/** Verify the signature given @param sig The signature @param siglen The length of the signature (octets) @param hash The hash that was signed @param hashlen The length of the hash (octets) @param stat [out] Result of signature comparison, 1==valid, 0==invalid @param key The public DH key that signed the hash @return CRYPT_OK if succsessful (even if signature is invalid) */ int dh_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, dh_key *key) { mp_int a, b, p, g, m, tmp; unsigned long x, y; int err; LTC_ARGCHK(sig != NULL); LTC_ARGCHK(hash != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid */ *stat = 0; /* check initial input length */ if (siglen < PACKET_SIZE+4+4) { return CRYPT_INVALID_PACKET; } /* header ok? */ if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DH, PACKET_SUB_SIGNED)) != CRYPT_OK) { return err; } /* get hash out of packet */ y = PACKET_SIZE; /* init all bignums */ if ((err = mp_init_multi(&a, &p, &b, &g, &m, &tmp, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* load a and b */ INPUT_BIGNUM(&a, sig, x, y, siglen); INPUT_BIGNUM(&b, sig, x, y, siglen); /* load p and g */ if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error1; } if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error1; } /* load m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)hash, hashlen)) != MP_OKAY) { goto error1; } /* find g^m mod p */ if ((err = mp_exptmod(&g, &m, &p, &m)) != MP_OKAY) { goto error1; } /* m = g^m mod p */ /* find y^a * a^b */ if ((err = mp_exptmod(&key->y, &a, &p, &tmp)) != MP_OKAY) { goto error1; } /* tmp = y^a mod p */ if ((err = mp_exptmod(&a, &b, &p, &a)) != MP_OKAY) { goto error1; } /* a = a^b mod p */ if ((err = mp_mulmod(&a, &tmp, &p, &a)) != MP_OKAY) { goto error1; } /* a = y^a * a^b mod p */ /* y^a * a^b == g^m ??? */ if (mp_cmp(&a, &m) == 0) { *stat = 1; } /* clean up */ err = CRYPT_OK; goto done; error1: err = mpi_to_ltc_error(err); error: done: mp_clear_multi(&tmp, &m, &g, &p, &b, &a, NULL); return err; }
/** Terminate an HMAC session @param hmac The HMAC state @param out [out] The destination of the HMAC authentication tag @param outlen [in/out] The max size and resulting size of the HMAC authentication tag @return CRYPT_OK if successful */ int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen) { unsigned char *buf, *isha; unsigned long hashsize, i; int hash, err; LTC_ARGCHK(hmac != NULL); LTC_ARGCHK(out != NULL); /* test hash */ hash = hmac->hash; if((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } /* get the hash message digest size */ hashsize = hash_descriptor[hash].hashsize; /* allocate buffers */ buf = XMALLOC(LTC_HMAC_BLOCKSIZE); isha = XMALLOC(hashsize); if (buf == NULL || isha == NULL) { if (buf != NULL) { XFREE(buf); } if (isha != NULL) { XFREE(isha); } return CRYPT_MEM; } /* Get the hash of the first HMAC vector plus the data */ if ((err = hash_descriptor[hash].done(&hmac->md, isha)) != CRYPT_OK) { goto LBL_ERR; } /* Create the second HMAC vector vector for step (3) */ for(i=0; i < LTC_HMAC_BLOCKSIZE; i++) { buf[i] = hmac->key[i] ^ 0x5C; } /* Now calculate the "outer" hash for step (5), (6), and (7) */ if ((err = hash_descriptor[hash].init(&hmac->md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(&hmac->md, buf, LTC_HMAC_BLOCKSIZE)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(&hmac->md, isha, hashsize)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].done(&hmac->md, buf)) != CRYPT_OK) { goto LBL_ERR; } /* copy to output */ for (i = 0; i < hashsize && i < *outlen; i++) { out[i] = buf[i]; } *outlen = i; err = CRYPT_OK; LBL_ERR: XFREE(hmac->key); #ifdef LTC_CLEAN_STACK zeromem(isha, hashsize); zeromem(buf, hashsize); zeromem(hmac, sizeof(*hmac)); #endif XFREE(isha); XFREE(buf); return err; }
/** Add two ECC points @param P The point to add @param Q The point to add @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp) { void *t1, *t2, *x, *y, *z; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(Q != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) { return err; } /* should we dbl instead? */ if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK) { goto done; } if ( (mp_cmp(P->x, Q->x) == LTC_MP_EQ) && (Q->z != NULL && mp_cmp(P->z, Q->z) == LTC_MP_EQ) && (mp_cmp(P->y, Q->y) == LTC_MP_EQ || mp_cmp(P->y, t1) == LTC_MP_EQ)) { mp_clear_multi(t1, t2, x, y, z, NULL); return ltc_ecc_projective_dbl_point(P, R, modulus, mp); } if ((err = mp_copy(P->x, x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->y, y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->z, z)) != CRYPT_OK) { goto done; } /* if Z is one then these are no-operations */ if (Q->z != NULL) { /* T1 = Z' * Z' */ if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X * T1 */ if ((err = mp_mul(t1, x, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Z' * T1 */ if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y * T1 */ if ((err = mp_mul(t1, y, y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK) { goto done; } } /* T1 = Z*Z */ if ((err = mp_sqr(z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = X' * T1 */ if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Z * T1 */ if ((err = mp_mul(z, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Y' * T1 */ if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y - T1 */ if ((err = mp_sub(y, t1, y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(y, 0) == LTC_MP_LT) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } /* T1 = 2T1 */ if ((err = mp_add(t1, t1, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T1 = Y + T1 */ if ((err = mp_add(t1, y, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* X = X - T2 */ if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(x, 0) == LTC_MP_LT) { if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; } } /* T2 = 2T2 */ if ((err = mp_add(t2, t2, t2)) != CRYPT_OK) { goto done; } if (mp_cmp(t2, modulus) != LTC_MP_LT) { if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = X + T2 */ if ((err = mp_add(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp(t2, modulus) != LTC_MP_LT) { if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* if Z' != 1 */ if (Q->z != NULL) { /* Z = Z * Z' */ if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; } } /* Z = Z * X */ if ((err = mp_mul(z, x, z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = T1 * X */ if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X * X */ if ((err = mp_sqr(x, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = T2 * x */ if ((err = mp_mul(t2, x, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = T1 * X */ if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = Y*Y */ if ((err = mp_sqr(y, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X - T2 */ if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(x, 0) == LTC_MP_LT) { if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; } } /* T2 = T2 - X */ if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = T2 - X */ if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = T2 * Y */ if ((err = mp_mul(t2, y, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = T2 - T1 */ if ((err = mp_sub(t2, t1, y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(y, 0) == LTC_MP_LT) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } /* Y = Y/2 */ if (mp_isodd(y)) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } if ((err = mp_div_2(y, y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(z, R->z)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: mp_clear_multi(t1, t2, x, y, z, NULL); return err; }
/** Process plaintext/ciphertext through GCM @param gcm The GCM state @param pt The plaintext @param ptlen The plaintext length (ciphertext length is the same) @param ct The ciphertext @param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT) @return CRYPT_OK on success */ int gcm_process(gcm_state *gcm, unsigned char *pt, unsigned long ptlen, unsigned char *ct, int direction) { unsigned long x; int y, err; unsigned char b; LTC_ARGCHK(gcm != NULL); if (ptlen > 0) { LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); } if (gcm->buflen > 16 || gcm->buflen < 0) { return CRYPT_INVALID_ARG; } if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) { return err; } /* in AAD mode? */ if (gcm->mode == GCM_MODE_AAD) { /* let's process the AAD */ if (gcm->buflen) { gcm->totlen += gcm->buflen * CONST64(8); gcm_mult_h(gcm, gcm->X); } /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } /* encrypt the counter */ if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } gcm->buflen = 0; gcm->mode = GCM_MODE_TEXT; } if (gcm->mode != GCM_MODE_TEXT) { return CRYPT_INVALID_ARG; } x = 0; #ifdef LTC_FAST if (gcm->buflen == 0) { if (direction == GCM_ENCRYPT) { for (x = 0; x < (ptlen & ~15); x += 16) { /* ctr encrypt */ for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&ct[x + y])) = *((LTC_FAST_TYPE*)(&pt[x+y])) ^ *((LTC_FAST_TYPE*)(&gcm->buf[y])); *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&ct[x+y])); } /* GMAC it */ gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } } } else { for (x = 0; x < (ptlen & ~15); x += 16) { /* ctr encrypt */ for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&ct[x+y])); *((LTC_FAST_TYPE*)(&pt[x + y])) = *((LTC_FAST_TYPE*)(&ct[x+y])) ^ *((LTC_FAST_TYPE*)(&gcm->buf[y])); } /* GMAC it */ gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } } } } #endif /* process text */ for (; x < ptlen; x++) { if (gcm->buflen == 16) { gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } gcm->buflen = 0; } if (direction == GCM_ENCRYPT) { b = ct[x] = pt[x] ^ gcm->buf[gcm->buflen]; } else { b = ct[x]; pt[x] = ct[x] ^ gcm->buf[gcm->buflen]; } gcm->X[gcm->buflen++] ^= b; } return CRYPT_OK; }
/** Terminate the PRNG @param prng The PRNG to terminate @return CRYPT_OK if successful */ int rc4_done(prng_state *prng) { LTC_ARGCHK(prng != NULL); return CRYPT_OK; }
/** Import an ECC key from a binary packet, using user supplied domain params rather than one of the NIST ones @param in The packet to import @param inlen The length of the packet @param key [out] The destination of the import @param cu pointer to user supplied params; must be the same as the params used when exporting @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_curve *cu) { unsigned long key_size; unsigned char flags[1]; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* find out what type of key it is */ err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_EOL, 0UL, NULL); if (err != CRYPT_OK && err != CRYPT_INPUT_TOO_LONG) { return err; } /* allocate & initialize the key */ if (cu == NULL) { if ((err = ecc_set_curve_by_size(key_size, key)) != CRYPT_OK) { goto done; } } else { if ((err = ecc_set_curve(cu, key)) != CRYPT_OK) { goto done; } } if (flags[0] == 1) { /* private key */ key->type = PK_PRIVATE; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_INTEGER, 1UL, key->k, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto done; } } else if (flags[0] == 0) { /* public key */ key->type = PK_PUBLIC; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto done; } } else { err = CRYPT_INVALID_PACKET; goto done; } /* set z */ if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { goto done; } /* point on the curve + other checks */ if ((err = ltc_ecc_verify_key(key)) != CRYPT_OK) { goto done; } /* we're good */ return CRYPT_OK; done: ecc_free(key); return err; }
int hkdf_expand(int hash_idx, const unsigned char *info, unsigned long infolen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long outlen) { unsigned long hashsize; int err; unsigned char N; unsigned long Noutlen, outoff; unsigned char *T, *dat; unsigned long Tlen, datlen; /* make sure hash descriptor is valid */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } hashsize = hash_descriptor[hash_idx].hashsize; /* RFC5869 parameter restrictions */ if (inlen < hashsize || outlen > hashsize * 255) return CRYPT_INVALID_ARG; if (info == NULL && infolen != 0) return CRYPT_INVALID_ARG; LTC_ARGCHK(out != NULL); Tlen = hashsize + infolen + 1; T = XMALLOC(Tlen); /* Replace with static buffer? */ if (T == NULL) { return CRYPT_MEM; } if (info != NULL) { XMEMCPY(T + hashsize, info, infolen); } /* HMAC data T(1) doesn't include a previous hash value */ dat = T + hashsize; datlen = Tlen - hashsize; N = 0; outoff = 0; /* offset in out to write to */ while (1) { /* an exit condition breaks mid-loop */ Noutlen = MIN(hashsize, outlen - outoff); T[Tlen - 1] = ++N; if ((err = hmac_memory(hash_idx, in, inlen, dat, datlen, out + outoff, &Noutlen)) != CRYPT_OK) { zeromem(T, Tlen); XFREE(T); return err; } outoff += Noutlen; if (outoff >= outlen) /* loop exit condition */ break; /* All subsequent HMAC data T(N) DOES include the previous hash value */ XMEMCPY(T, out + hashsize * (N-1), hashsize); if (N == 1) { dat = T; datlen = Tlen; } } zeromem(T, Tlen); XFREE(T); return CRYPT_OK; }
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp) { int err; ecc_point *base; void *prime, *order; unsigned char *buf; int keysize; LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); LTC_ARGCHK(dp != NULL); /* good prng? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } key->idx = -1; key->dp = dp; keysize = dp->size; /* allocate ram */ base = NULL; buf = XMALLOC(ECC_MAXSIZE); if (buf == NULL) { return CRYPT_MEM; } /* make up random string */ if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) { err = CRYPT_ERROR_READPRNG; goto ERR_BUF; } /* setup the key variables */ if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, &order, NULL)) != CRYPT_OK) { goto ERR_BUF; } base = ltc_ecc_new_point(); if (base == NULL) { err = CRYPT_MEM; goto errkey; } /* read in the specs for this key */ if ((err = mp_read_radix(prime, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(order, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_set(base->z, 1)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)buf, keysize)) != CRYPT_OK) { goto errkey; } /* the key should be smaller than the order of base point */ if (mp_cmp(key->k, order) != LTC_MP_LT) { if((err = mp_mod(key->k, order, key->k)) != CRYPT_OK) { goto errkey; } } /* make the public key */ if ((err = ltc_mp.ecc_ptmul(key->k, base, &key->pubkey, prime, 1)) != CRYPT_OK) { goto errkey; } key->type = PK_PRIVATE; /* free up ram */ err = CRYPT_OK; goto cleanup; errkey: mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); cleanup: ltc_ecc_del_point(base); mp_clear_multi(prime, order, NULL); ERR_BUF: #ifdef LTC_CLEAN_STACK zeromem(buf, ECC_MAXSIZE); #endif XFREE(buf); return err; }
/** Gets length of DER encoding of a BOOLEAN @param outlen [out] The length of the DER encoding @return CRYPT_OK if successful */ int der_length_boolean(unsigned long *outlen) { LTC_ARGCHK(outlen != NULL); *outlen = 3; return CRYPT_OK; }
/** Encrypt a symmetric key with DSA @param in The symmetric key you want to encrypt @param inlen The length of the key to encrypt (octets) @param out [out] The destination for the ciphertext @param outlen [in/out] The max size and resulting size of the ciphertext @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param hash The index of the hash you want to use @param key The DSA key you want to encrypt to @return CRYPT_OK if successful */ int dsa_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, dsa_key *key) { unsigned char *expt, *skey; void *g_pub, *g_priv; unsigned long x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check that wprng/cipher/hash are not invalid */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (inlen > hash_descriptor[hash].hashsize) { return CRYPT_INVALID_HASH; } /* make a random key and export the public copy */ if ((err = mp_init_multi(&g_pub, &g_priv, NULL)) != CRYPT_OK) { return err; } expt = XMALLOC(mp_unsigned_bin_size(key->p) + 1); skey = XMALLOC(MAXBLOCKSIZE); if (expt == NULL || skey == NULL) { if (expt != NULL) { XFREE(expt); } if (skey != NULL) { XFREE(skey); } mp_clear_multi(g_pub, g_priv, NULL); return CRYPT_MEM; } /* make a random x, g^x pair */ x = mp_unsigned_bin_size(key->q); if (prng_descriptor[wprng].read(expt, x, prng) != x) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } /* load x */ if ((err = mp_read_unsigned_bin(g_priv, expt, x)) != CRYPT_OK) { goto LBL_ERR; } /* compute y */ if ((err = mp_exptmod(key->g, g_priv, key->p, g_pub)) != CRYPT_OK) { goto LBL_ERR; } /* make random key */ x = mp_unsigned_bin_size(key->p) + 1; if ((err = dsa_shared_secret(g_priv, key->y, key, expt, &x)) != CRYPT_OK) { goto LBL_ERR; } y = MAXBLOCKSIZE; if ((err = hash_memory(hash, expt, x, skey, &y)) != CRYPT_OK) { goto LBL_ERR; } /* Encrypt key */ for (x = 0; x < inlen; x++) { skey[x] ^= in[x]; } err = der_encode_sequence_multi(out, outlen, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash].OIDlen, hash_descriptor[hash].OID, LTC_ASN1_INTEGER, 1UL, g_pub, LTC_ASN1_OCTET_STRING, inlen, skey, LTC_ASN1_EOL, 0UL, NULL); LBL_ERR: #ifdef LTC_CLEAN_STACK /* clean up */ zeromem(expt, mp_unsigned_bin_size(key->p) + 1); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(skey); XFREE(expt); mp_clear_multi(g_pub, g_priv, NULL); return err; }
/** Verify an ECC signature @param sig The signature to verify @param siglen The length of the signature (octets) @param hash The hash (message digest) that was signed @param hashlen The length of the hash (octets) @param stat Result of signature, 1==valid, 0==invalid @param key The corresponding public ECC key @return CRYPT_OK if successful (even if the signature is not valid) */ int ecc_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, ecc_key *key) { ecc_point *mG, *mQ; void *r, *s, *v, *w, *u1, *u2, *e, *p, *m; void *mp; int err; LTC_ARGCHK(sig != NULL); LTC_ARGCHK(hash != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid signature */ *stat = 0; mp = NULL; /* is the IDX valid ? */ if (ltc_ecc_is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* allocate ints */ if ((err = mp_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* allocate points */ mG = ltc_ecc_new_point(); mQ = ltc_ecc_new_point(); if (mQ == NULL || mG == NULL) { err = CRYPT_MEM; goto error; } /* parse header */ if ((err = der_decode_sequence_multi(sig, siglen, LTC_ASN1_INTEGER, 1UL, r, LTC_ASN1_INTEGER, 1UL, s, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } /* get the order */ if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto error; } /* get the modulus */ if ((err = mp_read_radix(m, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto error; } /* check for zero */ if (mp_iszero(r) || mp_iszero(s) || mp_cmp(r, p) != LTC_MP_LT || mp_cmp(s, p) != LTC_MP_LT) { err = CRYPT_INVALID_PACKET; goto error; } /* read hash */ if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, (int)hashlen)) != CRYPT_OK) { goto error; } /* w = s^-1 mod n */ if ((err = mp_invmod(s, p, w)) != CRYPT_OK) { goto error; } /* u1 = ew */ if ((err = mp_mulmod(e, w, p, u1)) != CRYPT_OK) { goto error; } /* u2 = rw */ if ((err = mp_mulmod(r, w, p, u2)) != CRYPT_OK) { goto error; } /* find mG and mQ */ if ((err = mp_read_radix(mG->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(mG->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto error; } if ((err = mp_set(mG->z, 1)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.x, mQ->x)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.y, mQ->y)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.z, mQ->z)) != CRYPT_OK) { goto error; } /* compute u1*mG + u2*mQ = mG */ if (ltc_mp.ecc_mul2add == NULL) { if ((err = ltc_mp.ecc_ptmul(u1, mG, mG, m, 0)) != CRYPT_OK) { goto error; } if ((err = ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0)) != CRYPT_OK) { goto error; } /* find the montgomery mp */ if ((err = mp_montgomery_setup(m, &mp)) != CRYPT_OK) { goto error; } /* add them */ if ((err = ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp)) != CRYPT_OK) { goto error; } /* reduce */ if ((err = ltc_mp.ecc_map(mG, m, mp)) != CRYPT_OK) { goto error; } } else { /* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */ if ((err = ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m)) != CRYPT_OK) { goto error; } } /* v = X_x1 mod n */ if ((err = mp_mod(mG->x, p, v)) != CRYPT_OK) { goto error; } /* does v == r */ if (mp_cmp(v, r) == LTC_MP_EQ) { *stat = 1; } /* clear up and return */ err = CRYPT_OK; error: ltc_ecc_del_point(mG); ltc_ecc_del_point(mQ); mp_clear_multi(r, s, v, w, u1, u2, p, e, m, NULL); if (mp != NULL) { mp_montgomery_free(mp); } return err; }
/** Get the length of a DER sequence @param list The sequences of items in the SEQUENCE @param inlen The number of items @param outlen [out] The length required in octets to store it @return CRYPT_OK on success */ int der_length_sequence(ltc_asn1_list *list, unsigned long inlen, unsigned long *outlen) { int err, type; unsigned long size, x, y, z, i; void *data; LTC_ARGCHK(list != NULL); LTC_ARGCHK(outlen != NULL); /* get size of output that will be required */ y = 0; for (i = 0; i < inlen; i++) { type = list[i].type; size = list[i].size; data = list[i].data; if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: if ((err = der_length_boolean(&x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_INTEGER: if ((err = der_length_integer(data, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SHORT_INTEGER: if ((err = der_length_short_integer(*((unsigned long *)data), &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_BIT_STRING: if ((err = der_length_bit_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_OCTET_STRING: if ((err = der_length_octet_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_NULL: y += 2; break; case LTC_ASN1_OBJECT_IDENTIFIER: if ((err = der_length_object_identifier(data, size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_IA5_STRING: if ((err = der_length_ia5_string(data, size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_PRINTABLE_STRING: if ((err = der_length_printable_string(data, size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTCTIME: if ((err = der_length_utctime(data, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTF8_STRING: if ((err = der_length_utf8_string(data, size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: if ((err = der_length_sequence(data, size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; default: err = CRYPT_INVALID_ARG; goto LBL_ERR; } } /* calc header size */ z = y; if (y < 128) { y += 2; } else if (y < 256) { /* 0x30 0x81 LL */ y += 3; } else if (y < 65536UL) { /* 0x30 0x82 LL LL */ y += 4; } else if (y < 16777216UL) { /* 0x30 0x83 LL LL LL */ y += 5; } else { err = CRYPT_INVALID_ARG; goto LBL_ERR; } /* store size */ *outlen = y; err = CRYPT_OK; LBL_ERR: return err; }
/** Sign a hash with DSA @param in The hash to sign @param inlen The length of the hash to sign @param r The "r" integer of the signature (caller must initialize with mp_init() first) @param s The "s" integer of the signature (caller must initialize with mp_init() first) @param key A private DSA key @return CRYPT_OK if successful */ int dsa_sign_hash_raw(const unsigned char *in, unsigned long inlen, mp_int_t r, mp_int_t s, dsa_key * key) { mp_int k, kinv, tmp; unsigned char *buf; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(r != NULL); LTC_ARGCHK(s != NULL); LTC_ARGCHK(key != NULL); if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* check group order size */ if (key->qord >= LTC_MDSA_MAX_GROUP) { return CRYPT_INVALID_ARG; } buf = XMALLOC(LTC_MDSA_MAX_GROUP); if (buf == NULL) { return CRYPT_MEM; } /* Init our temps */ if ((err = mp_init_multi(&k, &kinv, &tmp, NULL)) != CRYPT_OK) { goto ERRBUF; } retry: do { /* gen random k */ get_random_bytes(buf, key->qord); /* read k */ if ((err = mp_read_unsigned_bin(&k, buf, key->qord)) != CRYPT_OK) { goto error; } /* k > 1 ? */ if (mp_cmp_d(&k, 1) != LTC_MP_GT) { goto retry; } /* test gcd */ if ((err = mp_gcd(&k, &key->q, &tmp)) != CRYPT_OK) { goto error; } } while (mp_cmp_d(&tmp, 1) != LTC_MP_EQ); /* now find 1/k mod q */ if ((err = mp_invmod(&k, &key->q, &kinv)) != CRYPT_OK) { goto error; } /* now find r = g^k mod p mod q */ if ((err = mp_exptmod(&key->g, &k, &key->p, r)) != CRYPT_OK) { goto error; } if ((err = mp_mod(r, &key->q, r)) != CRYPT_OK) { goto error; } if (mp_iszero(r) == LTC_MP_YES) { goto retry; } /* now find s = (in + xr)/k mod q */ if ((err = mp_read_unsigned_bin(&tmp, (unsigned char *)in, inlen)) != CRYPT_OK) { goto error; } if ((err = mp_mul(&key->x, r, s)) != CRYPT_OK) { goto error; } if ((err = mp_add(s, &tmp, s)) != CRYPT_OK) { goto error; } if ((err = mp_mulmod(s, &kinv, &key->q, s)) != CRYPT_OK) { goto error; } if (mp_iszero(s) == LTC_MP_YES) { goto retry; } err = CRYPT_OK; error: mp_clear_multi(&k, &kinv, &tmp, NULL); ERRBUF: #ifdef LTC_CLEAN_STACK zeromem(buf, LTC_MDSA_MAX_GROUP); #endif XFREE(buf); return err; }
/** Shared code to finish an OCB stream @param ocb The OCB state @param pt The remaining plaintext [or input] @param ptlen The length of the input (octets) @param ct [out] The output buffer @param tag [out] The destination for the authentication tag @param taglen [in/out] The max size and resulting size of the authentication tag @param mode The mode we are terminating, 0==encrypt, 1==decrypt @return CRYPT_OK if successful */ int s_ocb_done(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int mode) { unsigned char *Z, *Y, *X; int err, x; LTC_ARGCHK(ocb != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(tag != NULL); LTC_ARGCHK(taglen != NULL); if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) { return err; } if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length || (int)ptlen > ocb->block_len || (int)ptlen < 0) { return CRYPT_INVALID_ARG; } /* allocate ram */ Z = XMALLOC(MAXBLOCKSIZE); Y = XMALLOC(MAXBLOCKSIZE); X = XMALLOC(MAXBLOCKSIZE); if (X == NULL || Y == NULL || Z == NULL) { if (X != NULL) { XFREE(X); } if (Y != NULL) { XFREE(Y); } if (Z != NULL) { XFREE(Z); } return CRYPT_MEM; } /* compute X[m] = len(pt[m]) XOR Lr XOR Z[m] */ ocb_shift_xor(ocb, X); XMEMCPY(Z, X, ocb->block_len); X[ocb->block_len-1] ^= (ptlen*8)&255; X[ocb->block_len-2] ^= ((ptlen*8)>>8)&255; for (x = 0; x < ocb->block_len; x++) { X[x] ^= ocb->Lr[x]; } /* Y[m] = E(X[m])) */ cipher_descriptor[ocb->cipher].ecb_encrypt(X, Y, &ocb->key); if (mode == 1) { /* decrypt mode, so let's xor it first */ /* xor C[m] into checksum */ for (x = 0; x < (int)ptlen; x++) { ocb->checksum[x] ^= ct[x]; } } /* C[m] = P[m] xor Y[m] */ for (x = 0; x < (int)ptlen; x++) { ct[x] = pt[x] ^ Y[x]; } if (mode == 0) { /* encrypt mode */ /* xor C[m] into checksum */ for (x = 0; x < (int)ptlen; x++) { ocb->checksum[x] ^= ct[x]; } } /* xor Y[m] and Z[m] into checksum */ for (x = 0; x < ocb->block_len; x++) { ocb->checksum[x] ^= Y[x] ^ Z[x]; } /* encrypt checksum, er... tag!! */ cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->checksum, X, &ocb->key); cipher_descriptor[ocb->cipher].done(&ocb->key); /* now store it */ for (x = 0; x < ocb->block_len && x < (int)*taglen; x++) { tag[x] = X[x]; } *taglen = x; #ifdef LTC_CLEAN_STACK zeromem(X, MAXBLOCKSIZE); zeromem(Y, MAXBLOCKSIZE); zeromem(Z, MAXBLOCKSIZE); zeromem(ocb, sizeof(*ocb)); #endif XFREE(X); XFREE(Y); XFREE(Z); return CRYPT_OK; }
/** Compute an RSA modular exponentiation @param in The input data to send into RSA @param inlen The length of the input (octets) @param out [out] The destination @param outlen [in/out] The max size and resulting size of the output @param which Which exponent to use, e.g. PK_PRIVATE or PK_PUBLIC @param key The RSA key to use @return CRYPT_OK if successful */ int rsa_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key) { void *tmp, *tmpa, *tmpb; unsigned long x; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* is the key of the right type for the operation? */ if (which == PK_PRIVATE && (key->type != PK_PRIVATE)) { return CRYPT_PK_NOT_PRIVATE; } /* must be a private or public operation */ if (which != PK_PRIVATE && which != PK_PUBLIC) { return CRYPT_PK_INVALID_TYPE; } /* init and copy into tmp */ if ((err = mp_init_multi(&tmp, &tmpa, &tmpb, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, (int)inlen)) != CRYPT_OK) { goto error; } /* sanity check on the input */ if (mp_cmp(key->N, tmp) == LTC_MP_LT) { err = CRYPT_PK_INVALID_SIZE; goto error; } /* are we using the private exponent and is the key optimized? */ if (which == PK_PRIVATE) { /* tmpa = tmp^dP mod p */ if ((err = mp_exptmod(tmp, key->dP, key->p, tmpa)) != CRYPT_OK) { goto error; } /* tmpb = tmp^dQ mod q */ if ((err = mp_exptmod(tmp, key->dQ, key->q, tmpb)) != CRYPT_OK) { goto error; } /* tmp = (tmpa - tmpb) * qInv (mod p) */ if ((err = mp_sub(tmpa, tmpb, tmp)) != CRYPT_OK) { goto error; } if ((err = mp_mulmod(tmp, key->qP, key->p, tmp)) != CRYPT_OK) { goto error; } /* tmp = tmpb + q * tmp */ if ((err = mp_mul(tmp, key->q, tmp)) != CRYPT_OK) { goto error; } if ((err = mp_add(tmp, tmpb, tmp)) != CRYPT_OK) { goto error; } } else { /* exptmod it */ if ((err = mp_exptmod(tmp, key->e, key->N, tmp)) != CRYPT_OK) { goto error; } } /* read it back */ x = (unsigned long)mp_unsigned_bin_size(key->N); if (x > *outlen) { *outlen = x; err = CRYPT_BUFFER_OVERFLOW; goto error; } /* this should never happen ... */ if (mp_unsigned_bin_size(tmp) > mp_unsigned_bin_size(key->N)) { err = CRYPT_ERROR; goto error; } *outlen = x; /* convert it */ zeromem(out, x); if ((err = mp_to_unsigned_bin(tmp, out+(x-mp_unsigned_bin_size(tmp)))) != CRYPT_OK) { goto error; } /* clean up and return */ err = CRYPT_OK; error: mp_clear_multi(tmp, tmpa, tmpb, NULL); return err; }
/** Decrypt and compare the tag with OCB @param cipher The index of the cipher desired @param key The secret key @param keylen The length of the secret key (octets) @param nonce The session nonce (length of the block size of the block cipher) @param noncelen The length of the nonce (octets) @param adata The AAD - additional associated data @param adatalen The length of AAD (octets) @param ct The ciphertext @param ctlen The length of the ciphertext (octets) @param pt [out] The plaintext @param tag The tag to compare against @param taglen The length of the tag (octets) @param stat [out] The result of the tag comparison (1==valid, 0==invalid) @return CRYPT_OK if successful regardless of the tag comparison */ int ocb3_decrypt_verify_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, unsigned long noncelen, const unsigned char *adata, unsigned long adatalen, const unsigned char *ct, unsigned long ctlen, unsigned char *pt, const unsigned char *tag, unsigned long taglen, int *stat) { int err; ocb3_state *ocb; unsigned char *buf; unsigned long buflen; LTC_ARGCHK(stat != NULL); /* default to zero */ *stat = 0; /* limit taglen */ taglen = MIN(taglen, MAXBLOCKSIZE); /* allocate memory */ buf = XMALLOC(taglen); ocb = XMALLOC(sizeof(ocb3_state)); if (ocb == NULL || buf == NULL) { if (ocb != NULL) { XFREE(ocb); } if (buf != NULL) { XFREE(buf); } return CRYPT_MEM; } if ((err = ocb3_init(ocb, cipher, key, keylen, nonce, noncelen, taglen)) != CRYPT_OK) { goto LBL_ERR; } if (adata != NULL || adatalen != 0) { if ((err = ocb3_add_aad(ocb, adata, adatalen)) != CRYPT_OK) { goto LBL_ERR; } } if ((err = ocb3_decrypt_last(ocb, ct, ctlen, pt)) != CRYPT_OK) { goto LBL_ERR; } buflen = taglen; if ((err = ocb3_done(ocb, buf, &buflen)) != CRYPT_OK) { goto LBL_ERR; } /* compare tags */ if (buflen >= taglen && XMEM_NEQ(buf, tag, taglen) == 0) { *stat = 1; } err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(ocb, sizeof(ocb3_state)); #endif XFREE(ocb); XFREE(buf); return err; }
/** CBC decrypt @param ct Ciphertext @param pt [out] Plaintext @param len The number of bytes to process (must be multiple of block length) @param cbc CBC state @return CRYPT_OK if successful */ int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc) { int x, err; unsigned char tmp[16]; #ifdef LTC_FAST LTC_FAST_TYPE tmpy; #else unsigned char tmpy; #endif LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(cbc != NULL); if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } /* is blocklen valid? */ if (cbc->blocklen < 1 || cbc->blocklen > (int)sizeof(cbc->IV)) { return CRYPT_INVALID_ARG; } if (len % cbc->blocklen) { return CRYPT_INVALID_ARG; } #ifdef LTC_FAST if (cbc->blocklen % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif if (cipher_descriptor[cbc->cipher].accel_cbc_decrypt != NULL) { return cipher_descriptor[cbc->cipher].accel_cbc_decrypt(ct, pt, len / cbc->blocklen, cbc->IV, &cbc->key); } else { while (len) { /* decrypt */ if ((err = cipher_descriptor[cbc->cipher].ecb_decrypt(ct, tmp, &cbc->key)) != CRYPT_OK) { return err; } /* xor IV against plaintext */ #if defined(LTC_FAST) for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) { tmpy = *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) ^ *((LTC_FAST_TYPE*)((unsigned char *)tmp + x)); *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) = *((LTC_FAST_TYPE*)((unsigned char *)ct + x)); *((LTC_FAST_TYPE*)((unsigned char *)pt + x)) = tmpy; } #else for (x = 0; x < cbc->blocklen; x++) { tmpy = tmp[x] ^ cbc->IV[x]; cbc->IV[x] = ct[x]; pt[x] = tmpy; } #endif ct += cbc->blocklen; pt += cbc->blocklen; len -= cbc->blocklen; } } return CRYPT_OK; }
/** PKCS #1 decrypt then v1.5 or OAEP depad @param in The ciphertext @param inlen The length of the ciphertext (octets) @param out [out] The plaintext @param outlen [in/out] The max size and resulting size of the plaintext (octets) @param lparam The system "lparam" value @param lparamlen The length of the lparam value (octets) @param hash_idx The index of the hash desired @param padding Type of padding (LTC_PKCS_1_OAEP or LTC_PKCS_1_V1_5) @param stat [out] Result of the decryption, 1==valid, 0==invalid @param key The corresponding private RSA key @return CRYPT_OK if succcessul (even if invalid) */ int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, int hash_idx, int padding, int *stat, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; unsigned char *tmp; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* default to invalid */ *stat = 0; /* valid padding? */ if ((padding != LTC_PKCS_1_V1_5) && (padding != LTC_PKCS_1_OAEP)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_PKCS_1_OAEP) { /* valid hash ? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits( (key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size( (key->N)); if (modulus_bytelen != inlen) { return CRYPT_INVALID_PACKET; } /* allocate ram */ tmp = XMALLOC(inlen); if (tmp == NULL) { return CRYPT_MEM; } /* rsa decode the packet */ x = inlen; if ((err = ltc_mp.rsa_me(in, inlen, tmp, &x, PK_PRIVATE, key)) != CRYPT_OK) { XFREE(tmp); return err; } if (padding == LTC_PKCS_1_OAEP) { /* now OAEP decode the packet */ err = pkcs_1_oaep_decode(tmp, x, lparam, lparamlen, modulus_bitlen, hash_idx, out, outlen, stat); } else { /* now PKCS #1 v1.5 depad the packet */ err = pkcs_1_v1_5_decode(tmp, x, LTC_PKCS_1_EME, modulus_bitlen, out, outlen, stat); } XFREE(tmp); return err; }
/** Execute LTC_PKCS #5 v1 @param password The password (or key) @param password_len The length of the password (octet) @param salt The salt (or nonce) which is 8 octets long @param iteration_count The LTC_PKCS #5 v1 iteration count @param hash_idx The index of the hash desired @param out [out] The destination for this algorithm @param outlen [in/out] The max size and resulting size of the algorithm output @return CRYPT_OK if successful */ int pkcs_5_alg1(const unsigned char *password, unsigned long password_len, const unsigned char *salt, int iteration_count, int hash_idx, unsigned char *out, unsigned long *outlen) { int err; unsigned long x; hash_state *md; unsigned char *buf; LTC_ARGCHK(password != NULL); LTC_ARGCHK(salt != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* test hash IDX */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } /* allocate memory */ md = XMALLOC(sizeof(hash_state)); buf = XMALLOC(MAXBLOCKSIZE); if (md == NULL || buf == NULL) { if (md != NULL) { XFREE(md); } if (buf != NULL) { XFREE(buf); } return CRYPT_MEM; } /* hash initial password + salt */ if ((err = hash_descriptor[hash_idx].init(md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(md, password, password_len)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(md, salt, 8)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].done(md, buf)) != CRYPT_OK) { goto LBL_ERR; } while (--iteration_count) { /* code goes here. */ x = MAXBLOCKSIZE; if ((err = hash_memory(hash_idx, buf, hash_descriptor[hash_idx].hashsize, buf, &x)) != CRYPT_OK) { goto LBL_ERR; } } /* copy upto outlen bytes */ for (x = 0; x < hash_descriptor[hash_idx].hashsize && x < *outlen; x++) { out[x] = buf[x]; } *outlen = x; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(buf, MAXBLOCKSIZE); zeromem(md, sizeof(hash_state)); #endif XFREE(buf); XFREE(md); return err; }
/** Initialize the AES (Rijndael) block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { int i; ulong32 temp, *rk; #ifndef ENCRYPT_ONLY ulong32 *rrk; #endif LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 16 && keylen != 24 && keylen != 32) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) { return CRYPT_INVALID_ROUNDS; } skey->rijndael.Nr = 10 + ((keylen/8)-2)*2; /* setup the forward key */ i = 0; rk = skey->rijndael.eK; LOAD32H(rk[0], key ); LOAD32H(rk[1], key + 4); LOAD32H(rk[2], key + 8); LOAD32H(rk[3], key + 12); if (keylen == 16) { for (;;) { temp = rk[3]; rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { break; } rk += 4; } } else if (keylen == 24) { LOAD32H(rk[4], key + 16); LOAD32H(rk[5], key + 20); for (;;) { #ifdef _MSC_VER temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; #else temp = rk[5]; #endif rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { break; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } else if (keylen == 32) { LOAD32H(rk[4], key + 16); LOAD32H(rk[5], key + 20); LOAD32H(rk[6], key + 24); LOAD32H(rk[7], key + 28); for (;;) { #ifdef _MSC_VER temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; #else temp = rk[7]; #endif rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { break; } temp = rk[11]; rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8)); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } else { /* this can't happen */ /* coverity[dead_error_line] */ return CRYPT_ERROR; } #ifndef ENCRYPT_ONLY /* setup the inverse key now */ rk = skey->rijndael.dK; rrk = skey->rijndael.eK + (28 + keylen) - 4; /* apply the inverse MixColumn transform to all round keys but the first and the last: */ /* copy first */ *rk++ = *rrk++; *rk++ = *rrk++; *rk++ = *rrk++; *rk = *rrk; rk -= 3; rrk -= 3; for (i = 1; i < skey->rijndael.Nr; i++) { rrk -= 4; rk += 4; #ifdef LTC_SMALL_CODE temp = rrk[0]; rk[0] = setup_mix2(temp); temp = rrk[1]; rk[1] = setup_mix2(temp); temp = rrk[2]; rk[2] = setup_mix2(temp); temp = rrk[3]; rk[3] = setup_mix2(temp); #else temp = rrk[0]; rk[0] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[1]; rk[1] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[2]; rk[2] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[3]; rk[3] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; #endif } /* copy last */ rrk -= 4; rk += 4; *rk++ = *rrk++; *rk++ = *rrk++; *rk++ = *rrk++; *rk = *rrk; #endif /* ENCRYPT_ONLY */ return CRYPT_OK; }
/** Initialize the Blowfish block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int blowfish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { ulong32 x, y, z, A; unsigned char B[8]; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); /* check key length */ if (keylen < 8 || keylen > 56) { return CRYPT_INVALID_KEYSIZE; } /* check rounds */ if (num_rounds != 0 && num_rounds != 16) { return CRYPT_INVALID_ROUNDS; } /* load in key bytes (Supplied by David Hopwood) */ for (x = y = 0; x < 18; x++) { A = 0; for (z = 0; z < 4; z++) { A = (A << 8) | ((ulong32)key[y++] & 255); if (y == (ulong32)keylen) { y = 0; } } skey->blowfish.K[x] = ORIG_P[x] ^ A; } /* copy sboxes */ for (x = 0; x < 4; x++) { for (y = 0; y < 256; y++) { skey->blowfish.S[x][y] = ORIG_S[x][y]; } } /* encrypt K array */ for (x = 0; x < 8; x++) { B[x] = 0; } for (x = 0; x < 18; x += 2) { /* encrypt it */ blowfish_ecb_encrypt(B, B, skey); /* copy it */ LOAD32H(skey->blowfish.K[x], &B[0]); LOAD32H(skey->blowfish.K[x+1], &B[4]); } /* encrypt S array */ for (x = 0; x < 4; x++) { for (y = 0; y < 256; y += 2) { /* encrypt it */ blowfish_ecb_encrypt(B, B, skey); /* copy it */ LOAD32H(skey->blowfish.S[x][y], &B[0]); LOAD32H(skey->blowfish.S[x][y+1], &B[4]); } } #ifdef LTC_CLEAN_STACK zeromem(B, sizeof(B)); #endif return CRYPT_OK; }
int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; int Nr, r; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); Nr = skey->rijndael.Nr; rk = skey->rijndael.dK; /* * map byte array block to cipher state * and add initial round key: */ LOAD32H(s0, ct ); s0 ^= rk[0]; LOAD32H(s1, ct + 4); s1 ^= rk[1]; LOAD32H(s2, ct + 8); s2 ^= rk[2]; LOAD32H(s3, ct + 12); s3 ^= rk[3]; #ifdef LTC_SMALL_CODE for (r = 0; ; r++) { rk += 4; t0 = Td0(byte(s0, 3)) ^ Td1(byte(s3, 2)) ^ Td2(byte(s2, 1)) ^ Td3(byte(s1, 0)) ^ rk[0]; t1 = Td0(byte(s1, 3)) ^ Td1(byte(s0, 2)) ^ Td2(byte(s3, 1)) ^ Td3(byte(s2, 0)) ^ rk[1]; t2 = Td0(byte(s2, 3)) ^ Td1(byte(s1, 2)) ^ Td2(byte(s0, 1)) ^ Td3(byte(s3, 0)) ^ rk[2]; t3 = Td0(byte(s3, 3)) ^ Td1(byte(s2, 2)) ^ Td2(byte(s1, 1)) ^ Td3(byte(s0, 0)) ^ rk[3]; if (r == Nr-2) { break; } s0 = t0; s1 = t1; s2 = t2; s3 = t3; } rk += 4; #else /* * Nr - 1 full rounds: */ r = Nr >> 1; for (;;) { t0 = Td0(byte(s0, 3)) ^ Td1(byte(s3, 2)) ^ Td2(byte(s2, 1)) ^ Td3(byte(s1, 0)) ^ rk[4]; t1 = Td0(byte(s1, 3)) ^ Td1(byte(s0, 2)) ^ Td2(byte(s3, 1)) ^ Td3(byte(s2, 0)) ^ rk[5]; t2 = Td0(byte(s2, 3)) ^ Td1(byte(s1, 2)) ^ Td2(byte(s0, 1)) ^ Td3(byte(s3, 0)) ^ rk[6]; t3 = Td0(byte(s3, 3)) ^ Td1(byte(s2, 2)) ^ Td2(byte(s1, 1)) ^ Td3(byte(s0, 0)) ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Td0(byte(t0, 3)) ^ Td1(byte(t3, 2)) ^ Td2(byte(t2, 1)) ^ Td3(byte(t1, 0)) ^ rk[0]; s1 = Td0(byte(t1, 3)) ^ Td1(byte(t0, 2)) ^ Td2(byte(t3, 1)) ^ Td3(byte(t2, 0)) ^ rk[1]; s2 = Td0(byte(t2, 3)) ^ Td1(byte(t1, 2)) ^ Td2(byte(t0, 1)) ^ Td3(byte(t3, 0)) ^ rk[2]; s3 = Td0(byte(t3, 3)) ^ Td1(byte(t2, 2)) ^ Td2(byte(t1, 1)) ^ Td3(byte(t0, 0)) ^ rk[3]; } #endif /* * apply last round and * map cipher state to byte array block: */ s0 = (Td4[byte(t0, 3)] & 0xff000000) ^ (Td4[byte(t3, 2)] & 0x00ff0000) ^ (Td4[byte(t2, 1)] & 0x0000ff00) ^ (Td4[byte(t1, 0)] & 0x000000ff) ^ rk[0]; STORE32H(s0, pt); s1 = (Td4[byte(t1, 3)] & 0xff000000) ^ (Td4[byte(t0, 2)] & 0x00ff0000) ^ (Td4[byte(t3, 1)] & 0x0000ff00) ^ (Td4[byte(t2, 0)] & 0x000000ff) ^ rk[1]; STORE32H(s1, pt+4); s2 = (Td4[byte(t2, 3)] & 0xff000000) ^ (Td4[byte(t1, 2)] & 0x00ff0000) ^ (Td4[byte(t0, 1)] & 0x0000ff00) ^ (Td4[byte(t3, 0)] & 0x000000ff) ^ rk[2]; STORE32H(s2, pt+8); s3 = (Td4[byte(t3, 3)] & 0xff000000) ^ (Td4[byte(t2, 2)] & 0x00ff0000) ^ (Td4[byte(t1, 1)] & 0x0000ff00) ^ (Td4[byte(t0, 0)] & 0x000000ff) ^ rk[3]; STORE32H(s3, pt+12); return CRYPT_OK; }
/** Read from the PRNG @param out Destination @param outlen Length of output @param prng The active PRNG to read from @return Number of octets read */ unsigned long sober128_read(unsigned char *out, unsigned long outlen, prng_state *prng) { struct sober128_prng *c; ulong32 t, tlen; LTC_ARGCHK(out != NULL); LTC_ARGCHK(prng != NULL); #ifdef LTC_VALGRIND zeromem(out, outlen); #endif c = &(prng->sober128); t = 0; tlen = outlen; /* handle any previously buffered bytes */ while (c->nbuf != 0 && outlen != 0) { *out++ ^= c->sbuf & 0xFF; c->sbuf >>= 8; c->nbuf -= 8; --outlen; } #ifndef LTC_SMALL_CODE /* do lots at a time, if there's enough to do */ while (outlen >= N*4) { SROUND(0); SROUND(1); SROUND(2); SROUND(3); SROUND(4); SROUND(5); SROUND(6); SROUND(7); SROUND(8); SROUND(9); SROUND(10); SROUND(11); SROUND(12); SROUND(13); SROUND(14); SROUND(15); SROUND(16); out += 4*N; outlen -= 4*N; } #endif /* do small or odd size buffers the slow way */ while (4 <= outlen) { cycle(c->R); t = nltap(c); XORWORD(t, out); out += 4; outlen -= 4; } /* handle any trailing bytes */ if (outlen != 0) { cycle(c->R); c->sbuf = nltap(c); c->nbuf = 32; while (c->nbuf != 0 && outlen != 0) { *out++ ^= c->sbuf & 0xFF; c->sbuf >>= 8; c->nbuf -= 8; --outlen; } }
/** PKCS #1 pad then sign @param in The hash to sign @param inlen The length of the hash to sign (octets) @param out [out] The signature @param outlen [in/out] The max size and resulting size of the signature @param padding Type of padding (LTC_PKCS_1_PSS or LTC_PKCS_1_V1_5) @param prng An active PRNG state @param prng_idx The index of the PRNG desired @param hash_idx The index of the hash desired @param saltlen The length of the salt desired (octets) @param key The private RSA key to use @return CRYPT_OK if successful */ int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int padding, prng_state *prng, int prng_idx, int hash_idx, unsigned long saltlen, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* valid padding? */ if ((padding != LTC_PKCS_1_V1_5) && (padding != LTC_PKCS_1_PSS)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_PKCS_1_PSS) { /* valid prng and hash ? */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } if (padding == LTC_PKCS_1_PSS) { /* PSS pad the key */ x = *outlen; if ((err = pkcs_1_pss_encode(in, inlen, saltlen, prng, prng_idx, hash_idx, modulus_bitlen, out, &x)) != CRYPT_OK) { return err; } } else { /* PKCS #1 v1.5 pad the hash */ unsigned char *tmpin; ltc_asn1_list digestinfo[2], siginfo[2]; /* not all hashes have OIDs... so sad */ if (hash_descriptor[hash_idx]->OIDlen == 0) { return CRYPT_INVALID_ARG; } /* construct the SEQUENCE SEQUENCE { SEQUENCE {hashoid OID blah NULL } hash OCTET STRING } */ LTC_SET_ASN1(digestinfo, 0, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash_idx]->OID, hash_descriptor[hash_idx]->OIDlen); LTC_SET_ASN1(digestinfo, 1, LTC_ASN1_NULL, NULL, 0); LTC_SET_ASN1(siginfo, 0, LTC_ASN1_SEQUENCE, digestinfo, 2); LTC_SET_ASN1(siginfo, 1, LTC_ASN1_OCTET_STRING, in, inlen); /* allocate memory for the encoding */ y = mp_unsigned_bin_size(key->N); tmpin = XMALLOC(y); if (tmpin == NULL) { return CRYPT_MEM; } if ((err = der_encode_sequence(siginfo, 2, tmpin, &y)) != CRYPT_OK) { XFREE(tmpin); return err; } x = *outlen; if ((err = pkcs_1_v1_5_encode(tmpin, y, LTC_PKCS_1_EMSA, modulus_bitlen, NULL, 0, out, &x)) != CRYPT_OK) { XFREE(tmpin); return err; } XFREE(tmpin); } /* RSA encode it */ return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key); }
int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) #endif { ulong32 x[4], z[4]; unsigned char buf[16]; int y, i; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (num_rounds != 12 && num_rounds != 16 && num_rounds != 0) { return CRYPT_INVALID_ROUNDS; } if (num_rounds == 12 && keylen > 10) { return CRYPT_INVALID_ROUNDS; } if (keylen < 5 || keylen > 16) { return CRYPT_INVALID_KEYSIZE; } /* extend the key as required */ zeromem(buf, sizeof(buf)); XMEMCPY(buf, key, (size_t)keylen); /* load and start the awful looking network */ for (y = 0; y < 4; y++) { LOAD32H(x[3-y],buf+4*y); } for (i = y = 0; y < 2; y++) { z[3] = x[3] ^ S5[GB(x, 0xD)] ^ S6[GB(x, 0xF)] ^ S7[GB(x, 0xC)] ^ S8[GB(x, 0xE)] ^ S7[GB(x, 0x8)]; z[2] = x[1] ^ S5[GB(z, 0x0)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x3)] ^ S8[GB(x, 0xA)]; z[1] = x[0] ^ S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S5[GB(x, 0x9)]; z[0] = x[2] ^ S5[GB(z, 0xA)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0xb)] ^ S8[GB(z, 0x8)] ^ S6[GB(x, 0xB)]; skey->cast5.K[i++] = S5[GB(z, 0x8)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0x7)] ^ S8[GB(z, 0x6)] ^ S5[GB(z, 0x2)]; skey->cast5.K[i++] = S5[GB(z, 0xA)] ^ S6[GB(z, 0xB)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S6[GB(z, 0x6)]; skey->cast5.K[i++] = S5[GB(z, 0xC)] ^ S6[GB(z, 0xd)] ^ S7[GB(z, 0x3)] ^ S8[GB(z, 0x2)] ^ S7[GB(z, 0x9)]; skey->cast5.K[i++] = S5[GB(z, 0xE)] ^ S6[GB(z, 0xF)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x0)] ^ S8[GB(z, 0xc)]; x[3] = z[1] ^ S5[GB(z, 0x5)] ^ S6[GB(z, 0x7)] ^ S7[GB(z, 0x4)] ^ S8[GB(z, 0x6)] ^ S7[GB(z, 0x0)]; x[2] = z[3] ^ S5[GB(x, 0x0)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x3)] ^ S8[GB(z, 0x2)]; x[1] = z[2] ^ S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S5[GB(z, 0x1)]; x[0] = z[0] ^ S5[GB(x, 0xA)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0xb)] ^ S8[GB(x, 0x8)] ^ S6[GB(z, 0x3)]; skey->cast5.K[i++] = S5[GB(x, 0x3)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0xc)] ^ S8[GB(x, 0xd)] ^ S5[GB(x, 0x8)]; skey->cast5.K[i++] = S5[GB(x, 0x1)] ^ S6[GB(x, 0x0)] ^ S7[GB(x, 0xe)] ^ S8[GB(x, 0xf)] ^ S6[GB(x, 0xd)]; skey->cast5.K[i++] = S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x8)] ^ S8[GB(x, 0x9)] ^ S7[GB(x, 0x3)]; skey->cast5.K[i++] = S5[GB(x, 0x5)] ^ S6[GB(x, 0x4)] ^ S7[GB(x, 0xa)] ^ S8[GB(x, 0xb)] ^ S8[GB(x, 0x7)]; /* second half */ z[3] = x[3] ^ S5[GB(x, 0xD)] ^ S6[GB(x, 0xF)] ^ S7[GB(x, 0xC)] ^ S8[GB(x, 0xE)] ^ S7[GB(x, 0x8)]; z[2] = x[1] ^ S5[GB(z, 0x0)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x3)] ^ S8[GB(x, 0xA)]; z[1] = x[0] ^ S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S5[GB(x, 0x9)]; z[0] = x[2] ^ S5[GB(z, 0xA)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0xb)] ^ S8[GB(z, 0x8)] ^ S6[GB(x, 0xB)]; skey->cast5.K[i++] = S5[GB(z, 0x3)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0xc)] ^ S8[GB(z, 0xd)] ^ S5[GB(z, 0x9)]; skey->cast5.K[i++] = S5[GB(z, 0x1)] ^ S6[GB(z, 0x0)] ^ S7[GB(z, 0xe)] ^ S8[GB(z, 0xf)] ^ S6[GB(z, 0xc)]; skey->cast5.K[i++] = S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x8)] ^ S8[GB(z, 0x9)] ^ S7[GB(z, 0x2)]; skey->cast5.K[i++] = S5[GB(z, 0x5)] ^ S6[GB(z, 0x4)] ^ S7[GB(z, 0xa)] ^ S8[GB(z, 0xb)] ^ S8[GB(z, 0x6)]; x[3] = z[1] ^ S5[GB(z, 0x5)] ^ S6[GB(z, 0x7)] ^ S7[GB(z, 0x4)] ^ S8[GB(z, 0x6)] ^ S7[GB(z, 0x0)]; x[2] = z[3] ^ S5[GB(x, 0x0)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x3)] ^ S8[GB(z, 0x2)]; x[1] = z[2] ^ S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S5[GB(z, 0x1)]; x[0] = z[0] ^ S5[GB(x, 0xA)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0xb)] ^ S8[GB(x, 0x8)] ^ S6[GB(z, 0x3)]; skey->cast5.K[i++] = S5[GB(x, 0x8)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0x7)] ^ S8[GB(x, 0x6)] ^ S5[GB(x, 0x3)]; skey->cast5.K[i++] = S5[GB(x, 0xa)] ^ S6[GB(x, 0xb)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S6[GB(x, 0x7)]; skey->cast5.K[i++] = S5[GB(x, 0xc)] ^ S6[GB(x, 0xd)] ^ S7[GB(x, 0x3)] ^ S8[GB(x, 0x2)] ^ S7[GB(x, 0x8)]; skey->cast5.K[i++] = S5[GB(x, 0xe)] ^ S6[GB(x, 0xf)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x0)] ^ S8[GB(x, 0xd)]; } skey->cast5.keylen = keylen; #ifdef LTC_CLEAN_STACK zeromem(buf, sizeof(buf)); zeromem(x, sizeof(x)); zeromem(z, sizeof(z)); #endif return CRYPT_OK; }
/** Double an ECC point @param P The point to double @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return err; } if (P != R) { if ((err = mp_copy(P->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->z, R->z)) != CRYPT_OK) { goto done; } } /* t1 = Z * Z */ if ((err = mp_sqr(R->z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = Y * Z */ if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = 2Z */ if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK) { goto done; } if (mp_cmp(R->z, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK) { goto done; } } /* T2 = X - T1 */ if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T1 = X + T1 */ if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T2 = T1 * T2 */ if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = 2T2 */ if ((err = mp_add(t2, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T1 = T1 + T2 */ if ((err = mp_add(t1, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* Y = 2Y */ if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp(R->y, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * Y */ if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = Y * Y */ if ((err = mp_sqr(R->y, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = T2/2 */ if (mp_isodd(t2)) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } if ((err = mp_div_2(t2, t2)) != CRYPT_OK) { goto done; } /* Y = Y * X */ if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* X = T1 * T1 */ if ((err = mp_sqr(t1, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* Y = Y - X */ if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * T1 */ if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y - T2 */ if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; }
int gcm_init(gcm_state *gcm, int cipher, const unsigned char *key, int keylen) { int err; unsigned char B[16]; #ifdef GCM_TABLES int x, y, z, t; #endif LTC_ARGCHK(gcm != NULL); LTC_ARGCHK(key != NULL); #ifdef LTC_FAST if (16 % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif /* is cipher valid? */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } if (cipher_descriptor[cipher].block_length != 16) { return CRYPT_INVALID_CIPHER; } /* schedule key */ if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &gcm->K)) != CRYPT_OK) { return err; } /* H = E(0) */ zeromem(B, 16); if ((err = cipher_descriptor[cipher].ecb_encrypt(B, gcm->H, &gcm->K)) != CRYPT_OK) { return err; } /* setup state */ zeromem(gcm->buf, sizeof(gcm->buf)); zeromem(gcm->X, sizeof(gcm->X)); gcm->cipher = cipher; gcm->mode = GCM_MODE_IV; gcm->ivmode = 0; gcm->buflen = 0; gcm->totlen = 0; gcm->pttotlen = 0; #ifdef GCM_TABLES /* setup tables */ /* generate the first table as it has no shifting (from which we make the other tables) */ zeromem(B, 16); for (y = 0; y < 256; y++) { B[0] = y; gcm_gf_mult(gcm->H, B, &gcm->PC[0][y][0]); } /* now generate the rest of the tables based the previous table */ for (x = 1; x < 16; x++) { for (y = 0; y < 256; y++) { /* now shift it right by 8 bits */ t = gcm->PC[x-1][y][15]; for (z = 15; z > 0; z--) { gcm->PC[x][y][z] = gcm->PC[x-1][y][z-1]; } gcm->PC[x][y][0] = gcm_shift_table[t<<1]; gcm->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1]; } } #endif return CRYPT_OK; }
/** Encode a SEQUENCE type using a VA list @param out [out] Destination for data @param outlen [in/out] Length of buffer and resulting length of output @remark <...> is of the form <type, size, data> (int, unsigned long, void*) @return CRYPT_OK on success */ int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...) { int err, type; unsigned long size, x; void *data; va_list args; ltc_asn1_list *list; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get size of output that will be required */ va_start(args, outlen); x = 0; for (;;) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void*); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SEQUENCE: case LTC_ASN1_SET: case LTC_ASN1_SETOF: ++x; break; default: va_end(args); return CRYPT_INVALID_ARG; } } va_end(args); /* allocate structure for x elements */ if (x == 0) { return CRYPT_NOP; } list = XCALLOC(sizeof(*list), x); if (list == NULL) { return CRYPT_MEM; } /* fill in the structure */ va_start(args, outlen); x = 0; for (;;) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void*); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SEQUENCE: case LTC_ASN1_SET: case LTC_ASN1_SETOF: list[x].type = type; list[x].size = size; list[x++].data = data; break; default: va_end(args); err = CRYPT_INVALID_ARG; goto LBL_ERR; } } va_end(args); err = der_encode_sequence(list, x, out, outlen); LBL_ERR: XFREE(list); return err; }
/** Create a DSA key @param prng An active PRNG state @param wprng The index of the PRNG desired @param group_size Size of the multiplicative group (octets) @param modulus_size Size of the modulus (octets) @param key [out] Where to store the created key @return CRYPT_OK if successful, upon error this function will free all allocated memory */ int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) { mp_int tmp, tmp2; int err, res; unsigned char *buf; LTC_ARGCHK(key != NULL); /* check prng */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* check size */ if (group_size >= MDSA_MAX_GROUP || group_size <= 15 || group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) { return CRYPT_INVALID_ARG; } /* allocate ram */ buf = XMALLOC(MDSA_DELTA); if (buf == NULL) { return CRYPT_MEM; } /* init mp_ints */ if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) { err = mpi_to_ltc_error(err); goto LBL_ERR; } /* make our prime q */ if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK) { goto LBL_ERR; } /* double q */ if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; } /* now make a random string and multply it against q */ if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } /* force magnitude */ buf[0] = 1; /* force even */ buf[modulus_size - group_size] &= ~1; if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; } if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; } /* now loop until p is prime */ for (;;) { if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto LBL_ERR; } if (res == MP_YES) break; /* add 2q to p and 2 to tmp2 */ if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; } } /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */ mp_set(&key->g, 1); do { if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; } if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&tmp, 1) == MP_EQ); /* at this point tmp generates a group of order q mod p */ mp_exch(&tmp, &key->g); /* so now we have our DH structure, generator g, order q, modulus p Now we need a random exponent [mod q] and it's power g^x mod p */ do { if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&key->x, 1) != MP_GT); if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; } key->type = PK_PRIVATE; key->qord = group_size; /* shrink the ram required */ if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; } #ifdef LTC_CLEAN_STACK zeromem(buf, MDSA_DELTA); #endif err = CRYPT_OK; goto done; error: err = mpi_to_ltc_error(err); LBL_ERR: mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL); done: mp_clear_multi(&tmp, &tmp2, NULL); XFREE(buf); return err; }
/** Sign a message digest using a DH private key @param in The data to sign @param inlen The length of the input (octets) @param out [out] The destination of the signature @param outlen [in/out] The max size and resulting size of the output @param prng An active PRNG state @param wprng The index of the PRNG desired @param key A private DH key @return CRYPT_OK if successful */ int dh_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, dh_key *key) { mp_int a, b, k, m, g, p, p1, tmp; unsigned char *buf; unsigned long x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check parameters */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* is the IDX valid ? */ if (is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* allocate ram for buf */ buf = XMALLOC(520); /* make up a random value k, * since the order of the group is prime * we need not check if gcd(k, r) is 1 */ if (prng_descriptor[wprng].read(buf, sets[key->idx].size, prng) != (unsigned long)(sets[key->idx].size)) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } /* init bignums */ if ((err = mp_init_multi(&a, &b, &k, &m, &p, &g, &p1, &tmp, NULL)) != MP_OKAY) { err = mpi_to_ltc_error(err); goto LBL_ERR; } /* load k and m */ if ((err = mp_read_unsigned_bin(&m, (unsigned char *)in, inlen)) != MP_OKAY) { goto error; } if ((err = mp_read_unsigned_bin(&k, buf, sets[key->idx].size)) != MP_OKAY) { goto error; } /* load g, p and p1 */ if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error; } if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error; } if ((err = mp_sub_d(&p, 1, &p1)) != MP_OKAY) { goto error; } if ((err = mp_div_2(&p1, &p1)) != MP_OKAY) { goto error; } /* p1 = (p-1)/2 */ /* now get a = g^k mod p */ if ((err = mp_exptmod(&g, &k, &p, &a)) != MP_OKAY) { goto error; } /* now find M = xa + kb mod p1 or just b = (M - xa)/k mod p1 */ if ((err = mp_invmod(&k, &p1, &k)) != MP_OKAY) { goto error; } /* k = 1/k mod p1 */ if ((err = mp_mulmod(&a, &key->x, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = xa */ if ((err = mp_submod(&m, &tmp, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = M - xa */ if ((err = mp_mulmod(&k, &tmp, &p1, &b)) != MP_OKAY) { goto error; } /* b = (M - xa)/k */ /* check for overflow */ if ((unsigned long)(PACKET_SIZE + 4 + 4 + mp_unsigned_bin_size(&a) + mp_unsigned_bin_size(&b)) > *outlen) { err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* store header */ y = PACKET_SIZE; /* now store them both (a,b) */ x = (unsigned long)mp_unsigned_bin_size(&a); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&a, out+y)) != MP_OKAY) { goto error; } y += x; x = (unsigned long)mp_unsigned_bin_size(&b); STORE32L(x, out+y); y += 4; if ((err = mp_to_unsigned_bin(&b, out+y)) != MP_OKAY) { goto error; } y += x; /* check if size too big */ if (*outlen < y) { err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* store header */ packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_SIGNED); *outlen = y; err = CRYPT_OK; goto LBL_ERR; error: err = mpi_to_ltc_error(err); LBL_ERR: mp_clear_multi(&tmp, &p1, &g, &p, &m, &k, &b, &a, NULL); XFREE(buf); return err; }