Пример #1
0
static void
ring_blink(void)
{
#ifdef GPIO_LED4

	if (/* IO armed */ (r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF)
			   /* and FMU is armed */ && (r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED)) {
		LED_RING(1);
		return;
	}

	// XXX this led code does have
	// intentionally a few magic numbers.
	const unsigned max_brightness = 118;

	static unsigned counter = 0;
	static unsigned brightness = max_brightness;
	static unsigned brightness_counter = 0;
	static unsigned on_counter = 0;

	if (brightness_counter < max_brightness) {

		bool on = ((on_counter * 100) / brightness_counter + 1) <= ((brightness * 100) / max_brightness + 1);

		// XXX once led is PWM driven,
		// remove the ! in the line below
		// to return to the proper breathe
		// animation / pattern (currently inverted)
		LED_RING(!on);
		brightness_counter++;

		if (on) {
			on_counter++;
		}

	} else {

		if (counter >= 62) {
			counter = 0;
		}

		int n;

		if (counter < 32) {
			n = counter;

		} else {
			n = 62 - counter;
		}

		brightness = (n * n) / 8;
		brightness_counter = 0;
		on_counter = 0;
		counter++;
	}

#endif
}
Пример #2
0
static void
heartbeat_blink(void)
{
	static bool heartbeat = false;
	LED_BLUE(heartbeat = !heartbeat);
#ifdef GPIO_LED4
	LED_RING(heartbeat);
#endif
}
Пример #3
0
int
user_start(int argc, char *argv[])
{
	/* run C++ ctors before we go any further */
	up_cxxinitialize();

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* calculate our fw CRC so FMU can decide if we need to update */
	calculate_fw_crc();

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
#ifdef CONFIG_ARCH_DMA
	hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif

	/* print some startup info */
	lowsyslog("\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);
#ifdef GPIO_LED4
	LED_RING(false);
#endif

	/* turn on servo power (if supported) */
#ifdef POWER_SERVO
	POWER_SERVO(true);
#endif

	/* turn off S.Bus out (if supported) */
#ifdef ENABLE_SBUS_OUT
	ENABLE_SBUS_OUT(false);
#endif

	/* start the safety switch handler */
	safety_init();

	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

	/* initialise the control inputs */
	controls_init();

	/* set up the ADC */
	adc_init();

	/* start the FMU interface */
	interface_init();

	/* add a performance counter for mixing */
	perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");

	/* add a performance counter for controls */
	perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");

	/* and one for measuring the loop rate */
	perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");

	struct mallinfo minfo = mallinfo();
	lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);

	/* initialize PWM limit lib */
	pwm_limit_init(&pwm_limit);

	/*
	 *    P O L I C E    L I G H T S
	 *
	 * Not enough memory, lock down.
	 *
	 * We might need to allocate mixers later, and this will
	 * ensure that a developer doing a change will notice
	 * that he just burned the remaining RAM with static
	 * allocations. We don't want him to be able to
	 * get past that point. This needs to be clearly
	 * documented in the dev guide.
	 *
	 */
	if (minfo.mxordblk < 600) {

		lowsyslog("ERR: not enough MEM");
		bool phase = false;

		while (true) {

			if (phase) {
				LED_AMBER(true);
				LED_BLUE(false);

			} else {
				LED_AMBER(false);
				LED_BLUE(true);
			}

			up_udelay(250000);

			phase = !phase;
		}
	}

	/* Start the failsafe led init */
	failsafe_led_init();

	/*
	 * Run everything in a tight loop.
	 */

	uint64_t last_debug_time = 0;
	uint64_t last_heartbeat_time = 0;

	for (;;) {

		/* track the rate at which the loop is running */
		perf_count(loop_perf);

		/* kick the mixer */
		perf_begin(mixer_perf);
		mixer_tick();
		perf_end(mixer_perf);

		/* kick the control inputs */
		perf_begin(controls_perf);
		controls_tick();
		perf_end(controls_perf);

		if ((hrt_absolute_time() - last_heartbeat_time) > 250 * 1000) {
			last_heartbeat_time = hrt_absolute_time();
			heartbeat_blink();
		}

		ring_blink();

		check_reboot();

		/* check for debug activity (default: none) */
		show_debug_messages();

		/* post debug state at ~1Hz - this is via an auxiliary serial port
		 * DEFAULTS TO OFF!
		 */
		if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {

			isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u",
				  (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
				  (unsigned)r_status_flags,
				  (unsigned)r_setup_arming,
				  (unsigned)r_setup_features,
				  (unsigned)mallinfo().mxordblk);
			last_debug_time = hrt_absolute_time();
		}
	}
}
Пример #4
0
int
user_start(int argc, char *argv[])
{
	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* calculate our fw CRC so FMU can decide if we need to update */
	calculate_fw_crc();

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
#ifdef CONFIG_ARCH_DMA
	hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif

	/* print some startup info */
	syslog(LOG_INFO, "\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);
#ifdef GPIO_LED4
	LED_RING(false);
#endif

	/* turn on servo power (if supported) */
#ifdef POWER_SERVO
	POWER_SERVO(true);
#endif

	/* turn off S.Bus out (if supported) */
#ifdef ENABLE_SBUS_OUT
	ENABLE_SBUS_OUT(false);
#endif

	/* start the safety switch handler */
	safety_init();

	/* initialise the control inputs */
	controls_init();

	/* set up the ADC */
	adc_init();

	/* start the FMU interface */
	interface_init();

	/* add a performance counter for mixing */
	perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");

	/* add a performance counter for controls */
	perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");

	/* and one for measuring the loop rate */
	perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");

	struct mallinfo minfo = mallinfo();
	r_page_status[PX4IO_P_STATUS_FREEMEM] = minfo.mxordblk;
	syslog(LOG_INFO, "MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);

	/* initialize PWM limit lib */
	pwm_limit_init(&pwm_limit);

	/*
	 *    P O L I C E    L I G H T S
	 *
	 * Not enough memory, lock down.
	 *
	 * We might need to allocate mixers later, and this will
	 * ensure that a developer doing a change will notice
	 * that he just burned the remaining RAM with static
	 * allocations. We don't want him to be able to
	 * get past that point. This needs to be clearly
	 * documented in the dev guide.
	 *
	 */
	if (minfo.mxordblk < 600) {

		syslog(LOG_ERR, "ERR: not enough MEM");
		bool phase = false;

		while (true) {

			if (phase) {
				LED_AMBER(true);
				LED_BLUE(false);

			} else {
				LED_AMBER(false);
				LED_BLUE(true);
			}

			up_udelay(250000);

			phase = !phase;
		}
	}

	/* Start the failsafe led init */
	failsafe_led_init();

	/*
	 * Run everything in a tight loop.
	 */

	uint64_t last_debug_time = 0;
	uint64_t last_heartbeat_time = 0;
	uint64_t last_loop_time = 0;

	for (;;) {
		dt = (hrt_absolute_time() - last_loop_time) / 1000000.0f;
		last_loop_time = hrt_absolute_time();

		if (dt < 0.0001f) {
			dt = 0.0001f;

		} else if (dt > 0.02f) {
			dt = 0.02f;
		}

		/* track the rate at which the loop is running */
		perf_count(loop_perf);

		/* kick the mixer */
		perf_begin(mixer_perf);
		mixer_tick();
		perf_end(mixer_perf);

		/* kick the control inputs */
		perf_begin(controls_perf);
		controls_tick();
		perf_end(controls_perf);

		/* some boards such as Pixhawk 2.1 made
		   the unfortunate choice to combine the blue led channel with
		   the IMU heater. We need a software hack to fix the hardware hack
		   by allowing to disable the LED / heater.
		 */
		if (r_page_setup[PX4IO_P_SETUP_THERMAL] == PX4IO_THERMAL_IGNORE) {
			/*
			  blink blue LED at 4Hz in normal operation. When in
			  override blink 4x faster so the user can clearly see
			  that override is happening. This helps when
			  pre-flight testing the override system
			 */
			uint32_t heartbeat_period_us = 250 * 1000UL;

			if (r_status_flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) {
				heartbeat_period_us /= 4;
			}

			if ((hrt_absolute_time() - last_heartbeat_time) > heartbeat_period_us) {
				last_heartbeat_time = hrt_absolute_time();
				heartbeat_blink();
			}

		} else if (r_page_setup[PX4IO_P_SETUP_THERMAL] < PX4IO_THERMAL_FULL) {
			/* switch resistive heater off */
			LED_BLUE(false);

		} else {
			/* switch resistive heater hard on */
			LED_BLUE(true);
		}

		update_mem_usage();

		ring_blink();

		check_reboot();

		/* check for debug activity (default: none) */
		show_debug_messages();

		/* post debug state at ~1Hz - this is via an auxiliary serial port
		 * DEFAULTS TO OFF!
		 */
		if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {

			isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u",
				  (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
				  (unsigned)r_status_flags,
				  (unsigned)r_setup_arming,
				  (unsigned)r_setup_features,
				  (unsigned)mallinfo().mxordblk);
			last_debug_time = hrt_absolute_time();
		}
	}
}