Пример #1
0
static
int nlsKinsolErrorHandler(int errorCode, DATA *data, NONLINEAR_SYSTEM_DATA *nlsData, NLS_KINSOL_DATA *kinsolData)
{
  int retValue, i, retValue2=0;
  double fNorm;
  double *xStart = NV_DATA_S(kinsolData->initialGuess);
  double *xScaling = NV_DATA_S(kinsolData->xScale);

  /* check what kind of error
   *   retValue < 0 -> a non recoverable issue
   *   retValue == 1 -> try with other settings
   */
  KINSetNoInitSetup(kinsolData->kinsolMemory, FALSE);

  switch(errorCode)
  {
  case KIN_MEM_NULL:
  case KIN_ILL_INPUT:
  case KIN_NO_MALLOC:
    errorStreamPrint(LOG_NLS, 0, "kinsol has a serious memory issue ERROR %d\n", errorCode);
    return errorCode;
    break;
  /* just retry with new initial guess */
  case KIN_MXNEWT_5X_EXCEEDED:
    warningStreamPrint(LOG_NLS, 0, "initial guess was too far away from the solution. Try again.\n");
    return 1;
    break;
  /* just retry without line search */
  case KIN_LINESEARCH_NONCONV:
    warningStreamPrint(LOG_NLS, 0, "kinsols line search did not convergence. Try without.\n");
    kinsolData->kinsolStrategy = KIN_NONE;
    return 1;
  /* maybe happened because of an out-dated factorization, so just retry  */
  case KIN_LSETUP_FAIL:
  case KIN_LSOLVE_FAIL:
    warningStreamPrint(LOG_NLS, 0, "kinsols matrix need new factorization. Try again.\n");
    KINKLUReInit(kinsolData->kinsolMemory, kinsolData->size, kinsolData->nnz, 2);
    return 1;
  case KIN_MAXITER_REACHED:
  case KIN_REPTD_SYSFUNC_ERR:
    warningStreamPrint(LOG_NLS, 0, "kinsols runs into issues retry with differnt configuration.\n");
    retValue = 1;
    break;
  default:
    errorStreamPrint(LOG_STDOUT, 0, "kinsol has a serious solving issue ERROR %d\n", errorCode);
    return errorCode;
    break;
  }

  /* check if the current solution is sufficient anyway */
  KINGetFuncNorm(kinsolData->kinsolMemory, &fNorm);
  if (fNorm<FTOL_WITH_LESS_ACCURANCY)
  {
    warningStreamPrint(LOG_NLS, 0, "Move forward with a less accurate solution.");
    KINSetFuncNormTol(kinsolData->kinsolMemory, FTOL_WITH_LESS_ACCURANCY);
    KINSetScaledStepTol(kinsolData->kinsolMemory, FTOL_WITH_LESS_ACCURANCY);
    retValue2 = 1;
  }
  else
  {
    warningStreamPrint(LOG_NLS, 0, "Current status of fx = %f", fNorm);
  }

  /* reconfigure kinsol for an other try */
  if (retValue == 1 && !retValue2)
  {
    switch(kinsolData->retries)
    {
    case 0:
      /* try without x scaling  */
      nlsKinsolXScaling(data, kinsolData, nlsData, SCALING_ONES);
      break;
    case 1:
      /* try without line-search and oldValues */
      nlsKinsolResetInitial(data, kinsolData, nlsData, INITIAL_OLDVALUES);
      kinsolData->kinsolStrategy = KIN_LINESEARCH;
      break;
    case 2:
      /* try without line-search and oldValues */
      nlsKinsolResetInitial(data, kinsolData, nlsData, INITIAL_EXTRAPOLATION);
      kinsolData->kinsolStrategy = KIN_NONE;
      break;
    case 3:
      /* try with exact newton  */
      nlsKinsolXScaling(data, kinsolData, nlsData, SCALING_NOMINALSTART);
      nlsKinsolResetInitial(data, kinsolData, nlsData, INITIAL_EXTRAPOLATION);
      KINSetMaxSetupCalls(kinsolData->kinsolMemory, 1);
      kinsolData->kinsolStrategy = KIN_LINESEARCH;
      break;
    case 4:
      /* try with exact newton to with out x scaling values */
      nlsKinsolXScaling(data, kinsolData, nlsData, SCALING_ONES);
      nlsKinsolResetInitial(data, kinsolData, nlsData, INITIAL_OLDVALUES);
      KINSetMaxSetupCalls(kinsolData->kinsolMemory, 1);
      kinsolData->kinsolStrategy = KIN_LINESEARCH;
      break;
    default:
      retValue = 0;
      break;
    }
  }

  return retValue+retValue2;
}
static void KIM_Stats(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
    const char *fnames_solver[]= {
        "nfe",
        "nni",
        "nbcf",
        "nbops",
        "fnorm",
        "step",
        "LSInfo",
    };
    const char *fnames_dense[]= {
        "name",
        "njeD",
        "nfeD"
    };
    const char *fnames_spils[]= {
        "name",
        "nli",
        "npe",
        "nps",
        "ncfl",
    };

    long int nfe, nni, nbcf, nbops;
    double fnorm, step;

    long int njeD, nfeD;
    long int nli, npe, nps, ncfl;

    int flag;
    mxArray *mx_ls;
    int nfields;

    if (kim_Kdata == NULL) return;

    flag = KINGetNumNonlinSolvIters(kin_mem, &nni);
    flag = KINGetNumFuncEvals(kin_mem, &nfe);
    flag = KINGetNumBetaCondFails(kin_mem, &nbcf);
    flag = KINGetNumBacktrackOps(kin_mem, &nbops);

    flag = KINGetFuncNorm(kin_mem, &fnorm);
    flag = KINGetStepLength(kin_mem, &step);

    nfields = sizeof(fnames_solver)/sizeof(*fnames_solver);
    plhs[0] = mxCreateStructMatrix(1, 1, nfields, fnames_solver);

    mxSetField(plhs[0], 0, "nfe",   mxCreateScalarDouble((double)nfe));
    mxSetField(plhs[0], 0, "nni",   mxCreateScalarDouble((double)nni));
    mxSetField(plhs[0], 0, "nbcf",  mxCreateScalarDouble((double)nbcf));
    mxSetField(plhs[0], 0, "nbops", mxCreateScalarDouble((double)nbops));
    mxSetField(plhs[0], 0, "fnorm", mxCreateScalarDouble(fnorm));
    mxSetField(plhs[0], 0, "step",  mxCreateScalarDouble(step));

    /* Linear Solver Statistics */

    switch(ls) {

    case LS_DENSE:

        flag = KINDenseGetNumJacEvals(kin_mem, &njeD);
        flag = KINDenseGetNumFuncEvals(kin_mem, &nfeD);

        nfields = sizeof(fnames_dense)/sizeof(*fnames_dense);
        mx_ls = mxCreateStructMatrix(1, 1, nfields, fnames_dense);

        mxSetField(mx_ls, 0, "name", mxCreateString("Dense"));
        mxSetField(mx_ls, 0, "njeD", mxCreateScalarDouble((double)njeD));
        mxSetField(mx_ls, 0, "nfeD", mxCreateScalarDouble((double)nfeD));

        break;

    case LS_SPGMR:
    case LS_SPBCG:
    case LS_SPTFQMR:

        flag = KINSpilsGetNumLinIters(kin_mem, &nli);
        flag = KINSpilsGetNumPrecEvals(kin_mem, &npe);
        flag = KINSpilsGetNumPrecSolves(kin_mem, &nps);
        flag = KINSpilsGetNumConvFails(kin_mem, &ncfl);

        nfields = sizeof(fnames_spils)/sizeof(*fnames_spils);
        mx_ls = mxCreateStructMatrix(1, 1, nfields, fnames_spils);

        if (ls == LS_SPGMR)
            mxSetField(mx_ls, 0, "name",  mxCreateString("GMRES"));
        else if (ls == LS_SPBCG)
            mxSetField(mx_ls, 0, "name",  mxCreateString("BiCGStab"));
        else
            mxSetField(mx_ls, 0, "name",  mxCreateString("TFQMR"));

        mxSetField(mx_ls, 0, "nli",   mxCreateScalarDouble((double)nli));
        mxSetField(mx_ls, 0, "npe",   mxCreateScalarDouble((double)npe));
        mxSetField(mx_ls, 0, "nps",   mxCreateScalarDouble((double)nps));
        mxSetField(mx_ls, 0, "ncfl",  mxCreateScalarDouble((double)ncfl));

        break;

    }

    mxSetField(plhs[0], 0, "LSInfo", mx_ls);

    return;
}
Пример #3
0
void FKIN_SOL(realtype *uu, int *globalstrategy, 
              realtype *uscale , realtype *fscale, int *ier)

{
  N_Vector uuvec, uscalevec, fscalevec;

  *ier = 0;
  uuvec = uscalevec = fscalevec = NULL;

  uuvec = F2C_KINSOL_vec;
  N_VSetArrayPointer(uu, uuvec);

  uscalevec = NULL;
  uscalevec = N_VCloneEmpty(F2C_KINSOL_vec);
  if (uscalevec == NULL) {
    *ier = -4;  /* KIN_MEM_FAIL */
    return;
  }
  N_VSetArrayPointer(uscale, uscalevec);

  fscalevec = NULL;
  fscalevec = N_VCloneEmpty(F2C_KINSOL_vec);
  if (fscalevec == NULL) {
    N_VDestroy(uscalevec);
    *ier = -4;  /* KIN_MEM_FAIL */
    return;
  }
  N_VSetArrayPointer(fscale, fscalevec);

  /* Call main solver function */
  *ier = KINSol(KIN_kinmem, uuvec, *globalstrategy, uscalevec, fscalevec);

  N_VSetArrayPointer(NULL, uuvec);

  N_VSetArrayPointer(NULL, uscalevec);
  N_VDestroy(uscalevec);

  N_VSetArrayPointer(NULL, fscalevec);
  N_VDestroy(fscalevec);

  /* load optional outputs into iout[] and rout[] */
  KINGetWorkSpace(KIN_kinmem, &KIN_iout[0], &KIN_iout[1]);   /* LENRW & LENIW */
  KINGetNumNonlinSolvIters(KIN_kinmem, &KIN_iout[2]);        /* NNI */
  KINGetNumFuncEvals(KIN_kinmem, &KIN_iout[3]);              /* NFE */
  KINGetNumBetaCondFails(KIN_kinmem, &KIN_iout[4]);          /* NBCF */
  KINGetNumBacktrackOps(KIN_kinmem, &KIN_iout[5]);           /* NBCKTRK */

  KINGetFuncNorm(KIN_kinmem, &KIN_rout[0]);                  /* FNORM */
  KINGetStepLength(KIN_kinmem, &KIN_rout[1]);                /* SSTEP */

  switch(KIN_ls) {

  case KIN_LS_DENSE:
  case KIN_LS_BAND:
  case KIN_LS_LAPACKDENSE:
  case KIN_LS_LAPACKBAND:
    KINDlsGetWorkSpace(KIN_kinmem, &KIN_iout[6], &KIN_iout[7]); /* LRW & LIW */
    KINDlsGetLastFlag(KIN_kinmem, (int *) &KIN_iout[8]);        /* LSTF */
    KINDlsGetNumFuncEvals(KIN_kinmem, &KIN_iout[9]);            /* NFE */
    KINDlsGetNumJacEvals(KIN_kinmem, &KIN_iout[10]);            /* NJE */    
  case KIN_LS_SPTFQMR:
  case KIN_LS_SPBCG:
  case KIN_LS_SPGMR:
    KINSpilsGetWorkSpace(KIN_kinmem, &KIN_iout[6], &KIN_iout[7]); /* LRW & LIW */
    KINSpilsGetLastFlag(KIN_kinmem, (int *) &KIN_iout[8]);        /* LSTF */
    KINSpilsGetNumFuncEvals(KIN_kinmem, &KIN_iout[9]);            /* NFE */
    KINSpilsGetNumJtimesEvals(KIN_kinmem, &KIN_iout[10]);         /* NJE */
    KINSpilsGetNumPrecEvals(KIN_kinmem, &KIN_iout[11]);           /* NPE */
    KINSpilsGetNumPrecSolves(KIN_kinmem, &KIN_iout[12]);          /* NPS */
    KINSpilsGetNumLinIters(KIN_kinmem, &KIN_iout[13]);            /* NLI */
    KINSpilsGetNumConvFails(KIN_kinmem, &KIN_iout[14]);           /* NCFL */
    break;

  }

  return;
}
Пример #4
0
int main()
{
  realtype fnormtol, fnorm;
  N_Vector y, scale;
  int flag;
  void *kmem;

  y = scale = NULL;
  kmem = NULL;

  /* -------------------------
   * Print problem description
   * ------------------------- */
  
  printf("\n2D elliptic PDE on unit square\n");
  printf("   d^2 u / dx^2 + d^2 u / dy^2 = u^3 - u + 2.0\n");
  printf(" + homogeneous Dirichlet boundary conditions\n\n");
  printf("Solution method: Anderson accelerated Picard iteration with band linear solver.\n");
  printf("Problem size: %2ld x %2ld = %4ld\n", 
	 (long int) NX, (long int) NY, (long int) NEQ);

  /* --------------------------------------
   * Create vectors for solution and scales
   * -------------------------------------- */

  y = N_VNew_Serial(NEQ);
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return(1);

  scale = N_VNew_Serial(NEQ);
  if (check_flag((void *)scale, "N_VNew_Serial", 0)) return(1);

  /* ----------------------------------------------------------------------------------
   * Initialize and allocate memory for KINSOL, set parametrs for Anderson acceleration
   * ---------------------------------------------------------------------------------- */

  kmem = KINCreate();
  if (check_flag((void *)kmem, "KINCreate", 0)) return(1);

  /* y is used as a template */

  /* Use acceleration with up to 3 prior residuals */
  flag = KINSetMAA(kmem, 3);
  if (check_flag(&flag, "KINSetMAA", 1)) return(1);

  flag = KINInit(kmem, func, y);
  if (check_flag(&flag, "KINInit", 1)) return(1);

  /* -------------------
   * Set optional inputs 
   * ------------------- */

  /* Specify stopping tolerance based on residual */

  fnormtol  = FTOL; 
  flag = KINSetFuncNormTol(kmem, fnormtol);
  if (check_flag(&flag, "KINSetFuncNormTol", 1)) return(1);

  /* -------------------------
   * Attach band linear solver 
   * ------------------------- */

  flag = KINBand(kmem, NEQ, NX, NX);
  if (check_flag(&flag, "KINBand", 1)) return(1);
  flag = KINDlsSetBandJacFn(kmem, jac);
  if (check_flag(&flag, "KINDlsBandJacFn", 1)) return(1);

  /* -------------
   * Initial guess 
   * ------------- */

  N_VConst_Serial(ZERO, y);
  IJth(NV_DATA_S(y), 2, 2) = ONE;

  /* ----------------------------
   * Call KINSol to solve problem 
   * ---------------------------- */

  /* No scaling used */
  N_VConst_Serial(ONE,scale);

  /* Call main solver */
  flag = KINSol(kmem,           /* KINSol memory block */
                y,              /* initial guess on input; solution vector */
                KIN_PICARD,     /* global strategy choice */
                scale,          /* scaling vector, for the variable cc */
                scale);         /* scaling vector for function values fval */
  if (check_flag(&flag, "KINSol", 1)) return(1);


  /* ------------------------------------
   * Print solution and solver statistics 
   * ------------------------------------ */

  /* Get scaled norm of the system function */

  flag = KINGetFuncNorm(kmem, &fnorm);
  if (check_flag(&flag, "KINGetfuncNorm", 1)) return(1);

  printf("\nComputed solution (||F|| = %g):\n\n",fnorm);
  PrintOutput(y);

  PrintFinalStats(kmem);

  /* -----------
   * Free memory 
   * ----------- */
  
  N_VDestroy_Serial(y);
  N_VDestroy_Serial(scale);
  KINFree(&kmem);

  return(0);
}