Пример #1
0
int main (void) {
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
//	LLVMInitializeNativeTarget();

	LLVMTypeRef funcType = LLVMFunctionType(LLVMVoidType(), NULL, 0, 0);
	LLVMValueRef func = LLVMAddFunction(module, "main", funcType);
	LLVMSetLinkage(func, LLVMExternalLinkage);
	LLVMBasicBlockRef block = LLVMAppendBasicBlock(func, "entry");
	LLVMPositionBuilderAtEnd(builder, block);

	LLVMValueRef cond = LLVMBuildICmp(builder, LLVMIntNE, LLVMConstInt(LLVMInt32Type(), 2, 0), LLVMConstInt(LLVMInt32Type(), 1, 0), "ifcond");

	LLVMValueRef owning_block = LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder));	//TODO: WRONG??
	//LLVMValueRef owning_block = LLVMBasicBlockAsValue(LLVMGetPreviousBasicBlock(LLVMGetInsertBlock(builder)));
	// 2. Generate new blocks for cases.
	LLVMBasicBlockRef then_ref = LLVMAppendBasicBlock(owning_block, "then");
	LLVMBasicBlockRef else_ref = LLVMAppendBasicBlock(owning_block, "else");
	LLVMBasicBlockRef merge_ref = LLVMAppendBasicBlock(owning_block, "ifmerge");

	// 3. Branch conditionally on then or else.
	LLVMBuildCondBr(builder, cond, then_ref, else_ref);

	// 4. Build then branch prologue.
	LLVMPositionBuilderAtEnd(builder, then_ref);

	LLVMValueRef hi1 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp");

	// 5. Connect then branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	then_ref = LLVMGetInsertBlock(builder);

	// 6. Build else branch prologue.
	LLVMPositionBuilderAtEnd(builder, else_ref);

	LLVMValueRef hi2 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp2");

	// 7. Connect else branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	else_ref = LLVMGetInsertBlock(builder);
	// 8. Position ourselves after the merge block.
	LLVMPositionBuilderAtEnd(builder, merge_ref);
	// 9. Build the phi node.
//	LLVMValueRef phi = LLVMBuildPhi(builder, LLVMDoubleType(), "phi");
	// 10. Add incoming edges.
//	LLVMAddIncoming(phi, &hi1, &then_ref, 1);
//	LLVMAddIncoming(phi, &hi2, &else_ref, 1);

	LLVMDumpModule(module);
	LLVMDisposeBuilder(builder);
	LLVMDisposeModule(module);

	return 0;
}
Пример #2
0
static LLVMValueRef gen_digestof_value(compile_t* c, LLVMValueRef value)
{
  LLVMTypeRef type = LLVMTypeOf(value);

  switch(LLVMGetTypeKind(type))
  {
    case LLVMFloatTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i32, "");
      return LLVMBuildZExt(c->builder, value, c->i64, "");

    case LLVMDoubleTypeKind:
      return LLVMBuildBitCast(c->builder, value, c->i64, "");

    case LLVMIntegerTypeKind:
    {
      uint32_t width = LLVMGetIntTypeWidth(type);

      if(width < 64)
      {
        value = LLVMBuildZExt(c->builder, value, c->i64, "");
      } else if(width == 128) {
        LLVMValueRef shift = LLVMConstInt(c->i128, 64, false);
        LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
        high = LLVMBuildTrunc(c->builder, high, c->i64, "");
        value = LLVMBuildTrunc(c->builder, value, c->i64, "");
        value = LLVMBuildXor(c->builder, value, high, "");
      }

      return value;
    }

    case LLVMStructTypeKind:
    {
      uint32_t count = LLVMCountStructElementTypes(type);
      LLVMValueRef result = LLVMConstInt(c->i64, 0, false);

      for(uint32_t i = 0; i < count; i++)
      {
        LLVMValueRef elem = LLVMBuildExtractValue(c->builder, value, i, "");
        elem = gen_digestof_value(c, elem);
        result = LLVMBuildXor(c->builder, result, elem, "");
      }

      return result;
    }

    case LLVMPointerTypeKind:
      return LLVMBuildPtrToInt(c->builder, value, c->i64, "");

    default: {}
  }

  assert(0);
  return NULL;
}
Пример #3
0
LLVMValueRef gen_xor(compile_t* c, ast_t* left, ast_t* right)
{
  LLVMValueRef l_value = gen_expr(c, left);
  LLVMValueRef r_value = gen_expr(c, right);

  if((l_value == NULL) || (r_value == NULL))
    return NULL;

  if(LLVMIsConstant(l_value) && LLVMIsConstant(r_value))
    return LLVMConstXor(l_value, r_value);

  if(is_always_true(c, l_value))
    return LLVMBuildNot(c->builder, r_value, "");

  if(is_always_false(c, l_value))
    return r_value;

  if(is_always_true(c, r_value))
    return LLVMBuildNot(c->builder, l_value, "");

  if(is_always_false(c, r_value))
    return l_value;

  return LLVMBuildXor(c->builder, l_value, r_value, "");
}
Пример #4
0
static void emit_xor(const struct lp_build_tgsi_action *action,
		     struct lp_build_tgsi_context *bld_base,
		     struct lp_build_emit_data *emit_data)
{
	LLVMBuilderRef builder = bld_base->base.gallivm->builder;
	emit_data->output[emit_data->chan] = LLVMBuildXor(builder,
			emit_data->args[0], emit_data->args[1], "");
}
Пример #5
0
static void emit_bfi(const struct lp_build_tgsi_action *action,
		     struct lp_build_tgsi_context *bld_base,
		     struct lp_build_emit_data *emit_data)
{
	struct gallivm_state *gallivm = bld_base->base.gallivm;
	LLVMBuilderRef builder = gallivm->builder;
	LLVMValueRef bfi_args[3];
	LLVMValueRef bfi_sm5;
	LLVMValueRef cond;

	// Calculate the bitmask: (((1 << src3) - 1) << src2
	bfi_args[0] = LLVMBuildShl(builder,
				   LLVMBuildSub(builder,
						LLVMBuildShl(builder,
							     bld_base->int_bld.one,
							     emit_data->args[3], ""),
						bld_base->int_bld.one, ""),
				   emit_data->args[2], "");

	bfi_args[1] = LLVMBuildShl(builder, emit_data->args[1],
				   emit_data->args[2], "");

	bfi_args[2] = emit_data->args[0];

	/* Calculate:
	 *   (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
	 * Use the right-hand side, which the LLVM backend can convert to V_BFI.
	 */
	bfi_sm5 =
		LLVMBuildXor(builder, bfi_args[2],
			LLVMBuildAnd(builder, bfi_args[0],
				LLVMBuildXor(builder, bfi_args[1], bfi_args[2],
					     ""), ""), "");

	/* Since shifts of >= 32 bits are undefined in LLVM IR, the backend
	 * uses the convenient V_BFI lowering for the above, which follows SM5
	 * and disagrees with GLSL semantics when bits (src3) is 32.
	 */
	cond = LLVMBuildICmp(builder, LLVMIntUGE, emit_data->args[3],
			     lp_build_const_int32(gallivm, 32), "");
	emit_data->output[emit_data->chan] =
		LLVMBuildSelect(builder, cond, emit_data->args[1], bfi_sm5, "");
}
Пример #6
0
static LLVMValueRef gen_digestof_int64(compile_t* c, LLVMValueRef value)
{
  pony_assert(LLVMTypeOf(value) == c->i64);

  if(target_is_ilp32(c->opt->triple))
  {
    LLVMValueRef shift = LLVMConstInt(c->i64, 32, false);
    LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
    high = LLVMBuildTrunc(c->builder, high, c->i32, "");
    value = LLVMBuildTrunc(c->builder, value, c->i32, "");
    value = LLVMBuildXor(c->builder, value, high, "");
  }

  return value;
}
Пример #7
0
/**
 * Converts int16 half-float to float32
 * Note this can be performed in 1 instruction if vcvtph2ps exists (sse5 i think?)
 * [llvm.x86.vcvtph2ps / _mm_cvtph_ps]
 *
 * @param src_type      <vector> type of int16
 * @param src           value to convert
 *
 * ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
 */
LLVMValueRef
lp_build_half_to_float(struct gallivm_state *gallivm,
                       struct lp_type src_type,
                       LLVMValueRef src)
{
    struct lp_type f32_type = lp_type_float_vec(32, 32 * src_type.length);
    struct lp_type i32_type = lp_type_int_vec(32, 32 * src_type.length);

    LLVMBuilderRef builder = gallivm->builder;
    LLVMTypeRef int_vec_type = lp_build_vec_type(gallivm, i32_type);
    LLVMTypeRef float_vec_type = lp_build_vec_type(gallivm, f32_type);

    /* Constants */
    LLVMValueRef i32_13          = lp_build_const_int_vec(gallivm, i32_type, 13);
    LLVMValueRef i32_16          = lp_build_const_int_vec(gallivm, i32_type, 16);
    LLVMValueRef i32_mask_nosign = lp_build_const_int_vec(gallivm, i32_type, 0x7fff);
    LLVMValueRef i32_was_infnan  = lp_build_const_int_vec(gallivm, i32_type, 0x7bff);
    LLVMValueRef i32_exp_infnan  = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
    LLVMValueRef f32_magic       = LLVMBuildBitCast(builder,
                                   lp_build_const_int_vec(gallivm, i32_type, (254 - 15) << 23),
                                   float_vec_type, "");

    /* Convert int16 vector to int32 vector by zero ext */
    LLVMValueRef h             = LLVMBuildZExt(builder, src, int_vec_type, "");

    /* Exponent / mantissa bits */
    LLVMValueRef expmant       = LLVMBuildAnd(builder, i32_mask_nosign, h, "");
    LLVMValueRef shifted       = LLVMBuildBitCast(builder, LLVMBuildShl(builder, expmant, i32_13, ""), float_vec_type, "");

    /* Exponent adjust */
    LLVMValueRef scaled        = LLVMBuildBitCast(builder, LLVMBuildFMul(builder, shifted, f32_magic, ""), int_vec_type, "");

    /* Make sure Inf/NaN survive */
    LLVMValueRef b_wasinfnan   = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GREATER, expmant, i32_was_infnan);
    LLVMValueRef infnanexp     = LLVMBuildAnd(builder, b_wasinfnan, i32_exp_infnan, "");

    /* Sign bit */
    LLVMValueRef justsign      = LLVMBuildXor(builder, h, expmant, "");
    LLVMValueRef sign          = LLVMBuildShl(builder, justsign, i32_16, "");

    /* Combine result */
    LLVMValueRef sign_inf      = LLVMBuildOr(builder, sign, infnanexp, "");
    LLVMValueRef final         = LLVMBuildOr(builder, scaled, sign_inf, "");

    /* Cast from int32 vector to float32 vector */
    return LLVMBuildBitCast(builder, final, float_vec_type, "");
}
Пример #8
0
static void ac_analyze_position_w(struct ac_llvm_context *ctx,
				  LLVMValueRef pos[3][4],
				  struct ac_position_w_info *w)
{
	LLVMBuilderRef builder = ctx->builder;
	LLVMValueRef all_w_negative = ctx->i1true;

	w->w_reflection = ctx->i1false;
	w->any_w_negative = ctx->i1false;

	for (unsigned i = 0; i < 3; i++) {
		LLVMValueRef neg_w;

		neg_w = LLVMBuildFCmp(builder, LLVMRealOLT, pos[i][3], ctx->f32_0, "");
		/* If neg_w is true, negate w_reflection. */
		w->w_reflection = LLVMBuildXor(builder, w->w_reflection, neg_w, "");
		w->any_w_negative = LLVMBuildOr(builder, w->any_w_negative, neg_w, "");
		all_w_negative = LLVMBuildAnd(builder, all_w_negative, neg_w, "");
	}
	w->all_w_positive = LLVMBuildNot(builder, w->any_w_negative, "");
	w->w_accepted = LLVMBuildNot(builder, all_w_negative, "");
}
Пример #9
0
static LLVMValueRef gen_digestof_value(compile_t* c, ast_t* type,
  LLVMValueRef value)
{
  LLVMTypeRef impl_type = LLVMTypeOf(value);

  switch(LLVMGetTypeKind(impl_type))
  {
    case LLVMFloatTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i32, "");
      return LLVMBuildZExt(c->builder, value, c->intptr, "");

    case LLVMDoubleTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i64, "");
      return gen_digestof_int64(c, value);

    case LLVMIntegerTypeKind:
    {
      uint32_t width = LLVMGetIntTypeWidth(impl_type);

      if(width < 64)
      {
        return LLVMBuildZExt(c->builder, value, c->intptr, "");
      } else if(width == 64) {
        return gen_digestof_int64(c, value);
      } else if(width == 128) {
        LLVMValueRef shift = LLVMConstInt(c->i128, 64, false);
        LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
        high = LLVMBuildTrunc(c->builder, high, c->i64, "");
        value = LLVMBuildTrunc(c->builder, value, c->i64, "");
        high = gen_digestof_int64(c, high);
        value = gen_digestof_int64(c, value);
        return LLVMBuildXor(c->builder, value, high, "");
      }
      break;
    }

    case LLVMStructTypeKind:
    {
      uint32_t count = LLVMCountStructElementTypes(impl_type);
      LLVMValueRef result = LLVMConstInt(c->intptr, 0, false);
      ast_t* child = ast_child(type);

      for(uint32_t i = 0; i < count; i++)
      {
        LLVMValueRef elem = LLVMBuildExtractValue(c->builder, value, i, "");
        elem = gen_digestof_value(c, child, elem);
        result = LLVMBuildXor(c->builder, result, elem, "");
        child = ast_sibling(child);
      }

      pony_assert(child == NULL);

      return result;
    }

    case LLVMPointerTypeKind:
      if(!is_known(type))
      {
        reach_type_t* t = reach_type(c->reach, type);
        int sub_kind = subtype_kind(t);

        if((sub_kind & SUBTYPE_KIND_BOXED) != 0)
          return gen_digestof_box(c, t, value, sub_kind);
      }

      return LLVMBuildPtrToInt(c->builder, value, c->intptr, "");

    default: {}
  }

  pony_assert(0);
  return NULL;
}
Пример #10
0
/*
 * gen_operator_expression
 *
 * Code generation for operator expressions.  Most of them have straightforward
 * translations into LLVM instructions and are handled directly here.
 */
static LLVMValueRef
gen_operator_expression (gencodectx_t gctx, expr_node_t *exp, LLVMTypeRef neededtype)
{
    expr_node_t *lhs = expr_op_lhs(exp);
    expr_node_t *rhs = expr_op_rhs(exp);
    optype_t op = expr_op_type(exp);
    LLVMBuilderRef builder = gctx->curfn->builder;
    LLVMTypeRef inttype;
    LLVMValueRef lval, rval, result;

    if (op == OPER_FETCH) {
        return gen_fetch(gctx, rhs, neededtype);
    }

    if (op == OPER_ASSIGN) {
        LLVMValueRef val = llvmgen_assignment(gctx, lhs, rhs);
        return llvmgen_adjustval(gctx, val, neededtype, 0);
    }

    if (op == OPER_SHIFT) {
        return gen_shift(gctx, lhs, rhs, neededtype);
    }

    inttype = LLVMIntTypeInContext(gctx->llvmctx, machine_scalar_bits(gctx->mach));

    lval = (lhs == 0 ? 0 : llvmgen_expression(gctx, lhs, inttype));
    rval = llvmgen_expression(gctx, rhs, inttype);
    switch (op) {
        case OPER_UNARY_PLUS:
            result = rval;
            break;
        case OPER_UNARY_MINUS:
            result = LLVMBuildNeg(builder, rval, llvmgen_temp(gctx));
            break;
        case OPER_ADD:
            result = LLVMBuildAdd(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_SUBTRACT:
            result = LLVMBuildSub(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_MULT:
            result = LLVMBuildMul(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_DIV:
            result = LLVMBuildUDiv(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_MODULO:
            result = LLVMBuildURem(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_AND:
            result = LLVMBuildAnd(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_OR:
            result = LLVMBuildOr(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_NOT:
            result = LLVMBuildNot(builder, rval, llvmgen_temp(gctx));
            break;
        case OPER_XOR:
            result = LLVMBuildXor(builder, lval, rval, llvmgen_temp(gctx));
            break;
        case OPER_EQV:
            result = LLVMBuildXor(builder, lval, rval, llvmgen_temp(gctx));
            result = LLVMBuildNot(builder, result, llvmgen_temp(gctx));
            break;
        default:
            if (op >= OPER_CMP_EQL && op <= OPER_CMP_GEQA) {
                result = LLVMBuildICmp(builder,
                                       llvmgen_predfromop(op, machine_addr_signed(gctx->mach)),
                                       lval, rval, llvmgen_temp(gctx));
            } else {
                // Everything should be covered
                expr_signal(gctx->ectx, STC__INTCMPERR, "gen_operator_expression");
                result = LLVMConstNull(inttype);
            }
            break;
    }

    return llvmgen_adjustval(gctx, result, neededtype, 0);

} /* gen_operator_expression */
/**
 * Build code to compare two values 'a' and 'b' of 'type' using the given func.
 * \param func  one of PIPE_FUNC_x
 * The result values will be 0 for false or ~0 for true.
 */
LLVMValueRef
lp_build_compare(struct gallivm_state *gallivm,
                 const struct lp_type type,
                 unsigned func,
                 LLVMValueRef a,
                 LLVMValueRef b)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, type);
   LLVMValueRef zeros = LLVMConstNull(int_vec_type);
   LLVMValueRef ones = LLVMConstAllOnes(int_vec_type);
   LLVMValueRef cond;
   LLVMValueRef res;

   assert(func >= PIPE_FUNC_NEVER);
   assert(func <= PIPE_FUNC_ALWAYS);
   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if(func == PIPE_FUNC_NEVER)
      return zeros;
   if(func == PIPE_FUNC_ALWAYS)
      return ones;

#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   /*
    * There are no unsigned integer comparison instructions in SSE.
    */

   if (!type.floating && !type.sign &&
       type.width * type.length == 128 &&
       util_cpu_caps.has_sse2 &&
       (func == PIPE_FUNC_LESS ||
        func == PIPE_FUNC_LEQUAL ||
        func == PIPE_FUNC_GREATER ||
        func == PIPE_FUNC_GEQUAL) &&
       (gallivm_debug & GALLIVM_DEBUG_PERF)) {
         debug_printf("%s: inefficient <%u x i%u> unsigned comparison\n",
                      __FUNCTION__, type.length, type.width);
   }
#endif

#if HAVE_LLVM < 0x0207
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   if(type.width * type.length == 128) {
      if(type.floating && util_cpu_caps.has_sse) {
         /* float[4] comparison */
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);
         LLVMValueRef args[3];
         unsigned cc;
         boolean swap;

         swap = FALSE;
         switch(func) {
         case PIPE_FUNC_EQUAL:
            cc = 0;
            break;
         case PIPE_FUNC_NOTEQUAL:
            cc = 4;
            break;
         case PIPE_FUNC_LESS:
            cc = 1;
            break;
         case PIPE_FUNC_LEQUAL:
            cc = 2;
            break;
         case PIPE_FUNC_GREATER:
            cc = 1;
            swap = TRUE;
            break;
         case PIPE_FUNC_GEQUAL:
            cc = 2;
            swap = TRUE;
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         if(swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         args[2] = LLVMConstInt(LLVMInt8TypeInContext(gallivm->context), cc, 0);
         res = lp_build_intrinsic(builder,
                                  "llvm.x86.sse.cmp.ps",
                                  vec_type,
                                  args, 3);
         res = LLVMBuildBitCast(builder, res, int_vec_type, "");
         return res;
      }
      else if(util_cpu_caps.has_sse2) {
         /* int[4] comparison */
         static const struct {
            unsigned swap:1;
            unsigned eq:1;
            unsigned gt:1;
            unsigned not:1;
         } table[] = {
            {0, 0, 0, 1}, /* PIPE_FUNC_NEVER */
            {1, 0, 1, 0}, /* PIPE_FUNC_LESS */
            {0, 1, 0, 0}, /* PIPE_FUNC_EQUAL */
            {0, 0, 1, 1}, /* PIPE_FUNC_LEQUAL */
            {0, 0, 1, 0}, /* PIPE_FUNC_GREATER */
            {0, 1, 0, 1}, /* PIPE_FUNC_NOTEQUAL */
            {1, 0, 1, 1}, /* PIPE_FUNC_GEQUAL */
            {0, 0, 0, 0}  /* PIPE_FUNC_ALWAYS */
         };
         const char *pcmpeq;
         const char *pcmpgt;
         LLVMValueRef args[2];
         LLVMValueRef res;
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);

         switch (type.width) {
         case 8:
            pcmpeq = "llvm.x86.sse2.pcmpeq.b";
            pcmpgt = "llvm.x86.sse2.pcmpgt.b";
            break;
         case 16:
            pcmpeq = "llvm.x86.sse2.pcmpeq.w";
            pcmpgt = "llvm.x86.sse2.pcmpgt.w";
            break;
         case 32:
            pcmpeq = "llvm.x86.sse2.pcmpeq.d";
            pcmpgt = "llvm.x86.sse2.pcmpgt.d";
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         /* There are no unsigned comparison instructions. So flip the sign bit
          * so that the results match.
          */
         if (table[func].gt && !type.sign) {
            LLVMValueRef msb = lp_build_const_int_vec(gallivm, type, (unsigned long long)1 << (type.width - 1));
            a = LLVMBuildXor(builder, a, msb, "");
            b = LLVMBuildXor(builder, b, msb, "");
         }

         if(table[func].swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         if(table[func].eq)
            res = lp_build_intrinsic(builder, pcmpeq, vec_type, args, 2);
         else if (table[func].gt)
            res = lp_build_intrinsic(builder, pcmpgt, vec_type, args, 2);
         else
            res = LLVMConstNull(vec_type);

         if(table[func].not)
            res = LLVMBuildNot(builder, res, "");

         return res;
      }
   } /* if (type.width * type.length == 128) */
#endif
#endif /* HAVE_LLVM < 0x0207 */

   /* XXX: It is not clear if we should use the ordered or unordered operators */

   if(type.floating) {
      LLVMRealPredicate op;
      switch(func) {
      case PIPE_FUNC_NEVER:
         op = LLVMRealPredicateFalse;
         break;
      case PIPE_FUNC_ALWAYS:
         op = LLVMRealPredicateTrue;
         break;
      case PIPE_FUNC_EQUAL:
         op = LLVMRealUEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMRealUNE;
         break;
      case PIPE_FUNC_LESS:
         op = LLVMRealULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = LLVMRealULE;
         break;
      case PIPE_FUNC_GREATER:
         op = LLVMRealUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = LLVMRealUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildFCmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildFCmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         debug_printf("%s: warning: using slow element-wise float"
                      " vector comparison\n", __FUNCTION__);
         for (i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildFCmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }
   else {
      LLVMIntPredicate op;
      switch(func) {
      case PIPE_FUNC_EQUAL:
         op = LLVMIntEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMIntNE;
         break;
      case PIPE_FUNC_LESS:
         op = type.sign ? LLVMIntSLT : LLVMIntULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = type.sign ? LLVMIntSLE : LLVMIntULE;
         break;
      case PIPE_FUNC_GREATER:
         op = type.sign ? LLVMIntSGT : LLVMIntUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = type.sign ? LLVMIntSGE : LLVMIntUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildICmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildICmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         if (gallivm_debug & GALLIVM_DEBUG_PERF) {
            debug_printf("%s: using slow element-wise int"
                         " vector comparison\n", __FUNCTION__);
         }

         for(i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildICmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }

   return res;
}
Пример #12
0
/*
 * Do a cached lookup.
 *
 * Returns (vectors of) 4x8 rgba aos value
 */
LLVMValueRef
lp_build_fetch_cached_texels(struct gallivm_state *gallivm,
                             const struct util_format_description *format_desc,
                             unsigned n,
                             LLVMValueRef base_ptr,
                             LLVMValueRef offset,
                             LLVMValueRef i,
                             LLVMValueRef j,
                             LLVMValueRef cache)

{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned count, low_bit, log2size;
   LLVMValueRef color, offset_stored, addr, ptr_addrtrunc, tmp;
   LLVMValueRef ij_index, hash_index, hash_mask, block_index;
   LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
   struct lp_type type;
   struct lp_build_context bld32;
   memset(&type, 0, sizeof type);
   type.width = 32;
   type.length = n;

   assert(format_desc->block.width == 4);
   assert(format_desc->block.height == 4);

   lp_build_context_init(&bld32, gallivm, type);

   /*
    * compute hash - we use direct mapped cache, the hash function could
    *                be better but it needs to be simple
    * per-element:
    *    compare offset with offset stored at tag (hash)
    *    if not equal decode/store block, update tag
    *    extract color from cache
    *    assemble result vector
    */

   /* TODO: not ideal with 32bit pointers... */

   low_bit = util_logbase2(format_desc->block.bits / 8);
   log2size = util_logbase2(LP_BUILD_FORMAT_CACHE_SIZE);
   addr = LLVMBuildPtrToInt(builder, base_ptr, i64t, "");
   ptr_addrtrunc = LLVMBuildPtrToInt(builder, base_ptr, i32t, "");
   ptr_addrtrunc = lp_build_broadcast_scalar(&bld32, ptr_addrtrunc);
   /* For the hash function, first mask off the unused lowest bits. Then just
      do some xor with address bits - only use lower 32bits */
   ptr_addrtrunc = LLVMBuildAdd(builder, offset, ptr_addrtrunc, "");
   ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
                                 lp_build_const_int_vec(gallivm, type, low_bit), "");
   /* This only really makes sense for size 64,128,256 */
   hash_index = ptr_addrtrunc;
   ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
                                 lp_build_const_int_vec(gallivm, type, 2*log2size), "");
   hash_index = LLVMBuildXor(builder, ptr_addrtrunc, hash_index, "");
   tmp = LLVMBuildLShr(builder, hash_index,
                       lp_build_const_int_vec(gallivm, type, log2size), "");
   hash_index = LLVMBuildXor(builder, hash_index, tmp, "");

   hash_mask = lp_build_const_int_vec(gallivm, type, LP_BUILD_FORMAT_CACHE_SIZE - 1);
   hash_index = LLVMBuildAnd(builder, hash_index, hash_mask, "");
   ij_index = LLVMBuildShl(builder, i, lp_build_const_int_vec(gallivm, type, 2), "");
   ij_index = LLVMBuildAdd(builder, ij_index, j, "");
   block_index = LLVMBuildShl(builder, hash_index,
                              lp_build_const_int_vec(gallivm, type, 4), "");
   block_index = LLVMBuildAdd(builder, ij_index, block_index, "");

   if (n > 1) {
      color = LLVMGetUndef(LLVMVectorType(i32t, n));
      for (count = 0; count < n; count++) {
         LLVMValueRef index, cond, colorx;
         LLVMValueRef block_indexx, hash_indexx, addrx, offsetx, ptr_addrx;
         struct lp_build_if_state if_ctx;

         index = lp_build_const_int32(gallivm, count);
         offsetx = LLVMBuildExtractElement(builder, offset, index, "");
         addrx = LLVMBuildZExt(builder, offsetx, i64t, "");
         addrx = LLVMBuildAdd(builder, addrx, addr, "");
         block_indexx = LLVMBuildExtractElement(builder, block_index, index, "");
         hash_indexx = LLVMBuildLShr(builder, block_indexx,
                                     lp_build_const_int32(gallivm, 4), "");
         offset_stored = lookup_tag_data(gallivm, cache, hash_indexx);
         cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addrx, "");

         lp_build_if(&if_ctx, gallivm, cond);
         {
            ptr_addrx = LLVMBuildIntToPtr(builder, addrx,
                                          LLVMPointerType(i8t, 0), "");
            update_cached_block(gallivm, format_desc, ptr_addrx, hash_indexx, cache);
#if LP_BUILD_FORMAT_CACHE_DEBUG
            update_cache_access(gallivm, cache, 1,
                                LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
#endif
         }
         lp_build_endif(&if_ctx);

         colorx = lookup_cached_pixel(gallivm, cache, block_indexx);

         color = LLVMBuildInsertElement(builder, color, colorx,
                                        lp_build_const_int32(gallivm, count), "");
      }
   }
   else {
      LLVMValueRef cond;
      struct lp_build_if_state if_ctx;

      tmp = LLVMBuildZExt(builder, offset, i64t, "");
      addr = LLVMBuildAdd(builder, tmp, addr, "");
      offset_stored = lookup_tag_data(gallivm, cache, hash_index);
      cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addr, "");

      lp_build_if(&if_ctx, gallivm, cond);
      {
         tmp = LLVMBuildIntToPtr(builder, addr, LLVMPointerType(i8t, 0), "");
         update_cached_block(gallivm, format_desc, tmp, hash_index, cache);
#if LP_BUILD_FORMAT_CACHE_DEBUG
         update_cache_access(gallivm, cache, 1,
                             LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
#endif
      }
      lp_build_endif(&if_ctx);

      color = lookup_cached_pixel(gallivm, cache, block_index);
   }
#if LP_BUILD_FORMAT_CACHE_DEBUG
   update_cache_access(gallivm, cache, n,
                       LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL);
#endif
   return LLVMBuildBitCast(builder, color, LLVMVectorType(i8t, n * 4), "");
}
LLVMValueRef
lp_build_logicop(LLVMBuilderRef builder,
                 unsigned logicop_func,
                 LLVMValueRef src,
                 LLVMValueRef dst)
{
   LLVMTypeRef type;
   LLVMValueRef res;

   type = LLVMTypeOf(src);

   switch (logicop_func) {
   case PIPE_LOGICOP_CLEAR:
      res = LLVMConstNull(type);
      break;
   case PIPE_LOGICOP_NOR:
      res = LLVMBuildNot(builder, LLVMBuildOr(builder, src, dst, ""), "");
      break;
   case PIPE_LOGICOP_AND_INVERTED:
      res = LLVMBuildAnd(builder, LLVMBuildNot(builder, src, ""), dst, "");
      break;
   case PIPE_LOGICOP_COPY_INVERTED:
      res = LLVMBuildNot(builder, src, "");
      break;
   case PIPE_LOGICOP_AND_REVERSE:
      res = LLVMBuildAnd(builder, src, LLVMBuildNot(builder, dst, ""), "");
      break;
   case PIPE_LOGICOP_INVERT:
      res = LLVMBuildNot(builder, dst, "");
      break;
   case PIPE_LOGICOP_XOR:
      res = LLVMBuildXor(builder, src, dst, "");
      break;
   case PIPE_LOGICOP_NAND:
      res = LLVMBuildNot(builder, LLVMBuildAnd(builder, src, dst, ""), "");
      break;
   case PIPE_LOGICOP_AND:
      res = LLVMBuildAnd(builder, src, dst, "");
      break;
   case PIPE_LOGICOP_EQUIV:
      res = LLVMBuildNot(builder, LLVMBuildXor(builder, src, dst, ""), "");
      break;
   case PIPE_LOGICOP_NOOP:
      res = dst;
      break;
   case PIPE_LOGICOP_OR_INVERTED:
      res = LLVMBuildOr(builder, LLVMBuildNot(builder, src, ""), dst, "");
      break;
   case PIPE_LOGICOP_COPY:
      res = src;
      break;
   case PIPE_LOGICOP_OR_REVERSE:
      res = LLVMBuildOr(builder, src, LLVMBuildNot(builder, dst, ""), "");
      break;
   case PIPE_LOGICOP_OR:
      res = LLVMBuildOr(builder, src, dst, "");
      break;
   case PIPE_LOGICOP_SET:
      res = LLVMConstAllOnes(type);
      break;
   default:
      assert(0);
      res = src;
   }

   return res;
}