Пример #1
0
Spectrum PhotonIntegrator::Li(const Scene *scene, const Renderer *renderer,
        const RayDifferential &ray, const Intersection &isect,
        const Sample *sample, RNG &rng, MemoryArena &arena) const {
    Spectrum L(0.);
    Vector wo = -ray.d;
    // Compute emitted light if ray hit an area light source
    L += isect.Le(wo);

    // Evaluate BSDF at hit pbrt::Point
    BSDF *bsdf = isect.GetBSDF(ray, arena);
    const pbrt::Point &p = bsdf->dgShading.p;
    const Normal &n = bsdf->dgShading.nn;
    L += UniformSampleAllLights(scene, renderer, arena, p, n,
        wo, isect.rayEpsilon, ray.time, bsdf, sample, rng,
        lightSampleOffsets, bsdfSampleOffsets);
    // Compute caustic lighting for photon map integrator
    ClosePhoton *lookupBuf = arena.Alloc<ClosePhoton>(nLookup);
    L += LPhoton(causticMap, nCausticPaths, nLookup, lookupBuf, bsdf,
                 rng, isect, wo, maxDistSquared);

    // Compute indirect lighting for photon map integrator
    if (finalGather && indirectMap != NULL) {
    #if 1
        // Do one-bounce final gather for photon map
        BxDFType nonSpecular = BxDFType(BSDF_REFLECTION |
            BSDF_TRANSMISSION | BSDF_DIFFUSE | BSDF_GLOSSY);
        if (bsdf->NumComponents(nonSpecular) > 0) {
            // Find indirect photons around point for importance sampling
            const uint32_t nIndirSamplePhotons = 50;
            PhotonProcess proc(nIndirSamplePhotons,
                               arena.Alloc<ClosePhoton>(nIndirSamplePhotons));
            float searchDist2 = maxDistSquared;
            while (proc.nFound < nIndirSamplePhotons) {
                float md2 = searchDist2;
                proc.nFound = 0;
                indirectMap->Lookup(p, proc, md2);
                searchDist2 *= 2.f;
            }

            // Copy photon directions to local array
            Vector *photonDirs = arena.Alloc<Vector>(nIndirSamplePhotons);
            for (uint32_t i = 0; i < nIndirSamplePhotons; ++i)
                photonDirs[i] = proc.photons[i].photon->wi;

            // Use BSDF to do final gathering
            Spectrum Li = 0.;
            for (int i = 0; i < gatherSamples; ++i) {
                // Sample random direction from BSDF for final gather ray
                Vector wi;
                float pdf;
                BSDFSample bsdfSample(sample, bsdfGatherSampleOffsets, i);
                Spectrum fr = bsdf->Sample_f(wo, &wi, bsdfSample,
                                             &pdf, BxDFType(BSDF_ALL & ~BSDF_SPECULAR));
                if (fr.IsBlack() || pdf == 0.f) continue;
                Assert(pdf >= 0.f);

                // Trace BSDF final gather ray and accumulate radiance
                RayDifferential bounceRay(p, wi, ray, isect.rayEpsilon);
                Intersection gatherIsect;
                if (scene->Intersect(bounceRay, &gatherIsect)) {
                    // Compute exitant radiance _Lindir_ using radiance photons
                    Spectrum Lindir = 0.f;
                    Normal nGather = gatherIsect.dg.nn;
                    nGather = Faceforward(nGather, -bounceRay.d);
                    RadiancePhotonProcess proc(nGather);
                    float md2 = INFINITY;
                    radianceMap->Lookup(gatherIsect.dg.p, proc, md2);
                    if (proc.photon != NULL)
                        Lindir = proc.photon->Lo;
                    Lindir *= renderer->Transmittance(scene, bounceRay, NULL, rng, arena);

                    // Compute MIS weight for BSDF-sampled gather ray

                    // Compute PDF for photon-sampling of direction _wi_
                    float photonPdf = 0.f;
                    float conePdf = UniformConePdf(cosGatherAngle);
                    for (uint32_t j = 0; j < nIndirSamplePhotons; ++j)
                        if (Dot(photonDirs[j], wi) > .999f * cosGatherAngle)
                            photonPdf += conePdf;
                    photonPdf /= nIndirSamplePhotons;
                    float wt = PowerHeuristic(gatherSamples, pdf, gatherSamples, photonPdf);
                    Li += fr * Lindir * (AbsDot(wi, n) * wt / pdf);
                }
            }
            L += Li / gatherSamples;

            // Use nearby photons to do final gathering
            Li = 0.;
            for (int i = 0; i < gatherSamples; ++i) {
                // Sample random direction using photons for final gather ray
                BSDFSample gatherSample(sample, indirGatherSampleOffsets, i);
                int photonNum = min((int)nIndirSamplePhotons - 1,
                    Floor2Int(gatherSample.uComponent * nIndirSamplePhotons));

                // Sample gather ray direction from _photonNum_
                Vector vx, vy;
                CoordinateSystem(photonDirs[photonNum], &vx, &vy);
                Vector wi = UniformSampleCone(gatherSample.uDir[0], gatherSample.uDir[1],
                                              cosGatherAngle, vx, vy, photonDirs[photonNum]);

                // Trace photon-sampled final gather ray and accumulate radiance
                Spectrum fr = bsdf->f(wo, wi);
                if (fr.IsBlack()) continue;
                RayDifferential bounceRay(p, wi, ray, isect.rayEpsilon);
                Intersection gatherIsect;
                PBRT_PHOTON_MAP_STARTED_GATHER_RAY(&bounceRay);
                if (scene->Intersect(bounceRay, &gatherIsect)) {
                    // Compute exitant radiance _Lindir_ using radiance photons
                    Spectrum Lindir = 0.f;
                    Normal nGather = gatherIsect.dg.nn;
                    nGather = Faceforward(nGather, -bounceRay.d);
                    RadiancePhotonProcess proc(nGather);
                    float md2 = INFINITY;
                    radianceMap->Lookup(gatherIsect.dg.p, proc, md2);
                    if (proc.photon != NULL)
                        Lindir = proc.photon->Lo;
                    Lindir *= renderer->Transmittance(scene, bounceRay, NULL, rng, arena);

                    // Compute PDF for photon-sampling of direction _wi_
                    float photonPdf = 0.f;
                    float conePdf = UniformConePdf(cosGatherAngle);
                    for (uint32_t j = 0; j < nIndirSamplePhotons; ++j)
                        if (Dot(photonDirs[j], wi) > .999f * cosGatherAngle)
                            photonPdf += conePdf;
                    photonPdf /= nIndirSamplePhotons;

                    // Compute MIS weight for photon-sampled gather ray
                    float bsdfPdf = bsdf->Pdf(wo, wi);
                    float wt = PowerHeuristic(gatherSamples, photonPdf, gatherSamples, bsdfPdf);
                    Li += fr * Lindir * AbsDot(wi, n) * wt / photonPdf;
                }
                PBRT_PHOTON_MAP_FINISHED_GATHER_RAY(&bounceRay);
            }
            L += Li / gatherSamples;
        }
    #else
        // for debugging / examples: use the photon map directly
        Normal nn = Faceforward(n, -ray.d);
        RadiancePhotonProcess proc(nn);
        float md2 = INFINITY;
        radianceMap->Lookup(p, proc, md2);
        if (proc.photon)
            L += proc.photon->Lo;
    #endif
    }
    else
        L += LPhoton(indirectMap, nIndirectPaths, nLookup, lookupBuf,
                     bsdf, rng, isect, wo, maxDistSquared);
    if (ray.depth+1 < maxSpecularDepth) {
        Vector wi;
        // Trace rays for specular reflection and refraction
        L += SpecularReflect(ray, bsdf, rng, isect, renderer, scene, sample,
                             arena);
        L += SpecularTransmit(ray, bsdf, rng, isect, renderer, scene, sample,
                              arena);
    }
    return L;
}
Spectrum ExPhotonIntegrator::Li(const Scene *scene,
		const RayDifferential &ray, const Sample *sample,
		float *alpha) const {
	// Compute reflected radiance with photon map
	Spectrum L(0.);
	Intersection isect;
	if (scene->Intersect(ray, &isect)) {
		if (alpha) *alpha = 1.;
		Vector wo = -ray.d;
		// Compute emitted light if ray hit an area light source
		L += isect.Le(wo);
		// Evaluate BSDF at hit point
		BSDF *bsdf = isect.GetBSDF(ray);
		const Point &p = bsdf->dgShading.p;
		const Normal &n = bsdf->dgShading.nn;
		L += UniformSampleAllLights(scene, p, n,
			wo, bsdf, sample,
			lightSampleOffset, bsdfSampleOffset,
			bsdfComponentOffset);

		// Compute indirect lighting for photon map integrator
		L += LPhoton(causticMap, nCausticPaths, nLookup, bsdf,
			isect, wo, maxDistSquared);
		if (finalGather) {
#if 1
			// Do one-bounce final gather for photon map
			BxDFType nonSpecular = BxDFType(BSDF_REFLECTION |
				BSDF_TRANSMISSION | BSDF_DIFFUSE | BSDF_GLOSSY);
			if (bsdf->NumComponents(nonSpecular) > 0) {
				// Find indirect photons around point for importance sampling
				u_int nIndirSamplePhotons = 50;
				PhotonProcess proc(nIndirSamplePhotons, p);
				proc.photons = (ClosePhoton *)alloca(nIndirSamplePhotons *
					sizeof(ClosePhoton));
				float searchDist2 = maxDistSquared;
				while (proc.foundPhotons < nIndirSamplePhotons) {
					float md2 = searchDist2;
					proc.foundPhotons = 0;
					indirectMap->Lookup(p, proc, md2);
					searchDist2 *= 2.f;
				}
				// Copy photon directions to local array
				Vector *photonDirs = (Vector *)alloca(nIndirSamplePhotons *
					sizeof(Vector));
				for (u_int i = 0; i < nIndirSamplePhotons; ++i)
					photonDirs[i] = proc.photons[i].photon->wi;
				// Use BSDF to do final gathering
				Spectrum Li = 0.;
				static StatsCounter gatherRays("Photon Map", // NOBOOK
					"Final gather rays traced"); // NOBOOK
				for (int i = 0; i < gatherSamples; ++i) {
					// Sample random direction from BSDF for final gather ray
					Vector wi;
					float u1 = sample->twoD[gatherSampleOffset[0]][2*i];
					float u2 = sample->twoD[gatherSampleOffset[0]][2*i+1];
					float u3 = sample->oneD[gatherComponentOffset[0]][i];
					float pdf;
					Spectrum fr = bsdf->Sample_f(wo, &wi, u1, u2, u3,
						&pdf, BxDFType(BSDF_ALL & (~BSDF_SPECULAR)));
					if (fr.Black() || pdf == 0.f) continue;
					// Trace BSDF final gather ray and accumulate radiance
					RayDifferential bounceRay(p, wi);
					++gatherRays; // NOBOOK
					Intersection gatherIsect;
					if (scene->Intersect(bounceRay, &gatherIsect)) {
						// Compute exitant radiance using precomputed irradiance
						Spectrum Lindir = 0.f;
						Normal n = gatherIsect.dg.nn;
						if (Dot(n, bounceRay.d) > 0) n = -n;
						RadiancePhotonProcess proc(gatherIsect.dg.p, n);
						float md2 = INFINITY;
						radianceMap->Lookup(gatherIsect.dg.p, proc, md2);
						if (proc.photon)
							Lindir = proc.photon->Lo;
						Lindir *= scene->Transmittance(bounceRay);
						// Compute MIS weight for BSDF-sampled gather ray
						// Compute PDF for photon-sampling of direction _wi_
						float photonPdf = 0.f;
						float conePdf = UniformConePdf(cosGatherAngle);
						for (u_int j = 0; j < nIndirSamplePhotons; ++j)
							if (Dot(photonDirs[j], wi) > .999f * cosGatherAngle)
								photonPdf += conePdf;
						photonPdf /= nIndirSamplePhotons;
						float wt = PowerHeuristic(gatherSamples, pdf,
							gatherSamples, photonPdf);
						Li += fr * Lindir * AbsDot(wi, n) * wt / pdf;
					}
				}
				L += Li / gatherSamples;
				// Use nearby photons to do final gathering
				Li = 0.;
				for (int i = 0; i < gatherSamples; ++i) {
					// Sample random direction using photons for final gather ray
					float u1 = sample->oneD[gatherComponentOffset[1]][i];
					float u2 = sample->twoD[gatherSampleOffset[1]][2*i];
					float u3 = sample->twoD[gatherSampleOffset[1]][2*i+1];
					int photonNum = min((int)nIndirSamplePhotons - 1,
						Floor2Int(u1 * nIndirSamplePhotons));
					// Sample gather ray direction from _photonNum_
					Vector vx, vy;
					CoordinateSystem(photonDirs[photonNum], &vx, &vy);
					Vector wi = UniformSampleCone(u2, u3, cosGatherAngle, vx, vy,
						photonDirs[photonNum]);
					// Trace photon-sampled final gather ray and accumulate radiance
					Spectrum fr = bsdf->f(wo, wi);
					if (fr.Black()) continue;
					// Compute PDF for photon-sampling of direction _wi_
					float photonPdf = 0.f;
					float conePdf = UniformConePdf(cosGatherAngle);
					for (u_int j = 0; j < nIndirSamplePhotons; ++j)
						if (Dot(photonDirs[j], wi) > .999f * cosGatherAngle)
							photonPdf += conePdf;
					photonPdf /= nIndirSamplePhotons;
					RayDifferential bounceRay(p, wi);
					++gatherRays; // NOBOOK
					Intersection gatherIsect;
					if (scene->Intersect(bounceRay, &gatherIsect)) {
						// Compute exitant radiance using precomputed irradiance
						Spectrum Lindir = 0.f;
						Normal n = gatherIsect.dg.nn;
						if (Dot(n, bounceRay.d) > 0) n = -n;
						RadiancePhotonProcess proc(gatherIsect.dg.p, n);
						float md2 = INFINITY;
						radianceMap->Lookup(gatherIsect.dg.p, proc, md2);
						if (proc.photon)
							Lindir = proc.photon->Lo;
						Lindir *= scene->Transmittance(bounceRay);
						// Compute MIS weight for photon-sampled gather ray
						float bsdfPdf = bsdf->Pdf(wo, wi);
						float wt = PowerHeuristic(gatherSamples, photonPdf,
								gatherSamples, bsdfPdf);
						Li += fr * Lindir * AbsDot(wi, n) * wt / photonPdf;
					}
				}
				L += Li / gatherSamples;
			}
#else
// look at radiance map directly..
Normal nn = n;
if (Dot(nn, ray.d) > 0.) nn = -n;
RadiancePhotonProcess proc(p, nn);
float md2 = INFINITY;
radianceMap->Lookup(p, proc, md2);
if (proc.photon)
	L += proc.photon->Lo;
#endif

		}
		else {
		    L += LPhoton(indirectMap, nIndirectPaths, nLookup,
				 bsdf, isect, wo, maxDistSquared);
		}
		if (specularDepth++ < maxSpecularDepth) {
			Vector wi;
			// Trace rays for specular reflection and refraction
			Spectrum f = bsdf->Sample_f(wo, &wi,
				BxDFType(BSDF_REFLECTION | BSDF_SPECULAR));
			if (!f.Black()) {
				// Compute ray differential _rd_ for specular reflection
				RayDifferential rd(p, wi);
				rd.hasDifferentials = true;
				rd.rx.o = p + isect.dg.dpdx;
				rd.ry.o = p + isect.dg.dpdy;
				// Compute differential reflected directions
				Normal dndx = bsdf->dgShading.dndu * bsdf->dgShading.dudx +
					bsdf->dgShading.dndv * bsdf->dgShading.dvdx;
				Normal dndy = bsdf->dgShading.dndu * bsdf->dgShading.dudy +
					bsdf->dgShading.dndv * bsdf->dgShading.dvdy;
				Vector dwodx = -ray.rx.d - wo, dwody = -ray.ry.d - wo;
				float dDNdx = Dot(dwodx, n) + Dot(wo, dndx);
				float dDNdy = Dot(dwody, n) + Dot(wo, dndy);
				rd.rx.d = wi -
				          dwodx + 2 * Vector(Dot(wo, n) * dndx +
						  dDNdx * n);
				rd.ry.d = wi -
				          dwody + 2 * Vector(Dot(wo, n) * dndy +
						  dDNdy * n);
				L += scene->Li(rd, sample) * f * AbsDot(wi, n);
			}
			f = bsdf->Sample_f(wo, &wi,
				BxDFType(BSDF_TRANSMISSION | BSDF_SPECULAR));
			if (!f.Black()) {
				// Compute ray differential _rd_ for specular transmission
				RayDifferential rd(p, wi);
				rd.hasDifferentials = true;
				rd.rx.o = p + isect.dg.dpdx;
				rd.ry.o = p + isect.dg.dpdy;

				float eta = bsdf->eta;
				Vector w = -wo;
				if (Dot(wo, n) < 0) eta = 1.f / eta;

				Normal dndx = bsdf->dgShading.dndu * bsdf->dgShading.dudx + bsdf->dgShading.dndv * bsdf->dgShading.dvdx;
				Normal dndy = bsdf->dgShading.dndu * bsdf->dgShading.dudy + bsdf->dgShading.dndv * bsdf->dgShading.dvdy;

				Vector dwodx = -ray.rx.d - wo, dwody = -ray.ry.d - wo;
				float dDNdx = Dot(dwodx, n) + Dot(wo, dndx);
				float dDNdy = Dot(dwody, n) + Dot(wo, dndy);

				float mu = eta * Dot(w, n) - Dot(wi, n);
				float dmudx = (eta - (eta*eta*Dot(w,n))/Dot(wi, n)) * dDNdx;
				float dmudy = (eta - (eta*eta*Dot(w,n))/Dot(wi, n)) * dDNdy;

				rd.rx.d = wi + eta * dwodx - Vector(mu * dndx + dmudx * n);
				rd.ry.d = wi + eta * dwody - Vector(mu * dndy + dmudy * n);
				L += scene->Li(rd, sample) * f * AbsDot(wi, n);
			}
		}
		--specularDepth;
	}
	else {
		// Handle ray with no intersection
		if (alpha) *alpha = 0.;
		for (u_int i = 0; i < scene->lights.size(); ++i)
			L += scene->lights[i]->Le(ray);
		if (alpha && !L.Black()) *alpha = 1.;
		return L;
	}
	return L;
}
Пример #3
0
Spectrum PhotonVolumeIntegrator::Li(const Scene *scene, const Renderer *renderer,
        const RayDifferential &ray, const Sample *sample, RNG &rng,
        Spectrum *T, MemoryArena &arena) const {
 	
 	VolumeRegion *vr = scene->volumeRegion;
    RainbowVolume* rv = dynamic_cast<RainbowVolume*>(vr);
 	KdTree<Photon>* volumeMap = photonShooter->volumeMap; 

 	float t0, t1;
 	if (!vr || !vr->IntersectP(ray, &t0, &t1) || (t1-t0) == 0.f){
 		*T = 1.f;
 	 	return 0.f;
 	 }
 	// Do single scattering & photon multiple scattering volume integration in _vr_
 	Spectrum Lv(0.);


 	// Prepare for volume integration stepping
 	int nSamples = Ceil2Int((t1-t0) / stepSize);
 	float step = (t1 - t0) / nSamples;
 	Spectrum Tr(1.f);
 	Point p = ray(t0), pPrev;
 	Vector w = -ray.d;
 	t0 += sample->oneD[scatterSampleOffset][0] * step;

 	float *lightNum = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightNum, rng);
    float *lightComp = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightComp, rng);
    float *lightPos = arena.Alloc<float>(2*nSamples);
    LDShuffleScrambled2D(1, nSamples, lightPos, rng);
 	int sampOffset = 0;

 	ClosePhoton *lookupBuf = new ClosePhoton[nSamples];

 	for (int i = 0; i < nSamples; ++i, t0 += step) {
 		// Advance to sample at _t0_ and update _T_
 		pPrev = p;
 		p = ray(t0);

 		Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth);

 		Spectrum stepTau = vr->tau(tauRay,.5f * stepSize, rng.RandomFloat());
 		Tr = Exp(-stepTau);

 		// Possibly terminate raymarching if transmittance is small.
 		if (Tr.y() < 1e-3) {
 			const float continueProb = .5f;
 			if (rng.RandomFloat() > continueProb){
 				Tr = 0.f;
 				break;
 			}
 			Tr /= continueProb;
 		}
		
		
 		// Compute single-scattering source term at _p_ & photon mapped MS
 		Spectrum L_i(0.);
 		Spectrum L_d(0.);
 		Spectrum L_ii(0.);
 		
 		// Lv += Tr*vr->Lve(p, w, ray.time);
 		Spectrum ss = vr->sigma_s(p, w, ray.time);
 		Spectrum sa = vr->sigma_a(p, w, ray.time);

 		if (!ss.IsBlack() && scene->lights.size() > 0) {
 			int nLights = scene->lights.size();
 			int ln =
 				min(Floor2Int(lightNum[sampOffset] * nLights),
 				    nLights-1);
 			Light *light = scene->lights[ln];
 			// Add contribution of _light_ due to scattering at _p_
 			float pdf;
 			VisibilityTester vis;
 			Vector wo;

 			LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset],
                           lightPos[2*sampOffset+1]);
            Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis);
            

 			if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) {

                Spectrum Ld = L * vis.Transmittance(scene,renderer, NULL, rng, arena);
                if(rv){
                    L_d = rv->rainbowReflection(Ld, ray.d, wo);
                }
                else {
                    L_d = vr->p(p, w, -wo, ray.time) * Ld * float(nLights)/pdf;
                }
 			}
 		}
		// Compute 'indirect' in-scattered radiance from photon map
        if(!rv){
            L_ii += LPhoton(volumeMap, nUsed, lookupBuf, w, p, vr, maxDistSquared, ray.time);
        }
        
		// Compute total in-scattered radiance
		if (sa.y()!=0.0 || ss.y()!=0.0)
			L_i = L_d + (ss/(sa+ss))*L_ii;
		else
			L_i = L_d;

		Spectrum nLv = (sa*vr->Lve(p,w,ray.time)*step) + (ss*L_i*step) + (Tr * Lv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ;

		Lv = nLv;
 		sampOffset++;
 	}
 	*T = Tr;
	return Lv;
}
Spectrum PhotonIntegrator::Li(const Scene *scene,
		const RayDifferential &ray, const Sample *sample,
		float *alpha) const {
	// Compute reflected radiance with photon map
	Spectrum L(0.);
	Intersection isect;
	if (scene->Intersect(ray, &isect)) {
		if (alpha) *alpha = 1.;
		Vector wo = -ray.d;
		// Compute emitted light if ray hit an area light source
		L += isect.Le(wo);
		// Evaluate BSDF at hit point
		BSDF *bsdf = isect.GetBSDF(ray);
		const Point &p = bsdf->dgShading.p;
		const Normal &n = bsdf->dgShading.nn;
		// Compute direct lighting for photon map integrator
		if (directWithPhotons)
			L += LPhoton(directMap, nDirectPaths, nLookup,
				bsdf, isect, wo, maxDistSquared);
		else
			L += UniformSampleAllLights(scene, p, n,
				wo, bsdf, sample,
				lightSampleOffset, bsdfSampleOffset,
				bsdfComponentOffset);
		
		// Compute indirect lighting for photon map integrator
		L += LPhoton(causticMap, nCausticPaths, nLookup, bsdf,
			isect, wo, maxDistSquared);
		if (finalGather) {
			// Do one-bounce final gather for photon map
			Spectrum Li(0.);
			for (int i = 0; i < gatherSamples; ++i) {
				// Sample random direction for final gather ray
				Vector wi;
				float u1 = sample->twoD[gatherSampleOffset][2*i];
				float u2 = sample->twoD[gatherSampleOffset][2*i+1];
				float u3 = sample->oneD[gatherComponentOffset][i];
				float pdf;
				Spectrum fr = bsdf->Sample_f(wo, &wi, u1, u2, u3,
					&pdf, BxDFType(BSDF_ALL & (~BSDF_SPECULAR)));
				if (fr.Black() || pdf == 0.f) continue;
				RayDifferential bounceRay(p, wi);
				static StatsCounter gatherRays("Photon Map", // NOBOOK
					"Final gather rays traced"); // NOBOOK
				++gatherRays; // NOBOOK
				Intersection gatherIsect;
				if (scene->Intersect(bounceRay, &gatherIsect)) {
					// Compute exitant radiance at final gather intersection
					BSDF *gatherBSDF = gatherIsect.GetBSDF(bounceRay);
					Vector bounceWo = -bounceRay.d;
					Spectrum Lindir =
						LPhoton(directMap, nDirectPaths, nLookup,
							gatherBSDF, gatherIsect, bounceWo, maxDistSquared) +
						LPhoton(indirectMap, nIndirectPaths, nLookup,
							gatherBSDF, gatherIsect, bounceWo, maxDistSquared) +
						LPhoton(causticMap, nCausticPaths, nLookup,
							gatherBSDF, gatherIsect, bounceWo, maxDistSquared);
					Lindir *= scene->Transmittance(bounceRay);
					Li += fr * Lindir * AbsDot(wi, n) / pdf;
				}
			}
			L += Li / float(gatherSamples);
		}
		else
			L += LPhoton(indirectMap, nIndirectPaths, nLookup,
				bsdf, isect, wo, maxDistSquared);
		if (specularDepth++ < maxSpecularDepth) {
			Vector wi;
			// Trace rays for specular reflection and refraction
			Spectrum f = bsdf->Sample_f(wo, &wi,
				BxDFType(BSDF_REFLECTION | BSDF_SPECULAR));
			if (!f.Black()) {
				// Compute ray differential _rd_ for specular reflection
				RayDifferential rd(p, wi);
				rd.hasDifferentials = true;
				rd.rx.o = p + isect.dg.dpdx;
				rd.ry.o = p + isect.dg.dpdy;
				// Compute differential reflected directions
				Normal dndx = bsdf->dgShading.dndu * bsdf->dgShading.dudx +
					bsdf->dgShading.dndv * bsdf->dgShading.dvdx;
				Normal dndy = bsdf->dgShading.dndu * bsdf->dgShading.dudy +
					bsdf->dgShading.dndv * bsdf->dgShading.dvdy;
				Vector dwodx = -ray.rx.d - wo, dwody = -ray.ry.d - wo;
				float dDNdx = Dot(dwodx, n) + Dot(wo, dndx);
				float dDNdy = Dot(dwody, n) + Dot(wo, dndy);
				rd.rx.d = wi -
				          dwodx + 2 * Vector(Dot(wo, n) * dndx +
						  dDNdx * n);
				rd.ry.d = wi -
				          dwody + 2 * Vector(Dot(wo, n) * dndy +
						  dDNdy * n);
				L += scene->Li(rd, sample) * f * AbsDot(wi, n);
			}
			f = bsdf->Sample_f(wo, &wi,
				BxDFType(BSDF_TRANSMISSION | BSDF_SPECULAR));
			if (!f.Black()) {
				// Compute ray differential _rd_ for specular transmission
				RayDifferential rd(p, wi);
				rd.hasDifferentials = true;
				rd.rx.o = p + isect.dg.dpdx;
				rd.ry.o = p + isect.dg.dpdy;
				
				float eta = bsdf->eta;
				Vector w = -wo;
				if (Dot(wo, n) < 0) eta = 1.f / eta;
				
				Normal dndx = bsdf->dgShading.dndu * bsdf->dgShading.dudx + bsdf->dgShading.dndv * bsdf->dgShading.dvdx;
				Normal dndy = bsdf->dgShading.dndu * bsdf->dgShading.dudy + bsdf->dgShading.dndv * bsdf->dgShading.dvdy;
				
				Vector dwodx = -ray.rx.d - wo, dwody = -ray.ry.d - wo;
				float dDNdx = Dot(dwodx, n) + Dot(wo, dndx);
				float dDNdy = Dot(dwody, n) + Dot(wo, dndy);
				
				float mu = eta * Dot(w, n) - Dot(wi, n);
				float dmudx = (eta - (eta*eta*Dot(w,n))/Dot(wi, n)) * dDNdx;
				float dmudy = (eta - (eta*eta*Dot(w,n))/Dot(wi, n)) * dDNdy;
				
				rd.rx.d = wi + eta * dwodx - Vector(mu * dndx + dmudx * n);
				rd.ry.d = wi + eta * dwody - Vector(mu * dndy + dmudy * n);
				L += scene->Li(rd, sample) * f * AbsDot(wi, n);
			}
		}
		--specularDepth;
	}
	else {
		// Handle ray with no intersection
		if (alpha) *alpha = 0.;
		for (u_int i = 0; i < scene->lights.size(); ++i)
			L += scene->lights[i]->Le(ray);
		if (alpha && !L.Black()) *alpha = 1.;
		return L;
	}
	return L;
}