Пример #1
0
int main(void) {
	
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);
	sysClock = SysCtlClockGet();

	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

	MAP_GPIOPinConfigure(GPIO_PD1_I2C3SDA);
	MAP_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);
	MAP_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
	MAP_GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);

	MAP_I2CMasterInitExpClk(I2C3_BASE, sysClock, 0);

	pRTC->address = RTC_addr;
	SysCtlDelay(20000);
	setupRTC(pRTC);
	SysCtlDelay(20000);
	setTime(pRTC);
	SysCtlDelay(20000);
	getTime(pRTC);

	return 0;
}
Пример #2
0
static inline void ti_arm_mcu_pin_mode_i2c(int pin, int scl, int i2c_af)
{
    ti_arm_mcu_periph_enable(ti_arm_mcu_gpio_periph(pin));
    if (i2c_af)
        MAP_GPIOPinConfigure(i2c_af);
    MAP_GPIOPinTypeI2C(ti_arm_mcu_gpio_base(pin), GPIO_BIT(pin));
    if (scl)
        ti_arm_mcu_pin_config(pin, GPIO_PIN_TYPE_STD_WPU);
    else
        ti_arm_mcu_pin_config(pin, GPIO_PIN_TYPE_OD);
}
Пример #3
0
/*
 *  ======== EK_TM4C123GXL_initI2C ========
 */
void EK_TM4C123GXL_initI2C(void)
{
  //Enable the peripheral funcitonality for the GPIO port
  //
  MAP_SysCtlPeripheralEnable(INEEDMD_LED_SYSCTL_PRIPH_GPIO);

  // Enable the I2C peripheral
  //
  MAP_SysCtlPeripheralEnable(INEEDMD_LED_SYSCTL_PRIPH_I2C);

  // Configure the alternate function for the I2C SCL pin and tie it to the I2C
  MAP_GPIOPinTypeI2CSCL(INEEDMD_LED_GPIO_PORT, INEEDMD_LED_I2CSCL_PIN);
  MAP_GPIOPinConfigure(INEEDMD_LED_GPIO_I2CSCL);

  //Configure the alternate function for the I2C SDA pin and tie it to the I2C
  MAP_GPIOPinTypeI2C(INEEDMD_LED_GPIO_PORT, INEEDMD_LED_I2CSDA_PIN);
  MAP_GPIOPinConfigure(INEEDMD_LED_GPIO_I2CSDA);

  I2C_init();

  return;
}
int main(void)
{
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |SYSCTL_XTAL_12MHZ); //50MHZ

	//
	// Enable peripherals to operate when CPU is in sleep.
	//
	MAP_SysCtlPeripheralClockGating(true);

	//
	// Configure SysTick to occur 1000 times per second, to use as a time
	// reference.  Enable SysTick to generate interrupts.
	//
	MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKS_PER_SECOND);
	MAP_SysTickIntEnable();
	MAP_SysTickEnable();

	//
	// Get the current processor clock frequency.
	//
	ulClockMS = MAP_SysCtlClockGet() / (3 * 1000);

	// init Serial Comm
	initSerialComm(230400);

	// init SSI0 in slave mode
	initSPIComm();

#ifdef DEBUG
	UARTprintf("Setting up PID\n");
#endif
	initCarPID();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Setting up PWM ... \n");
#endif
	configurePWM();
	configureGPIO();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Setting up Servo ... \n");
#endif
	servo_init();
	servo_setPosition(90);
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Starting QEI...");
#endif
	encoder_init();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef USE_I2C
#ifdef DEBUG
	UARTprintf("Setting up I2C\n");
#endif
	//I2C
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
	MAP_GPIOPinTypeI2C(GPIO_PORTB_AHB_BASE,GPIO_PIN_2 | GPIO_PIN_3);
	MAP_I2CMasterInitExpClk(I2C0_MASTER_BASE,SysCtlClockGet(),true);  //false = 100khz , true = 400khz
	I2CMasterTimeoutSet(I2C0_MASTER_BASE, 1000);
#ifdef DEBUG
	UARTprintf("done\n");
#endif
#endif

#ifdef USE_I2C
#ifdef USE_INA226
#ifdef DEBUG
	UARTprintf("Setting up INA226\n");
#endif
	initINA226();
#ifdef DEBUG
	UARTprintf("done\n");
#endif
#endif
#endif


	while (1)
	{

	}
}
Пример #5
0
//*****************************************************************************
//
// Initialize the I2C, MPU9150 and Gesture systems.
//
//*****************************************************************************
void
MotionInit(void)
{
    //
    // Enable port S used for motion interrupt.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOS);

    //
    // The I2C3 peripheral must be enabled before use.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);

    //
    // Configure the pin muxing for I2C3 functions on port G4 and G5.
    //
    MAP_GPIOPinConfigure(GPIO_PG4_I2C3SCL);
    MAP_GPIOPinConfigure(GPIO_PG5_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_GPIOPinTypeI2C(GPIO_PORTG_BASE, GPIO_PIN_5);

    //
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // MPU9150
    //
    MAP_GPIOPinTypeGPIOInput(GPIO_PORTS_BASE, GPIO_PIN_2);
    MAP_GPIOIntEnable(GPIO_PORTS_BASE, GPIO_PIN_2);
    MAP_GPIOIntTypeSet(GPIO_PORTS_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
    MAP_IntEnable(INT_GPIOS);

    //
    // Enable interrupts to the processor.
    //
    MAP_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             g_ui32SysClock);

    //
    // Set the motion state to initializing.
    //
    g_ui8MotionState = MOTION_STATE_INIT;

    //
    // Initialize the MPU9150 Driver.
    //
    MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
                MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

    //
    // Write application specifice sensor configuration such as filter settings
    // and sensor range settings.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
    g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
                                  MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
                 MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

    //
    // Configure the data ready interrupt pin output of the MPU9150.
    //
    g_sMPU9150Inst.pui8Data[0] = (MPU9150_INT_PIN_CFG_INT_LEVEL |
                                  MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
                                  MPU9150_INT_PIN_CFG_LATCH_INT_EN);
    g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
                 g_sMPU9150Inst.pui8Data, 2, MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

    //
    // Initialize the DCM system.
    //
    CompDCMInit(&g_sCompDCMInst, 1.0f / ((float) MOTION_SAMPLE_FREQ_HZ),
                DCM_ACCEL_WEIGHT, DCM_GYRO_WEIGHT, DCM_MAG_WEIGHT);

    //
    // Initialize the gesture instance and establish a initial state estimate.
    //
    GestureInit(&g_sGestureInst, g_pfInitProb, g_ppfPath, g_ppfTransitionProb,
                g_ppfEmitProb, GESTURE_PATH_LENGTH, GESTURE_NUM_STATES,
                GESTURE_STATE_IDLE);
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;
    tContext sContext;
    uint32_t ui32SysClock;
    char pcBuf[15];

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 40000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "bmp180");

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // Enable UART0
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, ui32SysClock);

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // The I2C3 peripheral must be enabled before use.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);

    //
    // Configure the pin muxing for I2C3 functions on port G4 and G5.
    // This step is not necessary if your part does not support pin muxing.
    //
    MAP_GPIOPinConfigure(GPIO_PG4_I2C3SCL);
    MAP_GPIOPinConfigure(GPIO_PG5_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_GPIOPinTypeI2C(GPIO_PORTG_BASE, GPIO_PIN_5);

    //
    // Enable interrupts to the processor.
    //
    MAP_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ui32SysClock);

    //
    // Initialize the BMP180
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 hz.
    //
    MAP_SysTickPeriodSet(ui32SysClock / (10 * 3));
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Configure PQ4 to control the blue LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_4);

    //
    // Print temperature, pressure and altitude labels once on the LCD.
    //
    GrStringDraw(&sContext, "Temperature", 11,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 96),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
    GrStringDraw(&sContext, "Pressure", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 63),
                 (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
    GrStringDraw(&sContext, "Altitude", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 59),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete.  When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%03d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart,
                                               i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, -1,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        MAP_SysCtlDelay(ui32SysClock / (10 * 3));
    }
}
Пример #7
0
//*****************************************************************************
//
//! Configures the device pins for the standard usages on the EK-TM4C1294XL.
//!
//! \param bEthernet is a boolean used to determine function of Ethernet pins.
//! If true Ethernet pins are  configured as Ethernet LEDs.  If false GPIO are
//! available for application use.
//! \param bUSB is a boolean used to determine function of USB pins. If true USB
//! pins are configured for USB use.  If false then USB pins are available for
//! application use as GPIO.
//!
//! This function enables the GPIO modules and configures the device pins for
//! the default, standard usages on the EK-TM4C1294XL.  Applications that
//! require alternate configurations of the device pins can either not call
//! this function and take full responsibility for configuring all the device
//! pins, or can reconfigure the required device pins after calling this
//! function.
//!
//! \return None.
//
//*****************************************************************************
void
PinoutSet(bool bEthernet, bool bUSB)
{
    //
    // Enable all the GPIO peripherals.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOJ);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOK);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOM);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOP);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOQ);

    //
    // PA0-1 are used for UART0.
    //
    ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
    ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // PB0-1/PD6/PL6-7 are used for USB.
    // PQ4 can be used as a power fault detect on this board but it is not
    // the hardware peripheral power fault input pin.
    //
    if(bUSB)
    {
        HWREG(GPIO_PORTD_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
        HWREG(GPIO_PORTD_BASE + GPIO_O_CR) = 0xff;
        ROM_GPIOPinConfigure(GPIO_PD6_USB0EPEN);
        ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);
        ROM_GPIOPinTypeUSBDigital(GPIO_PORTD_BASE, GPIO_PIN_6);
        ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
        ROM_GPIOPinTypeGPIOInput(GPIO_PORTQ_BASE, GPIO_PIN_4);
    }
    else
    {
        //
        // Keep the default config for most pins used by USB.
        // Add a pull down to PD6 to turn off the TPS2052 switch
        //
        ROM_GPIOPinTypeGPIOInput(GPIO_PORTD_BASE, GPIO_PIN_6);
        MAP_GPIOPadConfigSet(GPIO_PORTD_BASE, GPIO_PIN_6, GPIO_STRENGTH_2MA,
                             GPIO_PIN_TYPE_STD_WPD);

    }

    //
    // PF0/PF4 are used for Ethernet LEDs.
    //
    if(bEthernet)
    {
        //
        // this app wants to configure for ethernet LED function.
        //
        ROM_GPIOPinConfigure(GPIO_PF0_EN0LED0);
        ROM_GPIOPinConfigure(GPIO_PF4_EN0LED1);

        GPIOPinTypeEthernetLED(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_4);

    }
    else
    {

        //
        // This app does not want Ethernet LED function so configure as
        // standard outputs for LED driving.
        //
        ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_4);

        //
        // Default the LEDs to OFF.
        //
        ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_4, 0);
        MAP_GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_4,
                             GPIO_STRENGTH_12MA, GPIO_PIN_TYPE_STD);


    }

    //
    // PJ0 and J1 are used for user buttons
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTJ_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    ROM_GPIOPinWrite(GPIO_PORTJ_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0);

    //
    // PN0 and PN1 are used for USER LEDs.
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    MAP_GPIOPadConfigSet(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1,
                             GPIO_STRENGTH_12MA, GPIO_PIN_TYPE_STD);

    //
    // Default the LEDs to OFF.
    //
    ROM_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0);

	MAP_GPIOPinConfigure(GPIO_PB2_I2C0SCL);
	MAP_GPIOPinConfigure(GPIO_PB3_I2C0SDA);
    MAP_GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO_PIN_3);
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTB_BASE, GPIO_PIN_2);
	MAP_GPIOPadConfigSet(GPIO_PORTB_BASE, GPIO_PIN_2 | GPIO_PIN_3, GPIO_STRENGTH_2MA,
						 GPIO_PIN_TYPE_OD);
	MAP_GPIODirModeSet(GPIO_PORTB_BASE, GPIO_PIN_2 | GPIO_PIN_3, GPIO_DIR_MODE_HW);
}