val * sd);

	return val;
}
Пример #2
0
// Runge-Kutta 4 algorithm
void System::RK4(){
    vec2dN K1(nObj), K2(nObj), K3(nObj), K4(nObj);
    vec2dN L1(nObj), L2(nObj), L3(nObj), L4(nObj);

    vec2dN NewR(nObj), NewV(nObj);
    if (nObj == 1){ // If only ONE object
        K1 = h*derX(vec2dN(nObj));
        L1 = h*(SunInf(vec2dN(nObj)));
        K2 = h*derX(L1*0.5);
        L2 = h*(SunInf(K1*0.5));
        K3 = h*derX(L2*0.5);
        L3 = h*(SunInf(K2*0.5));
        K4 = h*derX(L3);
        L4 = h*(SunInf(K3));
    } else { // If more than one object
        if (!statSun){ // Sun mobile or not pressent
            K1 = h*derX(vec2dN(nObj));
            L1 = h*derV(vec2dN(nObj));
            K2 = h*derX(L1*0.5);
            L2 = h*derV(K1*0.5);
            K3 = h*derX(L2*0.5);
            L3 = h*derV(L2*0.5);
            K4 = h*derX(L3);
            L4 = h*derV(K4);
        } else { // If the sun is stationary
            K1 = h*derX(vec2dN(nObj));
            L1 = h*(derV(vec2dN(nObj)) + SunInf(vec2dN(nObj)));
            K2 = h*derX(L1*0.5);
            L2 = h*(derV(K1*0.5) + SunInf(K1*0.5));
            K3 = h*derX(L2*0.5);
            L3 = h*(derV(K2*0.5) + SunInf(K2*0.5));
            K4 = h*derX(L3);
            L4 = h*(derV(K3) + SunInf(K3));
        }
    }
    for (int i = 0 ; i < nObj ; i++){
        NewR[i] = sys[i].relR + (K1[i] + 2*K2[i] + 2*K3[i] + K4[i])/(double)6;
        NewV[i] = sys[i].relV + (L1[i] + 2*L2[i] + 2*L3[i] + L4[i])/(double)6;
    }
    calc_potential();
    for (int i = 0 ; i < nObj ; i++){
        sys[i].update(NewR[i], NewV[i], sys[i].relT+h);
    }
}
Пример #3
0
static double
strikezH0 (MagComp component, const fault_params *fault, const magnetic_params *mag, double xi, double et, double qq, double y, double z)
{
	double val;
	double h = mag->dcurier;
	double qd = y * sd + (fault->fdepth - h) * cd;
	double K3_val = K3 (component, 1.0, xi, et, qq);
	double log_re_val = log_re (component, 1.0, xi, et, qq);
	double M2_val = M2 (component, 1.0, xi, et, qq);
	double M3_val = M3 (component, 1.0, xi, et, qq);
	double M3y_val = M3y (component, 1.0, xi, et, qq);
	double M3z_val = M3z (component, 1.0, xi, et, qq);

	val = - (2.0 + alpha5) * K3_val
		- fault->alpha * log_re_val * cd
		- alpha3 * (qd * M3_val - (z - h) * M2_val * sd)
		+ 2.0 * fault->alpha * h * (M3_val * cd + M2_val * sd)
		- 4.0 * alpha1 * h * M2_val * sd
		- 2.0 * alpha2 * h * M2_val * sd
		- 2.0 * alpha2 * h * ((qd + h * cd) * M3z_val - (z - 2.0 * h) * M3y_val * sd);

	return val;
}
Пример #4
0
static double
strikez0 (MagComp component, double xi, double et, double qq)
{
	return 2.0 * K3 (component, 1.0, xi, et, qq);
}
Пример #5
0
vector<SPACETYPE> RungeKutta4::Solve(vector<SPACETYPE> initialValue, TIMETYPE finalTime)
{
	// N is the number of spatial gridpoints
	int N = initialValue.size();

	if (_spatialSolver==NULL)
		return initialValue;

	//mSolution.push_back(initialValue);

 // vector<vector<complex<double> > > mSolution(_timeSteps);
  double time=0;

  double h = finalTime/(_timeSteps-1);

  vector<SPACETYPE> K1(N), K2(N), K3(N), K4(N), Temp(N), Unew(N);

  for(int i=1; i<_timeSteps; i++)
  {
    time+=h;


//K1

    K1 = _spatialSolver->GetSpatialSolution(initialValue);
    for(int j=0;j<N;j++)
    {
       K1[j] = h*K1[j];
    }

//K2
    for(int j=0;j<N;j++)
    {
       Temp[j] = initialValue[j] + K1[j]/2.0;
    }
    Temp = _spatialSolver->GetSpatialSolution(Temp);
    for(int j=0;j<N;j++)
    {
      K2[j] = h*Temp[j];
    }

//K3
    for(int j=0;j<N;j++)
    {
       Temp[j] = initialValue[j] + K2[j]/2.0;
    }
    Temp = _spatialSolver->GetSpatialSolution(Temp);
    for(int j=0;j<N;j++)
    {
      K3[j] = h*Temp[j];
    }

//K4
    for(int j=0;j<N;j++)
    {
      Temp[j] = initialValue[j] + K3[j];
    }
    Temp = _spatialSolver->GetSpatialSolution(Temp);
    for(int j=0;j<N;j++)
    {
      K4[j] = h*Temp[j];
    }

//New
    for(int j=0;j<N;j++)
    {
      Unew[j] = initialValue[j]+(1/6.0)*(K1[j]+2.0*(K2[j]+K3[j])+K4[j]);
    }
    //mSolution.push_back(Unew);
    initialValue = Unew;
  }
  return initialValue;

}
Пример #6
0
void rk4(
    Vector &Xcurrent,
    const double t,
    const double stepSize,
    Vector &Xnext,
    orbiterEquationsOfMotion &derivatives )
{
    const double h = stepSize;
    const int numberOfElements = Xcurrent.size( );

    // Evaluate K1 step in RK4 algorithm.
    Vector dXdtCurrent( numberOfElements );
    Vector K1( numberOfElements );
    derivatives( t, Xcurrent, dXdtCurrent );
    for( int i = 0; i < numberOfElements; i++ )
    {
        K1[ i ] = h * dXdtCurrent[ i ];
    }

    // Evaluate K2 step in RK4 algorithm.
    Vector dXdt_K2( numberOfElements );
    Vector K2( numberOfElements );
    const double t_K2 = t + 0.5 * h;
    Vector X_K2( numberOfElements );
    for( int i = 0; i < numberOfElements; i++ )
    {
        X_K2[ i ] = Xcurrent[ i ] + 0.5 * K1[ i ];
    }
    derivatives( t_K2, X_K2, dXdt_K2 );
    for( int i = 0; i < numberOfElements; i++ )
    {
        K2[ i ] = h * dXdt_K2[ i ];
    }

    // Evaluate K3 step in RK4 algorithm.
    Vector dXdt_K3( numberOfElements );
    Vector K3( numberOfElements );
    const double t_K3 = t + 0.5 * h;
    Vector X_K3( numberOfElements );
    for( int i = 0; i < numberOfElements; i++ )
    {
        X_K3[ i ] = Xcurrent[ i ] + 0.5 * K2[ i ];
    }
    derivatives( t_K3, X_K3, dXdt_K3 );
    for( int i = 0; i < numberOfElements; i++ )
    {
        K3[ i ] = h * dXdt_K3[ i ];
    }

    // Evaluate K4 step in RK4 algorithm.
    Vector dXdt_K4( numberOfElements );
    Vector K4( numberOfElements );
    const double t_K4 = t + h;
    Vector X_K4( numberOfElements );
    for( int i = 0; i < numberOfElements; i++ )
    {
        X_K4[ i ] = Xcurrent[ i ] + K3[ i ];
    }
    derivatives( t_K4, X_K4, dXdt_K4 );
    for( int i = 0; i < numberOfElements; i++ )
    {
        K4[ i ] = h * dXdt_K4[ i ];
    }

    // Final step, evaluate the weighted summation.
    for( int i = 0; i < numberOfElements; i++ )
    {
        Xnext[ i ] = Xcurrent[ i ]
                        + ( 1.0 / 6.0 ) * K1[ i ]
                        + ( 1.0 / 3.0 ) * K2[ i ]
                        + ( 1.0 / 3.0 ) * K3[ i ]
                        + ( 1.0 / 6.0 ) * K4[ i ];
    }
}
Пример #7
0
void Foam::kineticTheoryModel::solve(const volTensorField& gradUat)
{
    if (!kineticTheory_)
    {
        return;
    }

    const scalar sqrtPi = sqrt(constant::mathematical::pi);

    surfaceScalarField phi(1.5*rhoa_*phia_*fvc::interpolate(alpha_));

    volTensorField dU(gradUat.T());    //fvc::grad(Ua_);
    volSymmTensorField D(symm(dU));

    // NB, drag = K*alpha*beta,
    // (the alpha and beta has been extracted from the drag function for
    // numerical reasons)
    volScalarField Ur(mag(Ua_ - Ub_));
    volScalarField betaPrim(alpha_*(1.0 - alpha_)*draga_.K(Ur));

    // Calculating the radial distribution function (solid volume fraction is
    //  limited close to the packing limit, but this needs improvements)
    //  The solution is higly unstable close to the packing limit.
    gs0_ = radialModel_->g0
    (
        min(max(alpha_, scalar(1e-6)), alphaMax_ - 0.01),
        alphaMax_
    );

    // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45)
    volScalarField PsCoeff
    (
        granularPressureModel_->granularPressureCoeff
        (
            alpha_,
            gs0_,
            rhoa_,
            e_
        )
    );

    // 'thermal' conductivity (Table 3.3, p. 49)
    kappa_ = conductivityModel_->kappa(alpha_, Theta_, gs0_, rhoa_, da_, e_);

    // particle viscosity (Table 3.2, p.47)
    mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_);

    dimensionedScalar Tsmall
    (
        "small",
        dimensionSet(0 , 2 ,-2 ,0 , 0, 0, 0),
        1.0e-6
    );

    dimensionedScalar TsmallSqrt = sqrt(Tsmall);
    volScalarField ThetaSqrt(sqrt(Theta_));

    // dissipation (Eq. 3.24, p.50)
    volScalarField gammaCoeff
    (
        12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi
    );

    // Eq. 3.25, p. 50 Js = J1 - J2
    volScalarField J1(3.0*betaPrim);
    volScalarField J2
    (
        0.25*sqr(betaPrim)*da_*sqr(Ur)
       /(max(alpha_, scalar(1e-6))*rhoa_*sqrtPi*(ThetaSqrt + TsmallSqrt))
    );

    // bulk viscosity  p. 45 (Lun et al. 1984).
    lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*ThetaSqrt/sqrtPi;

    // stress tensor, Definitions, Table 3.1, p. 43
    volSymmTensorField tau(2.0*mua_*D + (lambda_ - (2.0/3.0)*mua_)*tr(D)*I);

    if (!equilibrium_)
    {
        // construct the granular temperature equation (Eq. 3.20, p. 44)
        // NB. note that there are two typos in Eq. 3.20
        // no grad infront of Ps
        // wrong sign infront of laplacian
        fvScalarMatrix ThetaEqn
        (
            fvm::ddt(1.5*alpha_*rhoa_, Theta_)
          + fvm::div(phi, Theta_, "div(phi,Theta)")
         ==
            fvm::SuSp(-((PsCoeff*I) && dU), Theta_)
          + (tau && dU)
          + fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)")
          + fvm::Sp(-gammaCoeff, Theta_)
          + fvm::Sp(-J1, Theta_)
          + fvm::Sp(J2/(Theta_ + Tsmall), Theta_)
        );

        ThetaEqn.relax();
        ThetaEqn.solve();
    }
    else
    {
        // equilibrium => dissipation == production
        // Eq. 4.14, p.82
        volScalarField K1(2.0*(1.0 + e_)*rhoa_*gs0_);
        volScalarField K3
        (
            0.5*da_*rhoa_*
            (
                (sqrtPi/(3.0*(3.0-e_)))
               *(1.0 + 0.4*(1.0 + e_)*(3.0*e_ - 1.0)*alpha_*gs0_)
               +1.6*alpha_*gs0_*(1.0 + e_)/sqrtPi
            )
        );

        volScalarField K2
        (
            4.0*da_*rhoa_*(1.0 + e_)*alpha_*gs0_/(3.0*sqrtPi) - 2.0*K3/3.0
        );

        volScalarField K4(12.0*(1.0 - sqr(e_))*rhoa_*gs0_/(da_*sqrtPi));

        volScalarField trD(tr(D));
        volScalarField tr2D(sqr(trD));
        volScalarField trD2(tr(D & D));

        volScalarField t1(K1*alpha_ + rhoa_);
        volScalarField l1(-t1*trD);
        volScalarField l2(sqr(t1)*tr2D);
        volScalarField l3
        (
            4.0
           *K4
           *max(alpha_, scalar(1e-6))
           *(2.0*K3*trD2 + K2*tr2D)
        );

        Theta_ = sqr((l1 + sqrt(l2 + l3))/(2.0*(alpha_ + 1.0e-4)*K4));
    }

    Theta_.max(1.0e-15);
    Theta_.min(1.0e+3);

    volScalarField pf
    (
        frictionalStressModel_->frictionalPressure
        (
            alpha_,
            alphaMinFriction_,
            alphaMax_,
            Fr_,
            eta_,
            p_
        )
    );

    PsCoeff += pf/(Theta_+Tsmall);

    PsCoeff.min(1.0e+10);
    PsCoeff.max(-1.0e+10);

    // update particle pressure
    pa_ = PsCoeff*Theta_;

    // frictional shear stress, Eq. 3.30, p. 52
    volScalarField muf
    (
        frictionalStressModel_->muf
        (
            alpha_,
            alphaMax_,
            pf,
            D,
            phi_
        )
    );

    // add frictional stress
    mua_ += muf;
    mua_.min(1.0e+2);
    mua_.max(0.0);

    Info<< "kinTheory: max(Theta) = " << max(Theta_).value() << endl;

    volScalarField ktn(mua_/rhoa_);

    Info<< "kinTheory: min(nua) = " << min(ktn).value()
        << ", max(nua) = " << max(ktn).value() << endl;

    Info<< "kinTheory: min(pa) = " << min(pa_).value()
        << ", max(pa) = " << max(pa_).value() << endl;
}