PetscErrorCode DSVectors_NHEP_Refined_Some(DS ds,PetscInt *k,PetscReal *rnorm,PetscBool left) { #if defined(SLEPC_MISSING_LAPACK_GESVD) PetscFunctionBegin; SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GESVD - Lapack routine is unavailable"); #else PetscErrorCode ierr; PetscInt i,j; PetscBLASInt info,ld,n,n1,lwork,inc=1; PetscScalar sdummy,done=1.0,zero=0.0; PetscReal *sigma; PetscBool iscomplex = PETSC_FALSE; PetscScalar *A = ds->mat[DS_MAT_A]; PetscScalar *Q = ds->mat[DS_MAT_Q]; PetscScalar *X = ds->mat[left?DS_MAT_Y:DS_MAT_X]; PetscScalar *W; PetscFunctionBegin; if (left) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not implemented for left vectors"); ierr = PetscBLASIntCast(ds->n,&n);CHKERRQ(ierr); ierr = PetscBLASIntCast(ds->ld,&ld);CHKERRQ(ierr); n1 = n+1; if ((*k)<n-1 && A[(*k)+1+(*k)*ld]!=0.0) iscomplex = PETSC_TRUE; if (iscomplex) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not implemented for complex eigenvalues yet"); ierr = DSAllocateWork_Private(ds,5*ld,6*ld,0);CHKERRQ(ierr); ierr = DSAllocateMat_Private(ds,DS_MAT_W);CHKERRQ(ierr); W = ds->mat[DS_MAT_W]; lwork = 5*ld; sigma = ds->rwork+5*ld; /* build A-w*I in W */ for (j=0;j<n;j++) for (i=0;i<=n;i++) W[i+j*ld] = A[i+j*ld]; for (i=0;i<n;i++) W[i+i*ld] -= A[(*k)+(*k)*ld]; /* compute SVD of W */ #if !defined(PETSC_USE_COMPLEX) PetscStackCallBLAS("LAPACKgesvd",LAPACKgesvd_("N","O",&n1,&n,W,&ld,sigma,&sdummy,&ld,&sdummy,&ld,ds->work,&lwork,&info)); #else PetscStackCallBLAS("LAPACKgesvd",LAPACKgesvd_("N","O",&n1,&n,W,&ld,sigma,&sdummy,&ld,&sdummy,&ld,ds->work,&lwork,ds->rwork,&info)); #endif if (info) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in Lapack xGESVD %d",info); /* the smallest singular value is the new error estimate */ if (rnorm) *rnorm = sigma[n-1]; /* update vector with right singular vector associated to smallest singular value, accumulating the transformation matrix Q */ PetscStackCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&done,Q,&ld,W+n-1,&ld,&zero,X+(*k)*ld,&inc)); PetscFunctionReturn(0); #endif }
PetscErrorCode KSPComputeExtremeSingularValues_GMRES(KSP ksp,PetscReal *emax,PetscReal *emin) { #if defined(PETSC_MISSING_LAPACK_GESVD) PetscFunctionBegin; /* The Cray math libraries on T3D/T3E, and early versions of Intel Math Kernel Libraries (MKL) for PCs do not seem to have the DGESVD() lapack routines */ SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_SUP,"GESVD - Lapack routine is unavailable\nNot able to provide singular value estimates."); #else KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; PetscInt n = gmres->it + 1,i,N = gmres->max_k + 2; PetscBLASInt bn, bN ,lwork, idummy,lierr; PetscScalar *R = gmres->Rsvd,*work = R + N*N,sdummy; PetscReal *realpart = gmres->Dsvd; PetscFunctionBegin; bn = PetscBLASIntCast(n); bN = PetscBLASIntCast(N); lwork = PetscBLASIntCast(5*N); idummy = PetscBLASIntCast(N); if (n <= 0) { *emax = *emin = 1.0; PetscFunctionReturn(0); } /* copy R matrix to work space */ ierr = PetscMemcpy(R,gmres->hh_origin,(gmres->max_k+2)*(gmres->max_k+1)*sizeof(PetscScalar)); CHKERRQ(ierr); /* zero below diagonal garbage */ for (i=0; i<n; i++) { R[i*N+i+1] = 0.0; } /* compute Singular Values */ ierr = PetscFPTrapPush(PETSC_FP_TRAP_OFF); CHKERRQ(ierr); #if !defined(PETSC_USE_COMPLEX) LAPACKgesvd_("N","N",&bn,&bn,R,&bN,realpart,&sdummy,&idummy,&sdummy,&idummy,work,&lwork,&lierr); #else LAPACKgesvd_("N","N",&bn,&bn,R,&bN,realpart,&sdummy,&idummy,&sdummy,&idummy,work,&lwork,realpart+N,&lierr); #endif if (lierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SVD Lapack routine %d",(int)lierr); ierr = PetscFPTrapPop(); CHKERRQ(ierr); *emin = realpart[n-1]; *emax = realpart[0]; #endif PetscFunctionReturn(0); }
int MultiPlasticityLinearSystem::singularValuesOfR(const std::vector<RankTwoTensor> & r, std::vector<Real> & s) { int bm = r.size(); int bn = 6; s.resize(std::min(bm, bn)); // prepare for gesvd or gesdd routine provided by PETSc // Want to find the singular values of matrix // ( r[0](0,0) r[0](0,1) r[0](0,2) r[0](1,1) r[0](1,2) r[0](2,2) ) // ( r[1](0,0) r[1](0,1) r[1](0,2) r[1](1,1) r[1](1,2) r[1](2,2) ) // a = ( r[2](0,0) r[2](0,1) r[2](0,2) r[2](1,1) r[2](1,2) r[2](2,2) ) // ( r[3](0,0) r[3](0,1) r[3](0,2) r[3](1,1) r[3](1,2) r[3](2,2) ) // ( r[4](0,0) r[4](0,1) r[4](0,2) r[4](1,1) r[4](1,2) r[4](2,2) ) // bm = 5 std::vector<double> a(bm * 6); // Fill in the a "matrix" by going down columns unsigned ind = 0; for (int col = 0; col < 3; ++col) for (int row = 0; row < bm; ++row) a[ind++] = r[row](0, col); for (int col = 3; col < 5; ++col) for (int row = 0; row < bm; ++row) a[ind++] = r[row](1, col - 2); for (int row = 0; row < bm; ++row) a[ind++] = r[row](2, 2); // u and vt are dummy variables because they won't // get referenced due to the "N" and "N" choices int sizeu = 1; std::vector<double> u(sizeu); int sizevt = 1; std::vector<double> vt(sizevt); int sizework = 16 * (bm + 6); // this is above the lowerbound specified in the LAPACK doco std::vector<double> work(sizework); int info; LAPACKgesvd_("N", "N", &bm, &bn, &a[0], &bm, &s[0], &u[0], &sizeu, &vt[0], &sizevt, &work[0], &sizework, &info); return info; }
static PetscErrorCode KSPSolve_BCGSL(KSP ksp) { KSP_BCGSL *bcgsl = (KSP_BCGSL*) ksp->data; PetscScalar alpha, beta, omega, sigma; PetscScalar rho0, rho1; PetscReal kappa0, kappaA, kappa1; PetscReal ghat; PetscReal zeta, zeta0, rnmax_computed, rnmax_true, nrm0; PetscBool bUpdateX; PetscInt maxit; PetscInt h, i, j, k, vi, ell; PetscBLASInt ldMZ,bierr; PetscScalar utb; PetscReal max_s, pinv_tol; PetscErrorCode ierr; PetscFunctionBegin; /* set up temporary vectors */ vi = 0; ell = bcgsl->ell; bcgsl->vB = ksp->work[vi]; vi++; bcgsl->vRt = ksp->work[vi]; vi++; bcgsl->vTm = ksp->work[vi]; vi++; bcgsl->vvR = ksp->work+vi; vi += ell+1; bcgsl->vvU = ksp->work+vi; vi += ell+1; bcgsl->vXr = ksp->work[vi]; vi++; ierr = PetscBLASIntCast(ell+1,&ldMZ);CHKERRQ(ierr); /* Prime the iterative solver */ ierr = KSPInitialResidual(ksp, VX, VTM, VB, VVR[0], ksp->vec_rhs);CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &zeta0);CHKERRQ(ierr); rnmax_computed = zeta0; rnmax_true = zeta0; ierr = (*ksp->converged)(ksp, 0, zeta0, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectAMSTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->its = 0; ksp->rnorm = zeta0; ierr = PetscObjectAMSGrantAccess((PetscObject)ksp);CHKERRQ(ierr); PetscFunctionReturn(0); } ierr = VecSet(VVU[0],0.0);CHKERRQ(ierr); alpha = 0.; rho0 = omega = 1; if (bcgsl->delta>0.0) { ierr = VecCopy(VX, VXR);CHKERRQ(ierr); ierr = VecSet(VX,0.0);CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB);CHKERRQ(ierr); } else { ierr = VecCopy(ksp->vec_rhs, VB);CHKERRQ(ierr); } /* Life goes on */ ierr = VecCopy(VVR[0], VRT);CHKERRQ(ierr); zeta = zeta0; ierr = KSPGetTolerances(ksp, NULL, NULL, NULL, &maxit);CHKERRQ(ierr); for (k=0; k<maxit; k += bcgsl->ell) { ksp->its = k; ksp->rnorm = zeta; ierr = KSPLogResidualHistory(ksp, zeta);CHKERRQ(ierr); ierr = KSPMonitor(ksp, ksp->its, zeta);CHKERRQ(ierr); ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason < 0) PetscFunctionReturn(0); else if (ksp->reason) break; /* BiCG part */ rho0 = -omega*rho0; nrm0 = zeta; for (j=0; j<bcgsl->ell; j++) { /* rho1 <- r_j' * r_tilde */ ierr = VecDot(VVR[j], VRT, &rho1);CHKERRQ(ierr); if (rho1 == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; PetscFunctionReturn(0); } beta = alpha*(rho1/rho0); rho0 = rho1; for (i=0; i<=j; i++) { /* u_i <- r_i - beta*u_i */ ierr = VecAYPX(VVU[i], -beta, VVR[i]);CHKERRQ(ierr); } /* u_{j+1} <- inv(K)*A*u_j */ ierr = KSP_PCApplyBAorAB(ksp, VVU[j], VVU[j+1], VTM);CHKERRQ(ierr); ierr = VecDot(VVU[j+1], VRT, &sigma);CHKERRQ(ierr); if (sigma == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; PetscFunctionReturn(0); } alpha = rho1/sigma; /* x <- x + alpha*u_0 */ ierr = VecAXPY(VX, alpha, VVU[0]);CHKERRQ(ierr); for (i=0; i<=j; i++) { /* r_i <- r_i - alpha*u_{i+1} */ ierr = VecAXPY(VVR[i], -alpha, VVU[i+1]);CHKERRQ(ierr); } /* r_{j+1} <- inv(K)*A*r_j */ ierr = KSP_PCApplyBAorAB(ksp, VVR[j], VVR[j+1], VTM);CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &nrm0);CHKERRQ(ierr); if (bcgsl->delta>0.0) { if (rnmax_computed<nrm0) rnmax_computed = nrm0; if (rnmax_true<nrm0) rnmax_true = nrm0; } /* NEW: check for early exit */ ierr = (*ksp->converged)(ksp, k+j, nrm0, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectAMSTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->its = k+j; ksp->rnorm = nrm0; ierr = PetscObjectAMSGrantAccess((PetscObject)ksp);CHKERRQ(ierr); if (ksp->reason < 0) PetscFunctionReturn(0); } } /* Polynomial part */ for (i = 0; i <= bcgsl->ell; ++i) { ierr = VecMDot(VVR[i], i+1, VVR, &MZa[i*ldMZ]);CHKERRQ(ierr); } /* Symmetrize MZa */ for (i = 0; i <= bcgsl->ell; ++i) { for (j = i+1; j <= bcgsl->ell; ++j) { MZa[i*ldMZ+j] = MZa[j*ldMZ+i] = PetscConj(MZa[j*ldMZ+i]); } } /* Copy MZa to MZb */ ierr = PetscMemcpy(MZb,MZa,ldMZ*ldMZ*sizeof(PetscScalar));CHKERRQ(ierr); if (!bcgsl->bConvex || bcgsl->ell==1) { PetscBLASInt ione = 1,bell; ierr = PetscBLASIntCast(bcgsl->ell,&bell);CHKERRQ(ierr); AY0c[0] = -1; if (bcgsl->pinv) { #if defined(PETSC_MISSING_LAPACK_GESVD) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GESVD - Lapack routine is unavailable."); #else # if defined(PETSC_USE_COMPLEX) PetscStackCall("LAPACKgesvd",LAPACKgesvd_("A","A",&bell,&bell,&MZa[1+ldMZ],&ldMZ,bcgsl->s,bcgsl->u,&bell,bcgsl->v,&bell,bcgsl->work,&bcgsl->lwork,bcgsl->realwork,&bierr)); # else PetscStackCall("LAPACKgesvd",LAPACKgesvd_("A","A",&bell,&bell,&MZa[1+ldMZ],&ldMZ,bcgsl->s,bcgsl->u,&bell,bcgsl->v,&bell,bcgsl->work,&bcgsl->lwork,&bierr)); # endif #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } /* Apply pseudo-inverse */ max_s = bcgsl->s[0]; for (i=1; i<bell; i++) { if (bcgsl->s[i] > max_s) { max_s = bcgsl->s[i]; } } /* tolerance is hardwired to bell*max(s)*PETSC_MACHINE_EPSILON */ pinv_tol = bell*max_s*PETSC_MACHINE_EPSILON; ierr = PetscMemzero(&AY0c[1],bell*sizeof(PetscScalar));CHKERRQ(ierr); for (i=0; i<bell; i++) { if (bcgsl->s[i] >= pinv_tol) { utb=0.; for (j=0; j<bell; j++) { utb += MZb[1+j]*bcgsl->u[i*bell+j]; } for (j=0; j<bell; j++) { AY0c[1+j] += utb/bcgsl->s[i]*bcgsl->v[j*bell+i]; } } } } else { #if defined(PETSC_MISSING_LAPACK_POTRF) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable."); #else PetscStackCall("LAPACKpotrf",LAPACKpotrf_("Lower", &bell, &MZa[1+ldMZ], &ldMZ, &bierr)); #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = PetscMemcpy(&AY0c[1],&MZb[1],bcgsl->ell*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &bell, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr)); } } else { PetscBLASInt ione = 1; PetscScalar aone = 1.0, azero = 0.0; PetscBLASInt neqs; ierr = PetscBLASIntCast(bcgsl->ell-1,&neqs);CHKERRQ(ierr); #if defined(PETSC_MISSING_LAPACK_POTRF) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable."); #else PetscStackCall("LAPACKpotrf",LAPACKpotrf_("Lower", &neqs, &MZa[1+ldMZ], &ldMZ, &bierr)); #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = PetscMemcpy(&AY0c[1],&MZb[1],(bcgsl->ell-1)*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr)); AY0c[0] = -1; AY0c[bcgsl->ell] = 0.; ierr = PetscMemcpy(&AYlc[1],&MZb[1+ldMZ*(bcgsl->ell)],(bcgsl->ell-1)*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AYlc[1], &ldMZ, &bierr)); AYlc[0] = 0.; AYlc[bcgsl->ell] = -1; PetscStackCall("BLASgemv",BLASgemv_("NoTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AY0c, &ione, &azero, AYtc, &ione)); kappa0 = PetscRealPart(BLASdot_(&ldMZ, AY0c, &ione, AYtc, &ione)); /* round-off can cause negative kappa's */ if (kappa0<0) kappa0 = -kappa0; kappa0 = PetscSqrtReal(kappa0); kappaA = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione)); PetscStackCall("BLASgemv",BLASgemv_("noTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AYlc, &ione, &azero, AYtc, &ione)); kappa1 = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione)); if (kappa1<0) kappa1 = -kappa1; kappa1 = PetscSqrtReal(kappa1); if (kappa0!=0.0 && kappa1!=0.0) { if (kappaA<0.7*kappa0*kappa1) { ghat = (kappaA<0.0) ? -0.7*kappa0/kappa1 : 0.7*kappa0/kappa1; } else { ghat = kappaA/(kappa1*kappa1); } for (i=0; i<=bcgsl->ell; i++) { AY0c[i] = AY0c[i] - ghat* AYlc[i]; } } } omega = AY0c[bcgsl->ell]; for (h=bcgsl->ell; h>0 && omega==0.0; h--) omega = AY0c[h]; if (omega==0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = VecMAXPY(VX, bcgsl->ell,AY0c+1, VVR);CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) AY0c[i] *= -1.0; ierr = VecMAXPY(VVU[0], bcgsl->ell,AY0c+1, VVU+1);CHKERRQ(ierr); ierr = VecMAXPY(VVR[0], bcgsl->ell,AY0c+1, VVR+1);CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) AY0c[i] *= -1.0; ierr = VecNorm(VVR[0], NORM_2, &zeta);CHKERRQ(ierr); /* Accurate Update */ if (bcgsl->delta>0.0) { if (rnmax_computed<zeta) rnmax_computed = zeta; if (rnmax_true<zeta) rnmax_true = zeta; bUpdateX = (PetscBool) (zeta<bcgsl->delta*zeta0 && zeta0<=rnmax_computed); if ((zeta<bcgsl->delta*rnmax_true && zeta0<=rnmax_true) || bUpdateX) { /* r0 <- b-inv(K)*A*X */ ierr = KSP_PCApplyBAorAB(ksp, VX, VVR[0], VTM);CHKERRQ(ierr); ierr = VecAYPX(VVR[0], -1.0, VB);CHKERRQ(ierr); rnmax_true = zeta; if (bUpdateX) { ierr = VecAXPY(VXR,1.0,VX);CHKERRQ(ierr); ierr = VecSet(VX,0.0);CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB);CHKERRQ(ierr); rnmax_computed = zeta; } } } } if (bcgsl->delta>0.0) { ierr = VecAXPY(VX,1.0,VXR);CHKERRQ(ierr); } ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (!ksp->reason) ksp->reason = KSP_DIVERGED_ITS; PetscFunctionReturn(0); }
static PetscErrorCode PCSetUp_SVD(PC pc) { #if defined(PETSC_MISSING_LAPACK_GESVD) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_SUP,"GESVD - Lapack routine is unavailable\nNot able to provide singular value estimates."); #else PC_SVD *jac = (PC_SVD*)pc->data; PetscErrorCode ierr; PetscScalar *a,*u,*v,*d,*work; PetscBLASInt nb,lwork; PetscInt i,n; PetscMPIInt size; PetscFunctionBegin; ierr = MatDestroy(&jac->A);CHKERRQ(ierr); ierr = MPI_Comm_size(((PetscObject)pc->pmat)->comm,&size);CHKERRQ(ierr); if (size > 1) { Mat redmat; PetscInt M; ierr = MatGetSize(pc->pmat,&M,NULL);CHKERRQ(ierr); ierr = MatGetRedundantMatrix(pc->pmat,size,PETSC_COMM_SELF,M,MAT_INITIAL_MATRIX,&redmat);CHKERRQ(ierr); ierr = MatConvert(redmat,MATSEQDENSE,MAT_INITIAL_MATRIX,&jac->A);CHKERRQ(ierr); ierr = MatDestroy(&redmat);CHKERRQ(ierr); } else { ierr = MatConvert(pc->pmat,MATSEQDENSE,MAT_INITIAL_MATRIX,&jac->A);CHKERRQ(ierr); } if (!jac->diag) { /* assume square matrices */ ierr = MatGetVecs(jac->A,&jac->diag,&jac->work);CHKERRQ(ierr); } if (!jac->U) { ierr = MatDuplicate(jac->A,MAT_DO_NOT_COPY_VALUES,&jac->U);CHKERRQ(ierr); ierr = MatDuplicate(jac->A,MAT_DO_NOT_COPY_VALUES,&jac->Vt);CHKERRQ(ierr); } ierr = MatGetSize(pc->pmat,&n,NULL);CHKERRQ(ierr); ierr = PetscBLASIntCast(n,&nb);CHKERRQ(ierr); lwork = 5*nb; ierr = PetscMalloc(lwork*sizeof(PetscScalar),&work);CHKERRQ(ierr); ierr = MatDenseGetArray(jac->A,&a);CHKERRQ(ierr); ierr = MatDenseGetArray(jac->U,&u);CHKERRQ(ierr); ierr = MatDenseGetArray(jac->Vt,&v);CHKERRQ(ierr); ierr = VecGetArray(jac->diag,&d);CHKERRQ(ierr); #if !defined(PETSC_USE_COMPLEX) { PetscBLASInt lierr; ierr = PetscFPTrapPush(PETSC_FP_TRAP_OFF);CHKERRQ(ierr); PetscStackCall("LAPACKgesvd",LAPACKgesvd_("A","A",&nb,&nb,a,&nb,d,u,&nb,v,&nb,work,&lwork,&lierr)); if (lierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"gesv() error %d",lierr); ierr = PetscFPTrapPop();CHKERRQ(ierr); } #else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not coded for complex"); #endif ierr = MatDenseRestoreArray(jac->A,&a);CHKERRQ(ierr); ierr = MatDenseRestoreArray(jac->U,&u);CHKERRQ(ierr); ierr = MatDenseRestoreArray(jac->Vt,&v);CHKERRQ(ierr); for (i=n-1; i>=0; i--) if (PetscRealPart(d[i]) > jac->zerosing) break; jac->nzero = n-1-i; if (jac->monitor) { ierr = PetscViewerASCIIAddTab(jac->monitor,((PetscObject)pc)->tablevel);CHKERRQ(ierr); ierr = PetscViewerASCIIPrintf(jac->monitor," SVD: condition number %14.12e, %D of %D singular values are (nearly) zero\n",(double)PetscRealPart(d[0]/d[n-1]),jac->nzero,n);CHKERRQ(ierr); if (n >= 10) { /* print 5 smallest and 5 largest */ ierr = PetscViewerASCIIPrintf(jac->monitor," SVD: smallest singular values: %14.12e %14.12e %14.12e %14.12e %14.12e\n",(double)PetscRealPart(d[n-1]),(double)PetscRealPart(d[n-2]),(double)PetscRealPart(d[n-3]),(double)PetscRealPart(d[n-4]),(double)PetscRealPart(d[n-5]));CHKERRQ(ierr); ierr = PetscViewerASCIIPrintf(jac->monitor," SVD: largest singular values : %14.12e %14.12e %14.12e %14.12e %14.12e\n",(double)PetscRealPart(d[4]),(double)PetscRealPart(d[3]),(double)PetscRealPart(d[2]),(double)PetscRealPart(d[1]),(double)PetscRealPart(d[0]));CHKERRQ(ierr); } else { /* print all singular values */ char buf[256],*p; size_t left = sizeof(buf),used; PetscInt thisline; for (p=buf,i=n-1,thisline=1; i>=0; i--,thisline++) { ierr = PetscSNPrintfCount(p,left," %14.12e",&used,(double)PetscRealPart(d[i]));CHKERRQ(ierr); left -= used; p += used; if (thisline > 4 || i==0) { ierr = PetscViewerASCIIPrintf(jac->monitor," SVD: singular values:%s\n",buf);CHKERRQ(ierr); p = buf; thisline = 0; } } } ierr = PetscViewerASCIISubtractTab(jac->monitor,((PetscObject)pc)->tablevel);CHKERRQ(ierr); } ierr = PetscInfo2(pc,"Largest and smallest singular values %14.12e %14.12e\n",(double)PetscRealPart(d[0]),(double)PetscRealPart(d[n-1]));CHKERRQ(ierr); for (i=0; i<n-jac->nzero; i++) d[i] = 1.0/d[i]; for (; i<n; i++) d[i] = 0.0; if (jac->essrank > 0) for (i=0; i<n-jac->nzero-jac->essrank; i++) d[i] = 0.0; /* Skip all but essrank eigenvalues */ ierr = PetscInfo1(pc,"Number of zero or nearly singular values %D\n",jac->nzero);CHKERRQ(ierr); ierr = VecRestoreArray(jac->diag,&d);CHKERRQ(ierr); #if defined(foo) { PetscViewer viewer; ierr = PetscViewerBinaryOpen(PETSC_COMM_SELF,"joe",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr); ierr = MatView(jac->A,viewer);CHKERRQ(ierr); ierr = MatView(jac->U,viewer);CHKERRQ(ierr); ierr = MatView(jac->Vt,viewer);CHKERRQ(ierr); ierr = VecView(jac->diag,viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(viewer);CHKERRQ(ierr); } #endif ierr = PetscFree(work);CHKERRQ(ierr); PetscFunctionReturn(0); #endif }
void DenseMatrix<T>::_svd_helper (char JOBU, char JOBVT, std::vector<T>& sigma_val, std::vector<T>& U_val, std::vector<T>& VT_val) { // M (input) int* // The number of rows of the matrix A. M >= 0. // In C/C++, pass the number of *cols* of A int M = this->n(); // N (input) int* // The number of columns of the matrix A. N >= 0. // In C/C++, pass the number of *rows* of A int N = this->m(); int min_MN = (M < N) ? M : N; int max_MN = (M > N) ? M : N; // A (input/output) DOUBLE PRECISION array, dimension (LDA,N) // On entry, the M-by-N matrix A. // On exit, // if JOBU = 'O', A is overwritten with the first min(m,n) // columns of U (the left singular vectors, // stored columnwise); // if JOBVT = 'O', A is overwritten with the first min(m,n) // rows of V**T (the right singular vectors, // stored rowwise); // if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A // are destroyed. // Here, we pass &(_val[0]). // LDA (input) int* // The leading dimension of the array A. LDA >= max(1,M). int LDA = M; // S (output) DOUBLE PRECISION array, dimension (min(M,N)) // The singular values of A, sorted so that S(i) >= S(i+1). sigma_val.resize( min_MN ); // LDU (input) INTEGER // The leading dimension of the array U. LDU >= 1; if // JOBU = 'S' or 'A', LDU >= M. int LDU = M; // U (output) DOUBLE PRECISION array, dimension (LDU,UCOL) // (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. // If JOBU = 'A', U contains the M-by-M orthogonal matrix U; // if JOBU = 'S', U contains the first min(m,n) columns of U // (the left singular vectors, stored columnwise); // if JOBU = 'N' or 'O', U is not referenced. U_val.resize( LDU*M ); // LDVT (input) INTEGER // The leading dimension of the array VT. LDVT >= 1; if // JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). int LDVT = N; // VT (output) DOUBLE PRECISION array, dimension (LDVT,N) // If JOBVT = 'A', VT contains the N-by-N orthogonal matrix // V**T; // if JOBVT = 'S', VT contains the first min(m,n) rows of // V**T (the right singular vectors, stored rowwise); // if JOBVT = 'N' or 'O', VT is not referenced. VT_val.resize( LDVT*N ); // LWORK (input) INTEGER // The dimension of the array WORK. // LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)). // For good performance, LWORK should generally be larger. // // If LWORK = -1, then a workspace query is assumed; the routine // only calculates the optimal size of the WORK array, returns // this value as the first entry of the WORK array, and no error // message related to LWORK is issued by XERBLA. int larger = (3*min_MN+max_MN > 5*min_MN) ? 3*min_MN+max_MN : 5*min_MN; int LWORK = (larger > 1) ? larger : 1; // WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) // On exit, if INFO = 0, WORK(1) returns the optimal LWORK; // if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged // superdiagonal elements of an upper bidiagonal matrix B // whose diagonal is in S (not necessarily sorted). B // satisfies A = U * B * VT, so it has the same singular values // as A, and singular vectors related by U and VT. std::vector<T> WORK( LWORK ); // INFO (output) INTEGER // = 0: successful exit. // < 0: if INFO = -i, the i-th argument had an illegal value. // > 0: if DBDSQR did not converge, INFO specifies how many // superdiagonals of an intermediate bidiagonal form B // did not converge to zero. See the description of WORK // above for details. int INFO = 0; // Ready to call the actual factorization routine through PETSc's interface LAPACKgesvd_(&JOBU, &JOBVT, &M, &N, &(_val[0]), &LDA, &(sigma_val[0]), &(U_val[0]), &LDU, &(VT_val[0]), &LDVT, &(WORK[0]), &LWORK, &INFO); // Check return value for errors if (INFO != 0) { libMesh::out << "INFO=" << INFO << ", Error during Lapack SVD calculation!" << std::endl; libmesh_error(); } }