VOID MiSetDirtyBit ( IN PVOID FaultingAddress, IN PMMPTE PointerPte, IN ULONG PfnHeld ) /*++ Routine Description: This routine sets dirty in the specified PTE and the modify bit in the correpsonding PFN element. If any page file space is allocated, it is deallocated. Arguments: FaultingAddress - Supplies the faulting address. PointerPte - Supplies a pointer to the corresponding valid PTE. PfnHeld - Supplies TRUE if the PFN mutex is already held. Return Value: None. Environment: Kernel mode, APC's disabled, Working set mutex held. --*/ { MMPTE TempPte; ULONG PageFrameIndex; PMMPFN Pfn1; KIRQL OldIrql; // // The page is NOT copy on write, update the PTE setting both the // dirty bit and the accessed bit. Note, that as this PTE is in // the TB, the TB must be flushed. // MmSetDirtyCount += 1; //fixfix - remove TempPte = *PointerPte; MI_SET_PTE_DIRTY (TempPte); MI_SET_ACCESSED_IN_PTE (&TempPte, 1); *PointerPte = TempPte; // // Check state of PFN mutex and if not held, don't update PFN database. // if (PfnHeld) { PageFrameIndex = PointerPte->u.Hard.PageFrameNumber; Pfn1 = MI_PFN_ELEMENT (PageFrameIndex); // // Set the modified field in the PFN database, also, if the phyiscal // page is currently in a paging file, free up the page file space // as the contents are now worthless. // if ((Pfn1->OriginalPte.u.Soft.Prototype == 0) && (Pfn1->u3.e1.WriteInProgress == 0)) { // // This page is in page file format, deallocate the page file space. // MiReleasePageFileSpace (Pfn1->OriginalPte); // // Change original PTE to indicate no page file space is reserved, // otherwise the space will be deallocated when the PTE is // deleted. // Pfn1->OriginalPte.u.Soft.PageFileHigh = 0; } Pfn1->u3.e1.Modified = 1; } // // The TB entry must be flushed as the valid PTE with the dirty bit clear // has been fetched into the TB. If it isn't flushed, another fault // is generated as the dirty bit is not set in the cached TB entry. // KeFillEntryTb ((PHARDWARE_PTE)PointerPte, FaultingAddress, TRUE); return; }
LOGICAL MiSetDirtyBit ( IN PVOID FaultingAddress, IN PMMPTE PointerPte, IN ULONG PfnHeld ) /*++ Routine Description: This routine sets dirty in the specified PTE and the modify bit in the corresponding PFN element. If any page file space is allocated, it is deallocated. Arguments: FaultingAddress - Supplies the faulting address. PointerPte - Supplies a pointer to the corresponding valid PTE. PfnHeld - Supplies TRUE if the PFN lock is already held. Return Value: TRUE if action was taken, FALSE if not. Environment: Kernel mode, APCs disabled, working set pushlock held. --*/ { MMPTE TempPte; PFN_NUMBER PageFrameIndex; PMMPFN Pfn1; // // The page is NOT copy on write, update the PTE setting both the // dirty bit and the accessed bit. Note, that as this PTE is in // the TB, the TB must be flushed. // TempPte = *PointerPte; PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (&TempPte); // // This may be a PTE from a rotate physical frame so there may be no // corresponding PFN for it. // if (!MI_IS_PFN (PageFrameIndex)) { return FALSE; } MI_SET_PTE_DIRTY (TempPte); MI_SET_ACCESSED_IN_PTE (&TempPte, 1); MI_WRITE_VALID_PTE_NEW_PROTECTION (PointerPte, TempPte); // // Check state of PFN lock and if not held, don't update PFN database. // if (PfnHeld) { Pfn1 = MI_PFN_ELEMENT (PageFrameIndex); // // Set the modified field in the PFN database, also, if the physical // page is currently in a paging file, free up the page file space // as the contents are now worthless. // if ((Pfn1->OriginalPte.u.Soft.Prototype == 0) && (Pfn1->u3.e1.WriteInProgress == 0)) { // // This page is in page file format, deallocate the page file space. // MiReleasePageFileSpace (Pfn1->OriginalPte); // // Change original PTE to indicate no page file space is reserved, // otherwise the space will be deallocated when the PTE is // deleted. // Pfn1->OriginalPte.u.Soft.PageFileHigh = 0; } MI_SET_MODIFIED (Pfn1, 1, 0x17); } // // The TB entry must be flushed as the valid PTE with the dirty bit clear // has been fetched into the TB. If it isn't flushed, another fault // is generated as the dirty bit is not set in the cached TB entry. // KeFillEntryTb (FaultingAddress); return TRUE; }
BOOLEAN MmCreateProcessAddressSpace ( IN ULONG MinimumWorkingSetSize, IN PEPROCESS NewProcess, OUT PULONG_PTR DirectoryTableBase ) /*++ Routine Description: This routine creates an address space which maps the system portion and contains a hyper space entry. Arguments: MinimumWorkingSetSize - Supplies the minimum working set size for this address space. This value is only used to ensure that ample physical pages exist to create this process. NewProcess - Supplies a pointer to the process object being created. DirectoryTableBase - Returns the value of the newly created address space's Page Directory (PD) page and hyper space page. Return Value: Returns TRUE if an address space was successfully created, FALSE if ample physical pages do not exist. Environment: Kernel mode. APCs Disabled. --*/ { LOGICAL FlushTbNeeded; PFN_NUMBER PageDirectoryIndex; PFN_NUMBER HyperSpaceIndex; PFN_NUMBER PageContainingWorkingSet; PFN_NUMBER VadBitMapPage; MMPTE TempPte; MMPTE TempPte2; PEPROCESS CurrentProcess; KIRQL OldIrql; PMMPFN Pfn1; ULONG Color; PMMPTE PointerPte; ULONG PdeOffset; PMMPTE MappingPte; PMMPTE PointerFillPte; PMMPTE CurrentAddressSpacePde; // // Charge commitment for the page directory pages, working set page table // page, and working set list. If Vad bitmap lookups are enabled, then // charge for a page or two for that as well. // if (MiChargeCommitment (MM_PROCESS_COMMIT_CHARGE, NULL) == FALSE) { return FALSE; } FlushTbNeeded = FALSE; CurrentProcess = PsGetCurrentProcess (); NewProcess->NextPageColor = (USHORT) (RtlRandom (&MmProcessColorSeed)); KeInitializeSpinLock (&NewProcess->HyperSpaceLock); // // Get the PFN lock to get physical pages. // LOCK_PFN (OldIrql); // // Check to make sure the physical pages are available. // if (MI_NONPAGEABLE_MEMORY_AVAILABLE() <= (SPFN_NUMBER)MinimumWorkingSetSize){ UNLOCK_PFN (OldIrql); MiReturnCommitment (MM_PROCESS_COMMIT_CHARGE); // // Indicate no directory base was allocated. // return FALSE; } MM_TRACK_COMMIT (MM_DBG_COMMIT_PROCESS_CREATE, MM_PROCESS_COMMIT_CHARGE); MI_DECREMENT_RESIDENT_AVAILABLE (MinimumWorkingSetSize, MM_RESAVAIL_ALLOCATE_CREATE_PROCESS); // // Allocate a page directory page. // if (MmAvailablePages < MM_HIGH_LIMIT) { MiEnsureAvailablePageOrWait (NULL, OldIrql); } Color = MI_PAGE_COLOR_PTE_PROCESS (PDE_BASE, &CurrentProcess->NextPageColor); PageDirectoryIndex = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql); Pfn1 = MI_PFN_ELEMENT (PageDirectoryIndex); if (Pfn1->u3.e1.CacheAttribute != MiCached) { Pfn1->u3.e1.CacheAttribute = MiCached; FlushTbNeeded = TRUE; } // // Allocate the hyper space page table page. // if (MmAvailablePages < MM_HIGH_LIMIT) { MiEnsureAvailablePageOrWait (NULL, OldIrql); } Color = MI_PAGE_COLOR_PTE_PROCESS (MiGetPdeAddress(HYPER_SPACE), &CurrentProcess->NextPageColor); HyperSpaceIndex = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql); Pfn1 = MI_PFN_ELEMENT (HyperSpaceIndex); if (Pfn1->u3.e1.CacheAttribute != MiCached) { Pfn1->u3.e1.CacheAttribute = MiCached; FlushTbNeeded = TRUE; } // // Remove page(s) for the VAD bitmap. // if (MmAvailablePages < MM_HIGH_LIMIT) { MiEnsureAvailablePageOrWait (NULL, OldIrql); } Color = MI_PAGE_COLOR_VA_PROCESS (MmWorkingSetList, &CurrentProcess->NextPageColor); VadBitMapPage = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql); Pfn1 = MI_PFN_ELEMENT (VadBitMapPage); if (Pfn1->u3.e1.CacheAttribute != MiCached) { Pfn1->u3.e1.CacheAttribute = MiCached; FlushTbNeeded = TRUE; } // // Remove a page for the working set list. // if (MmAvailablePages < MM_HIGH_LIMIT) { MiEnsureAvailablePageOrWait (NULL, OldIrql); } Color = MI_PAGE_COLOR_VA_PROCESS (MmWorkingSetList, &CurrentProcess->NextPageColor); PageContainingWorkingSet = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql); Pfn1 = MI_PFN_ELEMENT (PageContainingWorkingSet); if (Pfn1->u3.e1.CacheAttribute != MiCached) { Pfn1->u3.e1.CacheAttribute = MiCached; FlushTbNeeded = TRUE; } UNLOCK_PFN (OldIrql); if (FlushTbNeeded == TRUE) { MI_FLUSH_TB_FOR_CACHED_ATTRIBUTE (); } ASSERT (NewProcess->AddressSpaceInitialized == 0); PS_SET_BITS (&NewProcess->Flags, PS_PROCESS_FLAGS_ADDRESS_SPACE1); ASSERT (NewProcess->AddressSpaceInitialized == 1); NewProcess->Vm.MinimumWorkingSetSize = MinimumWorkingSetSize; NewProcess->WorkingSetPage = PageContainingWorkingSet; INITIALIZE_DIRECTORY_TABLE_BASE (&DirectoryTableBase[0], PageDirectoryIndex); INITIALIZE_DIRECTORY_TABLE_BASE (&DirectoryTableBase[1], HyperSpaceIndex); // // Initialize the page reserved for hyper space. // TempPte = ValidPdePde; MI_SET_GLOBAL_STATE (TempPte, 0); MappingPte = MiReserveSystemPtes (1, SystemPteSpace); if (MappingPte != NULL) { MI_MAKE_VALID_KERNEL_PTE (TempPte2, HyperSpaceIndex, MM_READWRITE, MappingPte); MI_SET_PTE_DIRTY (TempPte2); MI_WRITE_VALID_PTE (MappingPte, TempPte2); PointerPte = MiGetVirtualAddressMappedByPte (MappingPte); } else { PointerPte = MiMapPageInHyperSpace (CurrentProcess, HyperSpaceIndex, &OldIrql); } TempPte.u.Hard.PageFrameNumber = VadBitMapPage; PointerPte[MiGetPteOffset(VAD_BITMAP_SPACE)] = TempPte; TempPte.u.Hard.PageFrameNumber = PageContainingWorkingSet; PointerPte[MiGetPteOffset(MmWorkingSetList)] = TempPte; if (MappingPte != NULL) { MiReleaseSystemPtes (MappingPte, 1, SystemPteSpace); } else { MiUnmapPageInHyperSpace (CurrentProcess, PointerPte, OldIrql); } // // Set the PTE address in the PFN for the page directory page. // Pfn1 = MI_PFN_ELEMENT (PageDirectoryIndex); Pfn1->PteAddress = (PMMPTE)PDE_BASE; TempPte = ValidPdePde; TempPte.u.Hard.PageFrameNumber = HyperSpaceIndex; MI_SET_GLOBAL_STATE (TempPte, 0); // // Add the new process to our internal list prior to filling any // system PDEs so if a system PDE changes (large page map or unmap) // it can mark this process for a subsequent update. // ASSERT (NewProcess->Pcb.DirectoryTableBase[0] == 0); LOCK_EXPANSION (OldIrql); InsertTailList (&MmProcessList, &NewProcess->MmProcessLinks); UNLOCK_EXPANSION (OldIrql); // // Map the page directory page in hyperspace. // MappingPte = MiReserveSystemPtes (1, SystemPteSpace); if (MappingPte != NULL) { MI_MAKE_VALID_KERNEL_PTE (TempPte2, PageDirectoryIndex, MM_READWRITE, MappingPte); MI_SET_PTE_DIRTY (TempPte2); MI_WRITE_VALID_PTE (MappingPte, TempPte2); PointerPte = MiGetVirtualAddressMappedByPte (MappingPte); } else { PointerPte = MiMapPageInHyperSpace (CurrentProcess, PageDirectoryIndex, &OldIrql); } PdeOffset = MiGetPdeOffset (MmSystemRangeStart); PointerFillPte = &PointerPte[PdeOffset]; CurrentAddressSpacePde = MiGetPdeAddress (MmSystemRangeStart); RtlCopyMemory (PointerFillPte, CurrentAddressSpacePde, PAGE_SIZE - PdeOffset * sizeof (MMPTE)); // // Map the working set page table page. // PdeOffset = MiGetPdeOffset (HYPER_SPACE); PointerPte[PdeOffset] = TempPte; // // Zero the remaining page directory range used to map the working // set list and its hash. // PdeOffset += 1; ASSERT (MiGetPdeOffset (MmHyperSpaceEnd) >= PdeOffset); MiZeroMemoryPte (&PointerPte[PdeOffset], (MiGetPdeOffset (MmHyperSpaceEnd) - PdeOffset + 1)); // // Recursively map the page directory page so it points to itself. // TempPte.u.Hard.PageFrameNumber = PageDirectoryIndex; PointerPte[MiGetPdeOffset(PTE_BASE)] = TempPte; if (MappingPte != NULL) { MiReleaseSystemPtes (MappingPte, 1, SystemPteSpace); } else { MiUnmapPageInHyperSpace (CurrentProcess, PointerPte, OldIrql); } InterlockedExchangeAddSizeT (&MmProcessCommit, MM_PROCESS_COMMIT_CHARGE); // // Up the session space reference count. // MiSessionAddProcess (NewProcess); return TRUE; }
LOGICAL FASTCALL MiCopyOnWrite ( IN PVOID FaultingAddress, IN PMMPTE PointerPte ) /*++ Routine Description: This routine performs a copy on write operation for the specified virtual address. Arguments: FaultingAddress - Supplies the virtual address which caused the fault. PointerPte - Supplies the pointer to the PTE which caused the page fault. Return Value: Returns TRUE if the page was actually split, FALSE if not. Environment: Kernel mode, APCs disabled, working set mutex held. --*/ { MMPTE TempPte; MMPTE TempPte2; PMMPTE MappingPte; PFN_NUMBER PageFrameIndex; PFN_NUMBER NewPageIndex; PVOID CopyTo; PVOID CopyFrom; KIRQL OldIrql; PMMPFN Pfn1; PEPROCESS CurrentProcess; PMMCLONE_BLOCK CloneBlock; PMMCLONE_DESCRIPTOR CloneDescriptor; WSLE_NUMBER WorkingSetIndex; LOGICAL FakeCopyOnWrite; PMMWSL WorkingSetList; PVOID SessionSpace; PLIST_ENTRY NextEntry; PIMAGE_ENTRY_IN_SESSION Image; // // This is called from MmAccessFault, the PointerPte is valid // and the working set mutex ensures it cannot change state. // // Capture the PTE contents to TempPte. // TempPte = *PointerPte; ASSERT (TempPte.u.Hard.Valid == 1); PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (&TempPte); Pfn1 = MI_PFN_ELEMENT (PageFrameIndex); // // Check to see if this is a prototype PTE with copy on write enabled. // FakeCopyOnWrite = FALSE; CurrentProcess = PsGetCurrentProcess (); CloneBlock = NULL; if (FaultingAddress >= (PVOID) MmSessionBase) { WorkingSetList = MmSessionSpace->Vm.VmWorkingSetList; ASSERT (Pfn1->u3.e1.PrototypePte == 1); SessionSpace = (PVOID) MmSessionSpace; MM_SESSION_SPACE_WS_LOCK_ASSERT (); if (MmSessionSpace->ImageLoadingCount != 0) { NextEntry = MmSessionSpace->ImageList.Flink; while (NextEntry != &MmSessionSpace->ImageList) { Image = CONTAINING_RECORD (NextEntry, IMAGE_ENTRY_IN_SESSION, Link); if ((FaultingAddress >= Image->Address) && (FaultingAddress <= Image->LastAddress)) { if (Image->ImageLoading) { ASSERT (Pfn1->u3.e1.PrototypePte == 1); TempPte.u.Hard.CopyOnWrite = 0; TempPte.u.Hard.Write = 1; // // The page is no longer copy on write, update the PTE // setting both the dirty bit and the accessed bit. // // Even though the page's current backing is the image // file, the modified writer will convert it to // pagefile backing when it notices the change later. // MI_SET_PTE_DIRTY (TempPte); MI_SET_ACCESSED_IN_PTE (&TempPte, 1); MI_WRITE_VALID_PTE_NEW_PROTECTION (PointerPte, TempPte); // // The TB entry must be flushed as the valid PTE with // the dirty bit clear has been fetched into the TB. If // it isn't flushed, another fault is generated as the // dirty bit is not set in the cached TB entry. // MI_FLUSH_SINGLE_TB (FaultingAddress, TRUE); return FALSE; } break; } NextEntry = NextEntry->Flink; } } } else { WorkingSetList = MmWorkingSetList; SessionSpace = NULL; // // If a fork operation is in progress, block until the fork is // completed, then retry the whole operation as the state of // everything may have changed between when the mutexes were // released and reacquired. // if (CurrentProcess->ForkInProgress != NULL) { if (MiWaitForForkToComplete (CurrentProcess) == TRUE) { return FALSE; } } if (TempPte.u.Hard.CopyOnWrite == 0) { // // This is a fork page which is being made private in order // to change the protection of the page. // Do not make the page writable. // FakeCopyOnWrite = TRUE; } } WorkingSetIndex = MiLocateWsle (FaultingAddress, WorkingSetList, Pfn1->u1.WsIndex, FALSE); // // The page must be copied into a new page. // LOCK_PFN (OldIrql); if ((MmAvailablePages < MM_HIGH_LIMIT) && (MiEnsureAvailablePageOrWait (SessionSpace != NULL ? HYDRA_PROCESS : CurrentProcess, OldIrql))) { // // A wait operation was performed to obtain an available // page and the working set mutex and PFN lock have // been released and various things may have changed for // the worse. Rather than examine all the conditions again, // return and if things are still proper, the fault will // be taken again. // UNLOCK_PFN (OldIrql); return FALSE; } // // This must be a prototype PTE. Perform the copy on write. // ASSERT (Pfn1->u3.e1.PrototypePte == 1); // // A page is being copied and made private, the global state of // the shared page needs to be updated at this point on certain // hardware. This is done by ORing the dirty bit into the modify bit in // the PFN element. // // Note that a session page cannot be dirty (no POSIX-style forking is // supported for these drivers). // if (SessionSpace != NULL) { ASSERT ((TempPte.u.Hard.Valid == 1) && (TempPte.u.Hard.Write == 0)); ASSERT (!MI_IS_PTE_DIRTY (TempPte)); NewPageIndex = MiRemoveAnyPage (MI_GET_PAGE_COLOR_FROM_SESSION(MmSessionSpace)); } else { MI_CAPTURE_DIRTY_BIT_TO_PFN (PointerPte, Pfn1); CloneBlock = (PMMCLONE_BLOCK) Pfn1->PteAddress; // // Get a new page with the same color as this page. // NewPageIndex = MiRemoveAnyPage ( MI_PAGE_COLOR_PTE_PROCESS(PageFrameIndex, &CurrentProcess->NextPageColor)); } MiInitializeCopyOnWritePfn (NewPageIndex, PointerPte, WorkingSetIndex, WorkingSetList); UNLOCK_PFN (OldIrql); InterlockedIncrement (&KeGetCurrentPrcb ()->MmCopyOnWriteCount); CopyFrom = PAGE_ALIGN (FaultingAddress); MappingPte = MiReserveSystemPtes (1, SystemPteSpace); if (MappingPte != NULL) { MI_MAKE_VALID_KERNEL_PTE (TempPte2, NewPageIndex, MM_READWRITE, MappingPte); MI_SET_PTE_DIRTY (TempPte2); if (Pfn1->u3.e1.CacheAttribute == MiNonCached) { MI_DISABLE_CACHING (TempPte2); } else if (Pfn1->u3.e1.CacheAttribute == MiWriteCombined) { MI_SET_PTE_WRITE_COMBINE (TempPte2); } MI_WRITE_VALID_PTE (MappingPte, TempPte2); CopyTo = MiGetVirtualAddressMappedByPte (MappingPte); } else { CopyTo = MiMapPageInHyperSpace (CurrentProcess, NewPageIndex, &OldIrql); } KeCopyPage (CopyTo, CopyFrom); if (MappingPte != NULL) { MiReleaseSystemPtes (MappingPte, 1, SystemPteSpace); } else { MiUnmapPageInHyperSpace (CurrentProcess, CopyTo, OldIrql); } if (!FakeCopyOnWrite) { // // If the page was really a copy on write page, make it // accessed, dirty and writable. Also, clear the copy-on-write // bit in the PTE. // MI_SET_PTE_DIRTY (TempPte); TempPte.u.Hard.Write = 1; MI_SET_ACCESSED_IN_PTE (&TempPte, 1); TempPte.u.Hard.CopyOnWrite = 0; } // // Regardless of whether the page was really a copy on write, // the frame field of the PTE must be updated. // TempPte.u.Hard.PageFrameNumber = NewPageIndex; // // If the modify bit is set in the PFN database for the // page, the data cache must be flushed. This is due to the // fact that this process may have been cloned and the cache // still contains stale data destined for the page we are // going to remove. // ASSERT (TempPte.u.Hard.Valid == 1); MI_WRITE_VALID_PTE_NEW_PAGE (PointerPte, TempPte); // // Flush the TB entry for this page. // if (SessionSpace == NULL) { MI_FLUSH_SINGLE_TB (FaultingAddress, FALSE); // // Increment the number of private pages. // CurrentProcess->NumberOfPrivatePages += 1; } else { MI_FLUSH_SINGLE_TB (FaultingAddress, TRUE); ASSERT (Pfn1->u3.e1.PrototypePte == 1); } // // Decrement the share count for the page which was copied // as this PTE no longer refers to it. // LOCK_PFN (OldIrql); MiDecrementShareCount (Pfn1, PageFrameIndex); if (SessionSpace == NULL) { CloneDescriptor = MiLocateCloneAddress (CurrentProcess, (PVOID)CloneBlock); if (CloneDescriptor != NULL) { // // Decrement the reference count for the clone block, // note that this could release and reacquire the mutexes. // MiDecrementCloneBlockReference (CloneDescriptor, CloneBlock, CurrentProcess, NULL, OldIrql); } } UNLOCK_PFN (OldIrql); return TRUE; }