Пример #1
0
/**
 * \brief Provides an interface between code build from \ref lalinspiral_findchirp and
 * various simulation packages for injecting chirps into data.
 * \author Brown, D. A. and Creighton, T. D
 *
 * Injects the signals described
 * in the linked list of \c SimInspiralTable structures \c events
 * into the data \c chan. The response function \c resp should
 * contain the response function to use when injecting the signals into the data.
 */
void
LALFindChirpInjectIMR (
    LALStatus                  *status,
    REAL4TimeSeries            *chan,
    SimInspiralTable           *events,
    SimRingdownTable           *ringdownevents,
    COMPLEX8FrequencySeries    *resp,
    INT4                        injectSignalType
    )

{
  UINT4                 k;
  DetectorResponse      detector;
  SimInspiralTable     *thisEvent = NULL;
  SimRingdownTable     *thisRingdownEvent = NULL;
  PPNParamStruc         ppnParams;
  CoherentGW            waveform, *wfm;
  INT8                  waveformStartTime;
  REAL4TimeSeries       signalvec;
  COMPLEX8Vector       *unity = NULL;
  CHAR                  warnMsg[512];
#if 0
  UINT4 n;
  UINT4 i;
#endif

  INITSTATUS(status);
  ATTATCHSTATUSPTR( status );

  ASSERT( chan, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );
  ASSERT( chan->data, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );
  ASSERT( chan->data->data, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );

  ASSERT( events, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );

  ASSERT( resp, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );
  ASSERT( resp->data, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );
  ASSERT( resp->data->data, status,
      FINDCHIRPH_ENULL, FINDCHIRPH_MSGENULL );


  /*
   *
   * set up structures and parameters needed
   *
   */

  /* fixed waveform injection parameters */
  memset( &ppnParams, 0, sizeof(PPNParamStruc) );
  ppnParams.deltaT   = chan->deltaT;
  ppnParams.lengthIn = 0;
  ppnParams.ppn      = NULL;


  /*
   *
   * compute the transfer function from the given response function
   *
   */


  /* allocate memory and copy the parameters describing the freq series */
  memset( &detector, 0, sizeof( DetectorResponse ) );
  detector.transfer = (COMPLEX8FrequencySeries *)
    LALCalloc( 1, sizeof(COMPLEX8FrequencySeries) );
  if ( ! detector.transfer )
  {
    ABORT( status, FINDCHIRPH_EALOC, FINDCHIRPH_MSGEALOC );
  }
  memcpy( &(detector.transfer->epoch), &(resp->epoch),
      sizeof(LIGOTimeGPS) );
  detector.transfer->f0 = resp->f0;
  detector.transfer->deltaF = resp->deltaF;

  detector.site = (LALDetector *) LALMalloc( sizeof(LALDetector) );
  /* set the detector site */
  switch ( chan->name[0] )
  {
    case 'H':
      *(detector.site) = lalCachedDetectors[LALDetectorIndexLHODIFF];
      LALWarning( status, "computing waveform for Hanford." );
      break;
    case 'L':
      *(detector.site) = lalCachedDetectors[LALDetectorIndexLLODIFF];
      LALWarning( status, "computing waveform for Livingston." );
      break;
    case 'G':
      *(detector.site) = lalCachedDetectors[LALDetectorIndexGEO600DIFF];
      LALWarning( status, "computing waveform for GEO600." );
      break;
    case 'T':
      *(detector.site) = lalCachedDetectors[LALDetectorIndexTAMA300DIFF];
      LALWarning( status, "computing waveform for TAMA300." );
      break;
    case 'V':
      *(detector.site) = lalCachedDetectors[LALDetectorIndexVIRGODIFF];
      LALWarning( status, "computing waveform for Virgo." );
      break;
    default:
      LALFree( detector.site );
      detector.site = NULL;
      LALWarning( status, "Unknown detector site, computing plus mode "
          "waveform with no time delay" );
      break;
  }

  /* set up units for the transfer function */
  if (XLALUnitDivide( &(detector.transfer->sampleUnits),
                      &lalADCCountUnit, &lalStrainUnit ) == NULL) {
    ABORTXLAL(status);
  }

  /* invert the response function to get the transfer function */
  LALCCreateVector( status->statusPtr, &( detector.transfer->data ),
      resp->data->length );
  CHECKSTATUSPTR( status );

  LALCCreateVector( status->statusPtr, &unity, resp->data->length );
  CHECKSTATUSPTR( status );
  for ( k = 0; k < resp->data->length; ++k )
  {
    unity->data[k] = 1.0;
  }

  LALCCVectorDivide( status->statusPtr, detector.transfer->data, unity,
      resp->data );
  CHECKSTATUSPTR( status );

  LALCDestroyVector( status->statusPtr, &unity );
  CHECKSTATUSPTR( status );

  thisRingdownEvent = ringdownevents;

  /*
   *
   * loop over the signals and inject them into the time series
   *
   */


  for ( thisEvent = events; thisEvent; thisEvent = thisEvent->next)
  {
    /*
     *
     * generate waveform and inject it into the data
     *
     */


    /* clear the waveform structure */
    memset( &waveform, 0, sizeof(CoherentGW) );

    LALGenerateInspiral(status->statusPtr, &waveform, thisEvent, &ppnParams);
    CHECKSTATUSPTR( status );

    /* add the ringdown */
    wfm = XLALGenerateInspRing( &waveform, thisEvent, thisRingdownEvent,
       injectSignalType );

    if ( !wfm )
    {
      fprintf( stderr, "Failed to generate the waveform \n" );
      if (xlalErrno == XLAL_EFAILED)
      {
        fprintf( stderr, "Too much merger\n");
        XLALDestroyREAL4TimeSeries( chan );
        xlalErrno = XLAL_SUCCESS;
        return;
      }
      else exit ( 1 );
    }


    waveform = *wfm;

    LALInfo( status, ppnParams.termDescription );

    if ( thisEvent->geocent_end_time.gpsSeconds )
    {
      /* get the gps start time of the signal to inject */
      waveformStartTime = XLALGPSToINT8NS( &(thisEvent->geocent_end_time) );
      waveformStartTime -= (INT8) ( 1000000000.0 * ppnParams.tc );
    }
    else
    {
      LALInfo( status, "Waveform start time is zero: injecting waveform "
          "into center of data segment" );

      /* center the waveform in the data segment */
      waveformStartTime = XLALGPSToINT8NS( &(chan->epoch) );

      waveformStartTime += (INT8) ( 1000000000.0 *
          ((REAL8) (chan->data->length - ppnParams.length) / 2.0) * chan->deltaT
          );
    }

    snprintf( warnMsg, sizeof(warnMsg)/sizeof(*warnMsg),
        "Injected waveform timing:\n"
        "thisEvent->geocent_end_time.gpsSeconds = %d\n"
        "thisEvent->geocent_end_time.gpsNanoSeconds = %d\n"
        "ppnParams.tc = %e\n"
        "waveformStartTime = %" LAL_INT8_FORMAT "\n",
        thisEvent->geocent_end_time.gpsSeconds,
        thisEvent->geocent_end_time.gpsNanoSeconds,
        ppnParams.tc,
        waveformStartTime );
    LALInfo( status, warnMsg );

    /* clear the signal structure */
    memset( &signalvec, 0, sizeof(REAL4TimeSeries) );

    /* set the start times for injection */
    XLALINT8NSToGPS( &(waveform.a->epoch), waveformStartTime );
    memcpy( &(waveform.f->epoch), &(waveform.a->epoch),
        sizeof(LIGOTimeGPS) );
    memcpy( &(waveform.phi->epoch), &(waveform.a->epoch),
        sizeof(LIGOTimeGPS) );

    /* set the start time of the signal vector to the start time of the chan */
    signalvec.epoch = chan->epoch;

    /* set the parameters for the signal time series */
    signalvec.deltaT = chan->deltaT;
    if ( ( signalvec.f0 = chan->f0 ) != 0 )
    {
      ABORT( status, FINDCHIRPH_EHETR, FINDCHIRPH_MSGEHETR );
    }
    signalvec.sampleUnits = lalADCCountUnit;

    /* simulate the detectors response to the inspiral */
    LALSCreateVector( status->statusPtr, &(signalvec.data), chan->data->length );
    CHECKSTATUSPTR( status );

    LALSimulateCoherentGW( status->statusPtr,
        &signalvec, &waveform, &detector );
    CHECKSTATUSPTR( status );

/* *****************************************************************************/
#if 0
    FILE *fp;
    char fname[512];
    UINT4 jj, kplus, kcross;
    snprintf( fname, sizeof(fname) / sizeof(*fname),
        "waveform-%d-%d-%s.txt",
        thisEvent->geocent_end_time.gpsSeconds,
        thisEvent->geocent_end_time.gpsNanoSeconds,
        thisEvent->waveform );
    fp = fopen( fname, "w" );
    for( jj = 0, kplus = 0, kcross = 1; jj < waveform.phi->data->length;
        ++jj, kplus += 2, kcross +=2 )
    {
      fprintf(fp, "%d %e %e %le %e\n", jj,
          waveform.a->data->data[kplus],
          waveform.a->data->data[kcross],
          waveform.phi->data->data[jj],
          waveform.f->data->data[jj]);
    }
    fclose( fp );
#endif

/* ********************************************************************************/
#if 0
    FILE *fp;
    char fname[512];
    UINT4 jj;
    snprintf( fname, sizeof(fname) / sizeof(*fname),
        "waveform-%d-%d-%s.txt",
        thisEvent->geocent_end_time.gpsSeconds,
        thisEvent->geocent_end_time.gpsNanoSeconds,
        thisEvent->waveform );
    fp = fopen( fname, "w" );
    for( jj = 0; jj < signalvec.data->length; ++jj )
    {
      fprintf(fp, "%d %e %e \n", jj, signalvec.data->data[jj]);
    }
    fclose( fp );
#endif

/* ********************************************************************************/


    /* inject the signal into the data channel */
    LALSSInjectTimeSeries( status->statusPtr, chan, &signalvec );
    CHECKSTATUSPTR( status );

    /* allocate and go to next SimRingdownTable */
    if( thisEvent->next )
      thisRingdownEvent = thisRingdownEvent->next = (SimRingdownTable *)
      calloc( 1, sizeof(SimRingdownTable) );
    else
      thisRingdownEvent->next = NULL;

    /* destroy the signal */
    LALSDestroyVector( status->statusPtr, &(signalvec.data) );
    CHECKSTATUSPTR( status );

    LALSDestroyVectorSequence( status->statusPtr, &(waveform.a->data) );
    CHECKSTATUSPTR( status );

    LALSDestroyVector( status->statusPtr, &(waveform.f->data) );
    CHECKSTATUSPTR( status );

    LALDDestroyVector( status->statusPtr, &(waveform.phi->data) );
    CHECKSTATUSPTR( status );

    if ( waveform.shift )
    {
      LALSDestroyVector( status->statusPtr, &(waveform.shift->data) );
      CHECKSTATUSPTR( status );
    }

    LALFree( waveform.a );
    LALFree( waveform.f );
    LALFree( waveform.phi );
    if ( waveform.shift )
    {
      LALFree( waveform.shift );
    }

  }

  LALCDestroyVector( status->statusPtr, &( detector.transfer->data ) );
  CHECKSTATUSPTR( status );

  if ( detector.site ) LALFree( detector.site );
  LALFree( detector.transfer );

  DETATCHSTATUSPTR( status );
  RETURN( status );
}
/** The main program.
 */
int main(int argc, char *argv[]) {

	// variable declaration and initialization
	static LALStatus mystatus;
	CoherentGW thewaveform;
	SimInspiralTable injParams;
	PPNParamStruc ppnParams;
	//const char *filename;
	FILE *outputfile;
	INT4 i, length;
	REAL8 dt;
	char PNString[50];
	char filename[50];

	if (argc != 16) {
		printf(
				"                         1  2  3   4   5   6   7   8   9    10	     11	     12       13 14      15\n");
		printf(
				"Correct parameter order: m1 m2 S1x S1y S1z S2x S2y S2z incl f_lower f_final distance dt PNorder SpinInter\n");
		return (1);
	}
	
	sprintf(PNString, "SpinQuadTaylor%s%s", argv[14], argv[15]);
	sprintf(filename, "%s%s.out", argv[14], argv[15]);
	//filename = argv[15];
	memset(&mystatus, 0, sizeof(LALStatus));
	memset(&thewaveform, 0, sizeof(CoherentGW));
	memset(&injParams, 0, sizeof(SimInspiralTable));
	memset(&ppnParams, 0, sizeof(PPNParamStruc));

	//	setting the parameters
	injParams.mass1 = atof(argv[1]);
	injParams.mass2 = atof(argv[2]);
	injParams.spin1x = atof(argv[3]);
	injParams.spin1y = atof(argv[4]);
	injParams.spin1z = atof(argv[5]);
	injParams.spin2x = atof(argv[6]);
	injParams.spin2y = atof(argv[7]);
	injParams.spin2z = atof(argv[8]);
	injParams.qmParameter1 = 1.;//atof(argv[9]);
	injParams.qmParameter2 = 1.;//atof(argv[10]);
	injParams.inclination = atof(argv[9]);
	injParams.f_lower = atof(argv[10]);
	injParams.f_final = atof(argv[11]);
	injParams.distance = atof(argv[12]);
	ppnParams.deltaT = atof(argv[13]);
	injParams.polarization = 0;
	LALSnprintf(injParams.waveform, LIGOMETA_WAVEFORM_MAX * sizeof(CHAR),
			PNString);

	//interface(&mystatus, &thewaveform, &injParams, &ppnParams);
	LALGenerateInspiral(&mystatus, &thewaveform, &injParams, &ppnParams);
	if (mystatus.statusCode) {
		fprintf( stderr, "LALSQTPNWaveformTest: error generating waveform\n" );
		return mystatus.statusCode;
	}
	// and finally save in a file
	outputfile = fopen(filename, "w");

	length = thewaveform.f->data->length;
	dt      = thewaveform.phi->deltaT;
    REAL8       a1, a2, phi, shift;
    for(i = 0; i < length; i++) {
        a1  = thewaveform.a->data->data[2*i];
        a2  = thewaveform.a->data->data[2*i+1];
        phi     = thewaveform.phi->data->data[i] - thewaveform.phi->data->data[0];
        shift   = thewaveform.shift->data->data[i];

        fprintf(outputfile,"% 10.7e\t% 10.7e\t% 10.7e\n",
            i*dt,
            a1*cos(shift)*cos(phi) - a2*sin(shift)*sin(phi),
            a1*sin(shift)*cos(phi) + a2*cos(shift)*sin(phi));
    }
	fclose(outputfile);
	XLALSQTPNDestroyCoherentGW(&thewaveform);
	puts("Done.");
	LALCheckMemoryLeaks();
	return mystatus.statusCode;
}
int main( int argc, char *argv[] )
{
  LALStatus                     status = blank_status;

  UINT4                         k;
  UINT4                         kLow;
  UINT4                         kHi;
  INT4                          numPoints       = 524288;
  REAL4                         fSampling       = 2048.;
  REAL4                         fLow            = 70.;
  REAL4                         fLowInj         = 40.;
  REAL8                         deltaT          = 1./fSampling;
  REAL8                         deltaF          = fSampling / numPoints;

  REAL4                          statValue;
 
  /* vars required to make freq series */
  LIGOTimeGPS                   epoch = { 0, 0 };
  LIGOTimeGPS                   gpsStartTime = {0, 0}; 
  REAL8                         f0 = 0.;
  REAL8                         offset = 0.;
  INT8                          waveformStartTime = 0;

  /* files contain PSD info */
  CHAR                         *injectionFile = NULL;         
  CHAR                         *outputFile    = NULL;         
  CHAR                         *specFileH1    = NULL;         
  CHAR                         *specFileH2    = NULL;         
  CHAR                         *specFileL1    = NULL;         

  COMPLEX8Vector               *unity = NULL;
  const LALUnit strainPerCount = {0,{0,0,0,0,0,1,-1},{0,0,0,0,0,0,0}};

  int                           numInjections = 0;
  int                           numTriggers = 0;

  /* template bank simulation variables */
  INT4                         injSimCount = 0;
  SimInspiralTable            *injectionHead  = NULL;
  SimInspiralTable            *thisInjection  = NULL;
  SnglInspiralTable           *snglHead       = NULL;
  SearchSummaryTable          *searchSummHead = NULL;
  /*SummValueTable              *summValueHead  = NULL;    */

  /* raw input data storage */
  REAL8FrequencySeries          *specH1        = NULL;
  REAL8FrequencySeries          *specH2        = NULL;
  REAL8FrequencySeries          *specL1        = NULL;
  REAL8FrequencySeries          *thisSpec      = NULL;
  COMPLEX8FrequencySeries       *resp          = NULL;
  COMPLEX8FrequencySeries       *detTransDummy = NULL;
  REAL4TimeSeries               *chan          = NULL;
  RealFFTPlan                   *pfwd          = NULL;
  COMPLEX8FrequencySeries       *fftData       = NULL;
  REAL8                          thisSnrsq     = 0;
  REAL8                          thisSnr       = 0;
  REAL8                          thisCombSnr   = 0;
  REAL8                          snrVec[3];
  REAL8                          dynRange      = 1./(3.0e-23);

  /* needed for inj */
  CoherentGW                 waveform;
  PPNParamStruc              ppnParams;
  DetectorResponse           detector;
  InterferometerNumber       ifoNumber   = LAL_UNKNOWN_IFO;

  /* output data */
  LIGOLwXMLStream       xmlStream;
  MetadataTable         proctable;
  MetadataTable         outputTable;
  MetadataTable         procparams;
  CHAR                  fname[256];         
  CHAR                  comment[LIGOMETA_COMMENT_MAX];
  ProcessParamsTable   *this_proc_param = NULL;

  CHAR   chanfilename[FILENAME_MAX];

  REAL4 sum = 0;
  REAL4 bitten_H1 = 0;
  REAL4 bitten_H2 = 0;
  REAL4 thisCombSnr_H1H2 = 0;

  /* create the process and process params tables */
  proctable.processTable = (ProcessTable *) calloc( 1, sizeof(ProcessTable) );
  XLALGPSTimeNow(&(proctable.processTable->start_time));
  XLALPopulateProcessTable(proctable.processTable, PROGRAM_NAME, lalAppsVCSIdentId,
      lalAppsVCSIdentStatus, lalAppsVCSIdentDate, 0);
  this_proc_param = procparams.processParamsTable = (ProcessParamsTable *) 
                                      calloc( 1, sizeof(ProcessParamsTable) );
  memset( comment, 0, LIGOMETA_COMMENT_MAX * sizeof(CHAR) );

  /* look at input args, write process params where required */
  while ( 1 )
  {

  /* getopt arguments */
  static struct option long_options[] =
  {
    /* these options set a flag */
    /* these options do not set a flag */
    {"help",                    no_argument,       0,                'h'},
    {"verbose",                 no_argument,       &vrbflg,           1 },
    {"version",                 no_argument,       0,                'V'},
    {"spectrum-H1",             required_argument, 0,                'a'},
    {"spectrum-H2",             required_argument, 0,                'b'},
    {"spectrum-L1",             required_argument, 0,                'c'},
    {"inj-file",                required_argument, 0,                'd'},
    {"comment",                 required_argument, 0,                'e'},
    {"output-file",             required_argument, 0,                'f'},
    {"coire-flag",              no_argument,       &coireflg,         1 },
    {"ligo-srd",                no_argument,       &ligosrd,          1 },
    {"write-chan",              no_argument,       &writechan,        1 },
    {"inject-overhead",         no_argument,       &injoverhead,      1 },
    {"f-lower",                 required_argument, 0,                'g'},
    {0, 0, 0, 0}
  };
  int c;
  
  /*
   *
   * parse command line arguments
   *
   */

    /* getopt_long stores long option here */
    int option_index = 0;
    size_t optarg_len;

    c = getopt_long_only( argc, argv, "a:b:c:d:e:f:g:hV", long_options, &option_index );

    /* detect the end of the options */
    if ( c == - 1 )
    {
      break;
    }

    switch ( c )
    {
      case 0:
        /* if this option set a flag, do nothing else now */
        if ( long_options[option_index].flag != 0 )
        {
          break;
        }
        else
        {
          fprintf( stderr, "error parsing option %s with argument %s\n",
              long_options[option_index].name, optarg );
          exit( 1 );
        }
        break;

      case 'h':
        fprintf( stderr, USAGE );
        exit( 0 );
        break;

      case 'a':
        /* create storage for the spectrum file name */
        optarg_len = strlen( optarg ) + 1;
        specFileH1 = (CHAR *) calloc( optarg_len, sizeof(CHAR));
        memcpy( specFileH1, optarg, optarg_len );
        ADD_PROCESS_PARAM( "string", "%s", optarg );
        break;

      case 'b':
        /* create storage for the spectrum file name */
        optarg_len = strlen( optarg ) + 1;
        specFileH2 = (CHAR *) calloc( optarg_len, sizeof(CHAR));
        memcpy( specFileH2, optarg, optarg_len );
        ADD_PROCESS_PARAM( "string", "%s", optarg );
        break;

      case 'c':
        /* create storage for the spectrum file name */
        optarg_len = strlen( optarg ) + 1;
        specFileL1 = (CHAR *) calloc( optarg_len, sizeof(CHAR));
        memcpy( specFileL1, optarg, optarg_len );
        ADD_PROCESS_PARAM( "string", "%s", optarg );
        break;

      case 'd':
        /* create storage for the injection file name */
        optarg_len = strlen( optarg ) + 1;
        injectionFile = (CHAR *) calloc( optarg_len, sizeof(CHAR));
        memcpy( injectionFile, optarg, optarg_len );
        ADD_PROCESS_PARAM( "string", "%s", optarg );
        break;

      case 'f':
        /* create storage for the output file name */
        optarg_len = strlen( optarg ) + 1;
        outputFile = (CHAR *) calloc( optarg_len, sizeof(CHAR));
        memcpy( outputFile, optarg, optarg_len );
        ADD_PROCESS_PARAM( "string", "%s", optarg );
        break;
    
      case 'g':
        fLow = (INT4) atof( optarg );
        if ( fLow < 40 )
        {
          fprintf( stderr, "invalid argument to --%s:\n"
              "f-lower must be > 40Hz (%e specified)\n",
              long_options[option_index].name, fLow );
          exit( 1 );
        }
        ADD_PROCESS_PARAM( "float", "%e", fLow );
        break;


     case 'e':
        if ( strlen( optarg ) > LIGOMETA_COMMENT_MAX - 1 )
        {
          fprintf( stderr, "invalid argument to --%s:\n"
              "comment must be less than %d characters\n",
              long_options[option_index].name, LIGOMETA_COMMENT_MAX );
          exit( 1 );
        }
        else
        {
          snprintf( comment, LIGOMETA_COMMENT_MAX, "%s", optarg);
        }
        break;

      case 'V':
        /* print version information and exit */
        fprintf( stdout, "calculation of expected SNR of injections\n"
            "Gareth Jones\n");
        XLALOutputVersionString(stderr, 0);
        exit( 0 );
        break;

     default:
        fprintf( stderr, "unknown error while parsing options\n" );
        fprintf( stderr, USAGE );
        exit( 1 );
    }
  }  

  if ( optind < argc )
  {
    fprintf( stderr, "extraneous command line arguments:\n" );
    while ( optind < argc )
    {
      fprintf ( stderr, "%s\n", argv[optind++] );
    }
    exit( 1 );
  }

  /* check the input arguments */
  if ( injectionFile == NULL )
  {
    fprintf( stderr, "Must specify the --injection-file\n" );
    exit( 1 );
  }

  if ( outputFile == NULL )
  {
    fprintf( stderr, "Must specify the --output-file\n" );
    exit( 1 );
  }

  if ( !ligosrd && specFileH1 == NULL )
  {
    fprintf( stderr, "Must specify the --spectrum-H1\n" );
    exit( 1 );
  }

  if ( !ligosrd && specFileH2 == NULL )
  {
    fprintf( stderr, "Must specify the --spectrum-H2\n" );
    exit( 1 );
  }

  if ( !ligosrd && specFileL1 == NULL )
  {
    fprintf( stderr, "Must specify the --spectrum-L1\n" );
    exit( 1 );
  }

  if ( ligosrd && (specFileH1 || specFileH2 || specFileL1 ))
  {
    fprintf( stdout, "WARNING: using LIGOI SRD power spectral density \n" );
  } 
 
  if ( vrbflg ){
    fprintf( stdout, "injection file is %s\n", injectionFile );
    fprintf( stdout, "output file is %s\n", outputFile );
    fprintf( stdout, "H1 spec file is   %s\n", specFileH1 );
    fprintf( stdout, "H2 spec file is   %s\n", specFileH2 );
    fprintf( stdout, "L1 spec file is   %s\n", specFileL1 );
  }

  /* create vector for H1, H2 and L1 spectrums */
  specH1 = XLALCreateREAL8FrequencySeries ( "",&epoch, f0, deltaF, &lalADCCountUnit, (numPoints / 2 + 1) );
  specH2 = XLALCreateREAL8FrequencySeries ( "",&epoch, f0, deltaF, &lalADCCountUnit, (numPoints / 2 + 1) );
  specL1 = XLALCreateREAL8FrequencySeries ( "",&epoch, f0, deltaF, &lalADCCountUnit, (numPoints / 2 + 1) );
  if (!specH1 || !specH2 || !specL1){
    XLALDestroyREAL8FrequencySeries ( specH1 );
    XLALDestroyREAL8FrequencySeries ( specH2 );
    XLALDestroyREAL8FrequencySeries ( specL1 );
    XLALPrintError("failure allocating H1, H2 and L1 spectra");
    exit(1);
  }

  if (!ligosrd){
    /* read in H1 spectrum */ 
    LAL_CALL( LALDReadFrequencySeries(&status, specH1, specFileH1), &status );
    if ( vrbflg ){
       fprintf( stdout, "read in H1 spec file\n" );
       fflush( stdout );
    } 

    /* read in H2 spectrum */ 
    LAL_CALL( LALDReadFrequencySeries(&status, specH2, specFileH2), &status );
    if ( vrbflg ){
       fprintf( stdout, "read in H2 spec file\n" );
       fflush( stdout );
    }

    /* read in L1 spectrum */ 
    LAL_CALL( LALDReadFrequencySeries(&status, specL1, specFileL1), &status );
    if ( vrbflg ){
       fprintf( stdout, "read in L1 spec file\n" );
       fflush( stdout );
     }
  }

  chan = XLALCreateREAL4TimeSeries( "", &epoch, f0, deltaT, 
                                     &lalADCCountUnit, numPoints );
  if ( !chan ){
    XLALPrintError("failure allocating chan");
    exit(1);
  }

  /*
   *
   * set up the response function
   *
   */
  resp = XLALCreateCOMPLEX8FrequencySeries( chan->name, 
     &chan->epoch, f0, deltaF, &strainPerCount, (numPoints / 2 + 1) );
  if ( !resp ){
    XLALPrintError("failure allocating response function");
    exit(1);
  }

  /* create vector that will contain detector.transfer info, since this 
   * is constant I calculate it once outside of all the loops and pass it 
   * in to detector.transfer when required 
   */
  detTransDummy = XLALCreateCOMPLEX8FrequencySeries( chan->name, &chan->epoch,
                  f0, deltaF, &strainPerCount, (numPoints / 2 + 1) );
  if ( !detTransDummy ){
    XLALPrintError("failure allocating detector.transfer info");
    exit(1);
  }

  /* invert the response function to get the transfer function */
  unity = XLALCreateCOMPLEX8Vector( resp->data->length );
  for ( k = 0; k < unity->length; ++k )
     {
        unity->data[k] = 1.0;
     }

  /* set response */
  for ( k = 0; k < resp->data->length; ++k )
  {
      resp->data->data[k] = 1.0;
  }

  XLALCCVectorDivide( detTransDummy->data, unity, resp->data );
  XLALDestroyCOMPLEX8Vector( unity );

  /* read in injections from injection file */
  /* set endtime to 0 so that we read in all events */
  if ( vrbflg ) fprintf( stdout, "Reading sim_inspiral table of %s\n", injectionFile );
  LAL_CALL(numInjections = SimInspiralTableFromLIGOLw( &injectionHead, injectionFile, 0, 0), &status);
  if ( vrbflg ) fprintf( stdout, "Read %d injections from sim_inspiral table of %s\n", 
                                    numInjections, injectionFile );

  if (coireflg){
     if ( vrbflg ) fprintf( stdout, "Reading sngl_inspiral table of %s\n", injectionFile );
     LAL_CALL(numTriggers = LALSnglInspiralTableFromLIGOLw(&snglHead, injectionFile, 0, -1), &status);
     if ( vrbflg ) fprintf( stdout, "Read %d triggers from sngl_inspiral table of %s\n", 
                                    numTriggers, injectionFile );
     if ( vrbflg ) {
           fprintf( stdout, "Reading search_summary table of %s ...", injectionFile );
           fflush( stdout );
           }
     searchSummHead = XLALSearchSummaryTableFromLIGOLw (injectionFile);
     if ( vrbflg ) fprintf( stdout, " done\n");
  }

 /* make sure we start at head of linked list */
 thisInjection = injectionHead;

  /* setting fixed waveform injection parameters */
  memset( &ppnParams, 0, sizeof(PPNParamStruc) );
  ppnParams.deltaT   = deltaT;
  ppnParams.lengthIn = 0;
  ppnParams.ppn      = NULL;

  /* loop over injections */
  injSimCount = 0;
    
        
  do
  {
     fprintf( stdout, "injection %d/%d\n", injSimCount+1, numInjections );

     /* reset waveform structure */
     memset( &waveform, 0, sizeof(CoherentGW) );

     /* reset chan structure */
     memset( chan->data->data, 0, chan->data->length * sizeof(REAL4) );

     if (thisInjection->f_lower == 0){
        fprintf( stdout, "WARNING: f_lower in sim_inpiral = 0, ");
        fprintf( stdout, "changing this to %e\n ", fLowInj);
        thisInjection->f_lower = fLowInj;
     }

     /* create the waveform, amp, freq phase etc */
     LAL_CALL( LALGenerateInspiral(&status, &waveform, thisInjection, &ppnParams), &status);
     if (vrbflg) fprintf( stdout, "ppnParams.tc %e\n ", ppnParams.tc);

    statValue = 0.;
  
    /* calc lower index for integration */
    kLow = ceil(fLow / deltaF);
    if ( vrbflg ) {
        fprintf( stdout, "starting integration to find SNR at frequency %e ", fLow);
        fprintf( stdout, "at index %d \n", kLow);
    }
    /* calc upper index for integration */
    kHi = floor(fSampling / (2. * deltaF));
    if ( vrbflg ) {
        fprintf( stdout, "ending integration to find SNR at frequency %e ", fSampling / 2.);
        fprintf( stdout, "at index %d \n", kHi);
    }

    /* loop over ifo */
    for ( ifoNumber = 1; ifoNumber < 4; ifoNumber++ )
    {
        /* allocate memory and copy the parameters describing the freq series */
        memset( &detector, 0, sizeof( DetectorResponse ) );
        detector.site = (LALDetector *) LALMalloc( sizeof(LALDetector) );

        if (injoverhead){ 
           if ( vrbflg ) fprintf( stdout, "WARNING: perform overhead injections\n");
           /* setting detector.site to NULL causes SimulateCoherentGW to
            * perform overhead injections */  
           detector.site = NULL; 
        }
        else {
           /* if not overhead, set detector.site using ifonumber */  
           XLALReturnDetector( detector.site, ifoNumber );
        } 

        switch ( ifoNumber )
        {
        case 1:
           if ( vrbflg ) fprintf( stdout, "looking at H1 \n");
           thisSpec = specH1;
           break;
        case 2:
           if ( vrbflg ) fprintf( stdout, "looking at H2 \n");
           thisSpec = specH2;
           break;
        case 3:
           if ( vrbflg ) fprintf( stdout, "looking at L1 \n");
           thisSpec = specL1;
           break;
        default:
           fprintf( stderr, "Error: ifoNumber %d does not correspond to H1, H2 or L1: \n", ifoNumber );
           exit( 1 );
        }

        /* get the gps start time of the signal to inject */
        waveformStartTime = XLALGPSToINT8NS( &(thisInjection->geocent_end_time) );
        waveformStartTime -= (INT8) ( 1000000000.0 * ppnParams.tc );

        offset = (chan->data->length / 2.0) * chan->deltaT;
        gpsStartTime.gpsSeconds     = thisInjection->geocent_end_time.gpsSeconds - offset;
        gpsStartTime.gpsNanoSeconds = thisInjection->geocent_end_time.gpsNanoSeconds;
        chan->epoch = gpsStartTime;


       if (vrbflg) fprintf(stdout, "offset start time of injection by %f seconds \n", offset ); 
       
       /* is this okay? copying in detector transfer which so far only contains response info  */
       detector.transfer = detTransDummy;

       XLALUnitInvert( &(detector.transfer->sampleUnits), &(resp->sampleUnits) );

       /* set the start times for injection */
       XLALINT8NSToGPS( &(waveform.a->epoch), waveformStartTime );
       memcpy(&(waveform.f->epoch), &(waveform.a->epoch), sizeof(LIGOTimeGPS) );
       memcpy(&(waveform.phi->epoch), &(waveform.a->epoch), sizeof(LIGOTimeGPS) );
 
       /* perform the injection */
       LAL_CALL( LALSimulateCoherentGW(&status, chan, &waveform, &detector ), &status); 

       if (writechan){ 
          /* write out channel data */
          if (vrbflg) fprintf(stdout, "writing channel data to file... \n" ); 
          switch ( ifoNumber )
          {
          case 1:
             snprintf( chanfilename, FILENAME_MAX, "chanTest_H1_inj%d.dat", injSimCount+1);
             if (vrbflg) fprintf( stdout, "writing H1 channel time series out to %s\n", chanfilename );
             LALSPrintTimeSeries(chan, chanfilename );
             break;
          case 2:
             snprintf( chanfilename, FILENAME_MAX, "chanTest_H2_inj%d.dat", injSimCount+1);
             if (vrbflg) fprintf( stdout, "writing H2 channel time series out to %s\n", chanfilename );
             LALSPrintTimeSeries(chan, chanfilename );
             break;
          case 3:
             snprintf( chanfilename, FILENAME_MAX, "chanTest_L1_inj%d.dat", injSimCount+1);
             if (vrbflg) fprintf( stdout, "writing L1 channel time series out to %s\n", chanfilename );
             LALSPrintTimeSeries(chan, chanfilename );
             break;
         default:
             fprintf( stderr, "Error: ifoNumber %d does not correspond to H1, H2 or L1: \n", ifoNumber );
             exit( 1 );
         }  
      } 

      LAL_CALL( LALCreateForwardRealFFTPlan( &status, &pfwd, chan->data->length, 0), &status);

      fftData = XLALCreateCOMPLEX8FrequencySeries( chan->name, &chan->epoch, f0, deltaF, 
                                                   &lalDimensionlessUnit, (numPoints / 2 + 1) );
      if ( !fftData ){
        XLALPrintError("failure allocating fftData");
        exit(1);
      }
   
      LAL_CALL( LALTimeFreqRealFFT( &status, fftData, chan, pfwd ), &status);
   
      LAL_CALL( LALDestroyRealFFTPlan( &status, &pfwd ), &status);
      pfwd = NULL;

       /* compute the SNR */
       thisSnrsq = 0;
       /* avoid f=0 part of psd */  

       if (ligosrd){
          if (vrbflg) fprintf( stdout, "using LIGOI PSD \n");
          for ( k = kLow; k < kHi; k++ )
          {
           REAL8 freq;
           REAL8 sim_psd_value;
           freq = fftData->deltaF * k;
           LALLIGOIPsd( NULL, &sim_psd_value, freq ); 

           thisSnrsq += ((crealf(fftData->data->data[k]) * dynRange) * 
                      (crealf(fftData->data->data[k]) * dynRange)) / sim_psd_value;
           thisSnrsq += ((cimagf(fftData->data->data[k]) * dynRange) * 
                      (cimagf(fftData->data->data[k]) * dynRange)) / sim_psd_value;
           }
       }
       else {
          if (vrbflg) fprintf( stdout, "using input spectra \n");
          for ( k = kLow; k < kHi; k++ )
          {
           thisSnrsq += ((crealf(fftData->data->data[k]) * dynRange) * 
              (crealf(fftData->data->data[k]) * dynRange))  /
              (thisSpec->data->data[k] * dynRange * dynRange);
           thisSnrsq += ((cimagf(fftData->data->data[k]) * dynRange) * 
              (cimagf(fftData->data->data[k]) * dynRange)) /
              (thisSpec->data->data[k] * dynRange * dynRange);
        } 
      }

       thisSnrsq *= 4*fftData->deltaF;
       thisSnr    = pow(thisSnrsq, 0.5);
       /* Note indexing on snrVec, ifoNumber runs from 1..3 to get source correct,
        * we must index snrVec 0..2 
        */ 
       snrVec[ifoNumber-1] = thisSnr; 
       XLALDestroyCOMPLEX8FrequencySeries(fftData);

       if ( vrbflg ){
          fprintf( stdout, "thisSnrsq %e\n", thisSnrsq );
          fprintf( stdout, "snrVec    %e\n", snrVec[ifoNumber-1] );
          fflush( stdout );
       }

       /* sum thisSnrsq to eventually get combined snr*/
       statValue += thisSnrsq; 

       /* free some memory */
       if (detector.transfer) detector.transfer = NULL;
       if ( detector.site ) {LALFree( detector.site); detector.site = NULL;}
     }
     /* end loop over ifo */
  
    destroyCoherentGW( &waveform );

    /* store inverse eff snrs in eff_dist columns */
    thisInjection->eff_dist_h = 1./snrVec[0];
    thisInjection->eff_dist_g = 1./snrVec[1];
    thisInjection->eff_dist_l = 1./snrVec[2];

    /* store inverse sum of squares snr in eff_dist_t */
    thisCombSnr = pow(statValue, 0.5);
    if ( vrbflg ) fprintf( stdout, "thisCombSnr %e\n", thisCombSnr);
    thisInjection->eff_dist_t = 1./thisCombSnr;

    /* calc inverse bittenL snr for H1H2 and store in eff_dist_v */
    thisCombSnr_H1H2 = 0.;
    sum = snrVec[0] * snrVec[0] + snrVec[1] * snrVec[1];
    bitten_H1 = 3 * snrVec[0] -3;
    bitten_H2 = 3 * snrVec[1] -3;

    if (sum < bitten_H1){
       thisCombSnr_H1H2 = sum;
    }
    else
    {
       thisCombSnr_H1H2 = bitten_H1;
    }

    if (bitten_H2 < thisCombSnr_H1H2){
       thisCombSnr_H1H2 = bitten_H2;
    }
    thisInjection->eff_dist_v = 1./thisCombSnr_H1H2;


    /* increment the bank sim sim_inspiral table if necessary */
    if ( injectionHead )
    {
      thisInjection = thisInjection->next;
    }

  } while ( ++injSimCount < numInjections ); 
  /* end loop over injections */

  /* try opening, writing and closing an xml file */

  /* open the output xml file */
  memset( &xmlStream, 0, sizeof(LIGOLwXMLStream) );
  snprintf( fname, sizeof(fname), "%s", outputFile);
  LAL_CALL( LALOpenLIGOLwXMLFile  ( &status, &xmlStream, fname), &status);

  /* write out the process and process params tables */
  if ( vrbflg ) fprintf( stdout, "process... " );
  XLALGPSTimeNow(&(proctable.processTable->end_time));
  LAL_CALL( LALBeginLIGOLwXMLTable( &status, &xmlStream, process_table ), &status );
  LAL_CALL( LALWriteLIGOLwXMLTable( &status, &xmlStream, proctable, process_table ), &status );
  LAL_CALL( LALEndLIGOLwXMLTable ( &status, &xmlStream ), &status );
  free( proctable.processTable );
  /* Just being pedantic here ... */
  proctable.processTable = NULL;
 
  /* free the unused process param entry */
  this_proc_param = procparams.processParamsTable;
  procparams.processParamsTable = procparams.processParamsTable->next;
  free( this_proc_param );
  this_proc_param = NULL;

  /* write the process params table */
  if ( vrbflg ) fprintf( stdout, "process_params... " );
  LAL_CALL( LALBeginLIGOLwXMLTable( &status, &xmlStream, process_params_table ), &status );
  LAL_CALL( LALWriteLIGOLwXMLTable( &status, &xmlStream, procparams, process_params_table ), &status );
  LAL_CALL( LALEndLIGOLwXMLTable ( &status, &xmlStream ), &status );

  /* write the search summary table */
  if ( coireflg ){
     if ( vrbflg ) fprintf( stdout, "search_summary... " );
     outputTable.searchSummaryTable = searchSummHead;
     LAL_CALL( LALBeginLIGOLwXMLTable( &status, &xmlStream, search_summary_table), &status);
     LAL_CALL( LALWriteLIGOLwXMLTable( &status, &xmlStream, outputTable, search_summary_table), &status);
     LAL_CALL( LALEndLIGOLwXMLTable  ( &status, &xmlStream), &status);
   }

  /* write the sim inspiral table */
  if ( vrbflg ) fprintf( stdout, "sim_inspiral... " );
  outputTable.simInspiralTable = injectionHead;
  LAL_CALL( LALBeginLIGOLwXMLTable( &status, &xmlStream, sim_inspiral_table), &status);
  LAL_CALL( LALWriteLIGOLwXMLTable( &status, &xmlStream, outputTable, sim_inspiral_table), &status);
  LAL_CALL( LALEndLIGOLwXMLTable  ( &status, &xmlStream), &status);

  /* write the sngl inspiral table */
  if ( coireflg ){
     if ( vrbflg ) fprintf( stdout, "sngl_inspiral... " );
     outputTable.snglInspiralTable = snglHead;
     LAL_CALL( LALBeginLIGOLwXMLTable( &status, &xmlStream, sngl_inspiral_table), &status);
     LAL_CALL( LALWriteLIGOLwXMLTable( &status, &xmlStream, outputTable, sngl_inspiral_table), &status);
     LAL_CALL( LALEndLIGOLwXMLTable  ( &status, &xmlStream), &status);
  } 

  /* close the xml file */ 
  LAL_CALL( LALCloseLIGOLwXMLFile ( &status, &xmlStream), &status);

  /* Freeing memory */
  XLALDestroyREAL4TimeSeries(chan);
  XLALDestroyCOMPLEX8FrequencySeries(resp);
  XLALDestroyCOMPLEX8FrequencySeries(detTransDummy);
  XLALDestroyREAL8FrequencySeries ( specH1 );
  XLALDestroyREAL8FrequencySeries ( specH2 );
  XLALDestroyREAL8FrequencySeries ( specL1 );


  free( specFileH1 );
  specFileH1 = NULL;
  free( specFileH2 );
  specFileH2 = NULL;
  free( specFileL1 );
  specFileL1 = NULL;
  free( injectionFile ); 
  injectionFile = NULL;

  /* free the process params */
  while( procparams.processParamsTable )
  {
    this_proc_param = procparams.processParamsTable;
    procparams.processParamsTable = this_proc_param->next;
    free( this_proc_param );
    this_proc_param = NULL;
  }

  /* free the sim inspiral tables */
  while ( injectionHead )
  {
    thisInjection = injectionHead;
    injectionHead = injectionHead->next;
    LALFree( thisInjection );
  }

  /*check for memory leaks */
  LALCheckMemoryLeaks(); 

  exit( 0 ); 
}
Пример #4
0
int main(int argc,char UNUSED **argv) {
    static LALStatus    mystatus;

    CoherentGW      thewaveform;
    SimInspiralTable    injParams;
    PPNParamStruc       ppnParams;

    const char  *filename = "wave1.dat";
    FILE        *outputfile;
    INT4        i,length;
    REAL8       dt;
    REAL8       a1, a2, phi, shift, phi0;

    memset( &mystatus, 0, sizeof(LALStatus) );
    memset( &thewaveform, 0, sizeof(CoherentGW) );
    memset( &injParams, 0, sizeof(SimInspiralTable) );
    memset( &ppnParams, 0, sizeof(PPNParamStruc) );

    /* --- first we fill the SimInspiral structure --- */

    injParams.mass1 = 10.;
    injParams.mass2 = 10.;

    /* MV-20060224: I believe this is not used in the SpinTaylor code! */
    injParams.f_final = 500.0;
    injParams.f_lower = 40.;

    snprintf(injParams.waveform,LIGOMETA_WAVEFORM_MAX*sizeof(CHAR),"SpinTaylortwoPN");

    /* this is given in Mpc */
    injParams.distance = 100.;
    /* this should not be zero*/
    injParams.theta0 = 0.01;
    injParams.phi0   = 0.5;

    injParams.inclination = 0.8;
    injParams.polarization   = 0.9;

    injParams.spin1x = 0.1;
    injParams.spin1y = 0.2;
    injParams.spin1z = 0.3;

    injParams.spin2x = 0.4;
    injParams.spin2y = 0.5;
    injParams.spin2z = 0.6;

    ppnParams.deltaT = 1.0 / 4096.0;

    fprintf(stderr, "Lower cut-off frequency used will be %fHz\n", injParams.f_lower);

    if(argc > 1) newswitch=1;
    /* --- now we can call the injection function --- */
    LALGenerateInspiral( &mystatus, &thewaveform, &injParams, &ppnParams );
    if ( mystatus.statusCode )
    {
      fprintf( stderr, "LALSTPNWaveformTest: error generating waveform %d\n", mystatus.statusCode );
      exit( 1 );
    }

    /* --- and finally save in a file --- */

    outputfile = fopen(filename,"w");

    length  = thewaveform.phi->data->length;
    dt      = thewaveform.phi->deltaT;

    phi0    = thewaveform.phi->data->data[0];

    for(i = 0; i < length; i++) {
        a1  = thewaveform.a->data->data[2*i];
        a2  = thewaveform.a->data->data[2*i+1];
        phi     = thewaveform.phi->data->data[i] - phi0;
        shift   = thewaveform.shift->data->data[i];

        fprintf(outputfile,"%e\t%e\t%e\n",
            i*dt,
            a1*cos(shift)*cos(phi) - a2*sin(shift)*sin(phi),
            a1*sin(shift)*cos(phi) + a2*cos(shift)*sin(phi));
    }

    fclose(outputfile);
    fprintf(stderr,"waveform saved in wave1.dat\n" );
    return 0;
}