int
main(int argc, char *argv[])
{
  char          **av, *output_fname ;
  int           ac, nargs, msec, mode=-1 ;
  LABEL         *area = NULL ;
  MRI_SURFACE   *mris ;
  struct timeb  then ;
  MRI           *mri_dist ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option 
    (argc, argv, 
     "$Id: mris_distance_transform.c,v 1.5 2013/04/12 20:59:17 fischl Exp $", 
     "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Gdiag |= DIAG_SHOW ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;


  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 4)
    usage_exit() ;

  TimerStart(&then) ;
  mris = MRISread(argv[1]) ;
  if (mris == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface %s",
              Progname, argv[1]) ;

  if (vol)
  {
/*
    mri_template = MRIread(argv[2]) ;
    if (!mri_template)
      ErrorExit(ERROR_NOFILE, "%s: could not read MRI volume from %s\n", Progname, argv[2]) ;
*/
  }
  else
  {
    area = LabelRead(NULL, argv[2]) ;
    if (area == NULL)
      ErrorExit(ERROR_NOFILE, "%s: could not read label %s",
		Progname, argv[2]) ;
    
    if (anterior_dist > 0)
      LabelCropAnterior(area, anterior_dist) ;
    if (posterior_dist > 0)
      LabelCropPosterior(area, posterior_dist) ;
  }
  
  if (stricmp(argv[3], "signed") == 0)
    mode = DTRANS_MODE_SIGNED ;
  else if (stricmp(argv[3], "unsigned") == 0)
    mode = DTRANS_MODE_UNSIGNED ;
  else if (stricmp(argv[3], "outside") == 0)
    mode = DTRANS_MODE_OUTSIDE ;
  else
  {
    print_usage() ;
    ErrorExit(ERROR_BADPARM, "unrecognized mode choice %s\n", argv[3]) ;
  }
  output_fname = argv[4] ;

  MRIScomputeMetricProperties(mris) ;
  if (vol)
  {
    mri_dist = MRIScomputeDistanceToSurface(mris, NULL, 0.25) ;
    MRIwrite(mri_dist, argv[4]) ;
  }
  else
  {
    MRIScomputeSecondFundamentalForm(mris) ;
    if (normalize > 0)
    {
      normalize = sqrt(mris->total_area) ;
      printf("normalizing surface distances by sqrt(%2.1f) = %2.1f\n", mris->total_area,normalize) ;
    }
    if (divide > 1)
    {
      int  i ;
      char fname[STRLEN], ext[STRLEN], base_name[STRLEN] ;
      LABEL *area_division ;
      
      FileNameExtension(output_fname, ext) ;
      FileNameRemoveExtension(output_fname, base_name) ;
      LabelMark(area, mris) ;
      MRIScopyMarksToAnnotation(mris) ;
      MRISsaveVertexPositions(mris, TMP_VERTICES) ;
      if (MRISreadVertexPositions(mris, divide_surf_name) != NO_ERROR)
	ErrorExit(ERROR_BADPARM, "%s: could not read vertex coords from %s", Progname, divide_surf_name) ;
      MRIScomputeSecondFundamentalForm(mris) ;
      MRISdivideAnnotationUnit(mris, 1, divide) ;
      MRISrestoreVertexPositions(mris, TMP_VERTICES) ;
      MRIScomputeSecondFundamentalForm(mris) ;
      
      
      // MRISdivideAnnotationUnit sets the marked to be in [0,divide-1], make it [1,divide]
      // make sure they are oriented along original a/p direction
#define MAX_UNITS 100    
      {
	double cx[MAX_UNITS], cy[MAX_UNITS], cz[MAX_UNITS], min_a ;
	int    index, num[MAX_UNITS], new_index[MAX_UNITS], j, min_i ;
	VERTEX *v ;
	
	memset(num, 0, sizeof(num[0])*divide) ;
	memset(cx, 0, sizeof(cx[0])*divide) ;
	memset(cy, 0, sizeof(cy[0])*divide) ;
	memset(cz, 0, sizeof(cz[0])*divide) ;
	for (i = 0 ; i < area->n_points ; i++)
	{
	  if (area->lv[i].vno < 0 || area->lv[i].deleted > 0)
	    continue ;
	  v = &mris->vertices[area->lv[i].vno] ;
	  v->marked++ ;
	  index = v->marked ;
	  cx[index] += v->x ;
	  cy[index] += v->y ;
	  cz[index] += v->z ;
	  num[index]++ ;
	}
	memset(new_index, 0, sizeof(new_index[0])*divide) ;
	for (i = 1 ; i <= divide ; i++)
	  cy[i] /= num[i] ;
	
	// order them from posterior to anterior
	for (j = 1 ; j <= divide ; j++)
	{
	  min_a = 1e10 ; min_i = 0 ;
	  for (i = 1 ; i <= divide ; i++)
	  {
	    if (cy[i] < min_a)
	    {
	      min_a = cy[i] ;
	      min_i = i ;
	    }
	  }
	  cy[min_i] = 1e10 ;  // make it biggest so it won't be considered again
	  new_index[j] = min_i ;
	}
	for (i = 0 ; i < area->n_points ; i++)
	{
	  if (area->lv[i].vno < 0 || area->lv[i].deleted > 0)
	    continue ;
	  v = &mris->vertices[area->lv[i].vno] ;
	  v->marked = new_index[v->marked] ;
	}
      }
      for (i = 1 ; i <= divide ; i++)
      {
	area_division = LabelFromMarkValue(mris, i) ;
	
	printf("performing distance transform on division %d with %d vertices\n", 
	       i, area_division->n_points) ;
	if (output_label)
	{
	  sprintf(fname, "%s%d.label", base_name, i) ;
	  printf("writing %dth subdivision to %s\n", i, fname) ;
	  LabelWrite(area_division, fname);
	}
	MRISdistanceTransform(mris, area_division, mode) ;
	sprintf(fname, "%s%d.%s", base_name, i, ext) ;
	if (normalize > 0)
	  MRISmulVal(mris, 1.0/normalize) ;
	MRISwriteValues(mris, fname) ;
      }
    }
    else
    {
      MRISdistanceTransform(mris, area, mode) ;
      if (normalize > 0)
	MRISmulVal(mris, 1.0/normalize) ;
      MRISwriteValues(mris, output_fname) ;
    }
  }

  msec = TimerStop(&then) ;
  fprintf(stderr,"distance transform took %2.1f minutes\n", (float)msec/(60*1000.0f));

  exit(0) ;
  return(0) ;  /* for ansi */
}
Пример #2
0
int
main(int argc, char *argv[]) {
  char         **av, surf_fname[100], *template_fname, *out_fname, *surf_dir,
  *hemi, *sphere_name ;
  int          ac, nargs ;
  MRI_SURFACE  *mris ;
  MRI_SP       *mrisp, *mrisp_template ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_add_template.c,v 1.8 2011/03/02 00:04:26 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 5)
    usage_exit() ;

  surf_dir = argv[1] ;
  hemi = argv[2] ;
  sphere_name = argv[3] ;
  out_fname = template_fname = argv[4] ;
  if (argc > 5)
    out_fname = argv[5] ;

  sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, sphere_name) ;
  fprintf(stderr, "reading new surface %s...\n", surf_fname) ;
  mris = MRISread(surf_fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, surf_fname) ;
  MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;

  if (!FileExists(template_fname))  /* first time - create it */
  {
    fprintf(stderr, "creating new parameterization...\n") ;
    mrisp_template = MRISPalloc(scale, PARAM_IMAGES);
  } else {
    fprintf(stderr, "reading template parameterization from %s...\n",
            template_fname) ;
    mrisp_template = MRISPread(template_fname) ;
    if (!mrisp_template)
      ErrorExit(ERROR_NOFILE, "%s: could not open template file %s",
                Progname, template_fname) ;
  }
  /*
    first read in inflated surface and use it to build the first template
    set.
    */
  sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, INFLATED_NAME) ;
  if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, surf_fname) ;

  MRISsetNeighborhoodSize(mris, nbrs) ;
  MRIScomputeMetricProperties(mris) ;
  MRIScomputeSecondFundamentalForm(mris) ;
  MRISuseMeanCurvature(mris) ;
  MRISaverageCurvatures(mris, navgs) ;
  MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
  MRISnormalizeCurvature(mris, which_norm) ;
  fprintf(stderr, "computing parameterization for surface %s...\n",surf_fname);
  mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
  MRISPcombine(mrisp, mrisp_template, 0) ;
  MRISPfree(&mrisp) ;

  /*
    now do the same thing with the smoothwm curvatures.
    */
  sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, SMOOTH_NAME) ;
  if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, surf_fname) ;
  MRIScomputeMetricProperties(mris) ;
  if (curvature_fname[0])
    MRISreadCurvatureFile(mris, curvature_fname) ;
  else {
    MRIScomputeSecondFundamentalForm(mris) ;
    MRISuseMeanCurvature(mris) ;
  }
  MRISaverageCurvatures(mris, navgs) ;
  MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
  if (curvature_fname[0])
    fprintf(stderr, "computing parameterization for surface %s (%s)...\n",
            surf_fname, curvature_fname);
  else
    fprintf(stderr, "computing parameterization for surface %s...\n",
            surf_fname);
  MRISnormalizeCurvature(mris, which_norm) ;
  mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
  MRISPcombine(mrisp, mrisp_template, 3) ;

  fprintf(stderr, "writing updated template to %s...\n", out_fname) ;
  MRISPwrite(mrisp_template, out_fname) ;

  MRISPfree(&mrisp) ;
  MRISPfree(&mrisp_template) ;
  MRISfree(&mris) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Пример #3
0
int
main(int argc, char *argv[]) {
  char         **av, in_surf_fname[STRLEN], *in_patch_fname, *out_patch_fname, hemi[STRLEN] ;
  int          ac, nargs;
  char         path[STRLEN], out_surf_fname[STRLEN], *cp ;
  int          msec, minutes, seconds ;
  struct timeb start ;
  MRI_SURFACE  *mris_in, *mris_out ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_map_cuts.c,v 1.3 2011/03/02 00:04:33 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  TimerStart(&start) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    usage_exit(1) ;


  in_patch_fname = argv[1] ;
  out_patch_fname = argv[2] ;
  FileNamePath(in_patch_fname, path) ;
  cp = strrchr(in_patch_fname, '/') ;
  if (!cp)
    cp = in_patch_fname ;
  cp = strchr(cp, '.') ;
  if (cp)
  {
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
  }
  else
    strcpy(hemi, "lh") ;
  sprintf(in_surf_fname, "%s/%s.%s", path, hemi, orig_surf_name) ;

  FileNamePath(out_patch_fname, path) ;
  cp = strrchr(out_patch_fname, '/') ;
  if (!cp)
    cp = out_patch_fname ;
  cp = strchr(cp, '.') ;
  if (cp)
  {
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
  }
  else
    strcpy(hemi, "lh") ;
  sprintf(out_surf_fname, "%s/%s.%s", path, hemi, orig_surf_name) ;

  mris_in = MRISread(in_surf_fname) ;
  mris_out = MRISread(out_surf_fname) ;
  MRISsaveVertexPositions(mris_in, CANONICAL_VERTICES) ;
  MRISsaveVertexPositions(mris_out, CANONICAL_VERTICES) ;
  if (MRISreadVertexPositions(mris_out, inf_surf_name)  != NO_ERROR)
    ErrorExit(ERROR_BADPARM, "%s: could not inflated surface %s",
              Progname, inf_surf_name) ;

  if (MRISreadPatch(mris_in, in_patch_fname) != NO_ERROR)
    ErrorExit(ERROR_BADPARM, "%s: could not read patch file %s",
              Progname, in_patch_fname) ;
  MRISmapCuts(mris_in, mris_out) ;
  if (dilate)
  {
    printf("dilating patch %d times\n", dilate) ;
    MRISdilateRipped(mris_out, dilate) ;
    printf("%d valid vertices (%2.1f %% of total)\n",
           MRISvalidVertices(mris_out), 100.0*MRISvalidVertices(mris_out)/mris_out->nvertices) ;
  }

  printf("writing output to %s\n", out_patch_fname) ;
  MRISwritePatch(mris_out, out_patch_fname) ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "cut mapping took %d minutes"
          " and %d seconds.\n", minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
Пример #4
0
int
main(int argc, char *argv[])
{
  char         **av, surf_fname[STRLEN], *template_fname, *hemi, *sphere_name,
  *cp, *subject, fname[STRLEN] ;
  int          ac, nargs, ino, sno, nbad = 0, failed, n,nfields;
  VERTEX *v;
  VALS_VP *vp;
  MRI_SURFACE  *mris ;
  MRI_SP       *mrisp, /* *mrisp_aligned,*/ *mrisp_template ;
  INTEGRATION_PARMS parms ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mris_make_template.c,v 1.27 2011/03/02 00:04:33 nicks Exp $",
           "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  memset(&parms, 0, sizeof(parms)) ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;
  /* setting default values for vectorial registration */
  setParms(&parms);

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv,&parms) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 5) usage_exit() ;

  /* multiframe registration */
  if (multiframes) parms.flags |= IP_USE_MULTIFRAMES;

  if (!strlen(subjects_dir))  /* not specified on command line*/
  {
    cp = getenv("SUBJECTS_DIR") ;
    if (!cp)
      ErrorExit(ERROR_BADPARM,
                "%s: SUBJECTS_DIR not defined in environment.\n",
                Progname) ;
    strcpy(subjects_dir, cp) ;
  }
  hemi = argv[1] ;
  sphere_name = argv[2] ;
  template_fname = argv[argc-1] ;
  if (1 || !FileExists(template_fname))  /* first time - create it */
  {
    fprintf(stderr, "creating new parameterization...\n") ;
    if (multiframes)
    {
      mrisp_template = MRISPalloc(scale, atlas_size * IMAGES_PER_SURFACE );
      /*    if (no_rot)  /\* don't do rigid alignment *\/ */
      /*     mrisp_aligned = NULL ; */
      /*    else */
      /*     mrisp_aligned = MRISPalloc(scale, PARAM_FRAMES);  */
    }
    else
    {
      mrisp_template = MRISPalloc(scale, PARAM_IMAGES);
      /*    if (no_rot)  /\* don't do rigid alignment *\/ */
      /*     mrisp_aligned = NULL ; */
      /*    else */
      /*     mrisp_aligned = MRISPalloc(scale, PARAM_IMAGES);  */
    }

  }
  else
  {
    fprintf(stderr, "reading template parameterization from %s...\n",
            template_fname) ;
    /* mrisp_aligned = NULL ; */
    mrisp_template = MRISPread(template_fname) ;
    if (!mrisp_template)
      ErrorExit(ERROR_NOFILE, "%s: could not open template file %s",
                Progname, template_fname) ;
  }

  argv += 3 ;
  argc -= 3 ;
  for (ino = 0 ; ino < argc-1 ; ino++)
  {
    failed = 0 ;
    subject = argv[ino] ;
    fprintf(stderr, "\nprocessing subject %s (%d of %d)\n", subject,
            ino+1, argc-1) ;
    sprintf(surf_fname, "%s/%s/surf/%s.%s",
            subjects_dir, subject, hemi, sphere_name) ;
    fprintf(stderr, "reading spherical surface %s...\n", surf_fname) ;
    mris = MRISread(surf_fname) ;
    if (!mris)
    {
      nbad++ ;
      ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s",
                  Progname, surf_fname) ;
      exit(1) ;
    }
    if (annot_name)
    {
      if (MRISreadAnnotation(mris, annot_name) != NO_ERROR)
        ErrorExit(ERROR_BADPARM,
                  "%s: could not read annot file %s",
                  Progname, annot_name) ;
      MRISripMedialWall(mris) ;
    }

    MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
    MRISstoreMetricProperties(mris) ;

    if (Gdiag & DIAG_WRITE)
    {
      char *cp1 ;

      FileNameOnly(template_fname, fname) ;
      cp = strchr(fname, '.') ;
      if (cp)
      {
        cp1 = strrchr(fname, '.') ;
        if (cp1 && cp1 != cp)
          strncpy(parms.base_name, cp+1, cp1-cp-1) ;
        else
          strcpy(parms.base_name, cp+1) ;
      }
      else
        strcpy(parms.base_name, "template") ;
      sprintf(fname, "%s.%s.out", hemi, parms.base_name);
      parms.fp = fopen(fname, "w") ;
      printf("writing output to '%s'\n", fname) ;
    }

    /* multiframe registration */
    if (multiframes)
    {
      nfields=parms.nfields;

      for ( n = 0; n < mris->nvertices ; n++) /* allocate the VALS_VP
                                                                 structure */
      {
        v=&mris->vertices[n];
        vp=calloc(1,sizeof(VALS_VP));
        vp->nvals=nfields;
        vp->orig_vals=(float*)malloc(nfields*sizeof(float)); /* before
                                                                blurring */
        vp->vals=(float*)malloc(nfields*sizeof(float));     /* values used by
                                                               MRISintegrate */
        v->vp=(void*)vp;
      }

      /* load the different fields */
      for (n = 0 ; n < parms.nfields ; n++)
      {
        if (parms.fields[n].name != NULL)
        {
          sprintf(surf_fname, "%s/%s/%s/%s.%s", subjects_dir,
                  subject, overlay_dir, hemi, parms.fields[n].name) ;
          printf("reading overlay file %s...\n", surf_fname) ;
          if (MRISreadValues(mris, surf_fname) != NO_ERROR)
            ErrorExit(ERROR_BADPARM, "%s: could not read overlay file %s",
                      Progname, surf_fname) ;
          MRIScopyValuesToCurvature(mris) ;
        }
        else if (ReturnFieldName(parms.fields[n].field))
        {
          /* read in precomputed curvature file */
          sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir,
                  subject, hemi, ReturnFieldName(parms.fields[n].field)) ;
          // fprintf(stderr,"\nreading field %d from %s(type=%d,frame=%d)\n",parms.fields[n].field,surf_fname,parms.fields[n].type,parms.fields[n].frame);
          if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR)
          {
            fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n");
            fprintf(stderr, "%s: could not read curvature file '%s'\n",
                    Progname, surf_fname) ;
            failed = 1;
            break;
          }
        }
        else
        {                       /* compute curvature of surface */
          sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir,
                  subject, hemi, surface_names[parms.fields[n].field]) ;
          /*if(parms.fields[n].field==0)
           sprintf(fname, "inflated") ;
           else
           sprintf(fname, "smoothwm") ;*/
          //fprintf(stderr,"\ngenerating field %d(type=%d,frame=%d) (from %s)\n",parms.fields[n].field,parms.fields[n].type,parms.fields[n].frame,surf_fname);
          //     MRISsaveVertexPositions(mris, TMP_VERTICES) ;
          if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR)
          {
            fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n");
            ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s",
                        Progname, surf_fname) ;
            fprintf(stderr,"setting up correlation coefficient to zero\n");
            parms.fields[n].l_corr=parms.fields[n].l_pcorr=0.0;
            failed=1;
            break;
          }

          if (nbrs > 1) MRISsetNeighborhoodSize(mris, nbrs) ;
          MRIScomputeMetricProperties(mris) ;
          MRIScomputeSecondFundamentalForm(mris) ;
          MRISuseMeanCurvature(mris) ;
          MRISaverageCurvatures(mris, navgs) ;
          MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
        }
        /*    if(parms.fields[n].field!=SULC_CORR_FRAME)*/
        MRISnormalizeField(mris,parms.fields[n].type,
                           parms.fields[n].which_norm); /* normalize values */
        MRISsetCurvaturesToOrigValues(mris,n);
        MRISsetCurvaturesToValues(mris,n);
      }

      if (failed)
      {
        fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n");
        fprintf(stderr,"Subject %s Failed",subject);
        fprintf(stderr,"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n\n");
        /* free cal structure*/
        for ( n = 0; n < mris->nvertices ; n++)
        {
          v=&mris->vertices[n];
          vp=(VALS_VP*)v->vp;
          free(vp->orig_vals);
          free(vp->vals);
          free(vp);
          v->vp=NULL;
        }
        /* free surface */
        MRISfree(&mris);
        /* go onto the next subject */
        continue;
      }
    }

    if (multiframes && (!no_rot))
    { /* rigid body alignment */
      parms.frame_no = 3 ;  /* don't use single field correlation functions */
      parms.l_corr = parms.l_pcorr = 0.0f ;

      parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
      parms.mrisp_template = mrisp_template ;

      MRISrigidBodyAlignVectorGlobal(mris, &parms, 1.0, 64.0, 8) ;
      if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.global") ;
      MRISrigidBodyAlignVectorLocal(mris, &parms) ;
      if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.local") ;
      MRISPfree(&parms.mrisp) ;
      MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    };
    if ((!multiframes) && (!no_rot) && ino > 0)
    { /* rigid body alignment */
      sprintf(surf_fname, "%s/%s/surf/%s.%s",
              subjects_dir, subject, hemi, "sulc") ;
      if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR)
      {
        ErrorPrintf(Gerror, "%s: could not read curvature file '%s'\n",
                    Progname, surf_fname) ;
        nbad++ ;
        MRISfree(&mris) ;
        continue ;
      }
      parms.frame_no = 3 ; /* use sulc for rigid registration */
      parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
      parms.mrisp_template = mrisp_template ;
      parms.l_corr = 1.0f ;

      MRISrigidBodyAlignGlobal(mris, &parms, 1.0, 64.0, 8) ;
      if (Gdiag & DIAG_WRITE)
        MRISwrite(mris, "sphere.rot.global") ;
      MRISrigidBodyAlignLocal(mris, &parms) ;
      if (Gdiag & DIAG_WRITE)
        MRISwrite(mris, "sphere.rot.local") ;
      MRISPfree(&parms.mrisp) ;
      MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    }

    if (multiframes)
    {
      for (n = 0; n < parms.nfields ; n++)
      {
        MRISsetOrigValuesToCurvatures(mris,n);
        MRISaverageCurvatures(mris, parms.fields[n].navgs) ;
        mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
        MRISPcombine(mrisp,
                     mrisp_template,
                     parms.fields[n].frame * IMAGES_PER_SURFACE) ;
        MRISPfree(&mrisp) ;
      }
      /* free the VALS_VP structure */
      for ( n = 0; n < mris->nvertices ; n++)
      {
        v=&mris->vertices[n];
        vp=(VALS_VP*)v->vp;
        free(vp->orig_vals);
        free(vp->vals);
        free(vp);
        v->vp=NULL;
      }
      MRISfree(&mris) ;
    }
    else
    {
      for (sno = 0; sno < SURFACES ; sno++)
      {
        if (curvature_names[sno])  /* read in precomputed curvature file */
        {
          sprintf(surf_fname, "%s/%s/surf/%s.%s",
                  subjects_dir, subject, hemi, curvature_names[sno]) ;
          if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR)
          {
            nbad++ ;
            ErrorPrintf(Gerror, "%s: could not read curvature file '%s'\n",
                        Progname, surf_fname) ;
            failed = 1 ;
            break ;
          }
          /* the two next lines were not in the original code */
          MRISaverageCurvatures(mris, navgs) ;
          MRISnormalizeCurvature(mris, which_norm) ;
        } else                       /* compute curvature of surface */
        {
          sprintf(surf_fname, "%s/%s/surf/%s.%s",
                  subjects_dir, subject, hemi, surface_names[sno]) ;
          if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR)
          {
            ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s",
                        Progname, surf_fname) ;
            nbad++ ;
            failed = 1 ;
            break ;
          }

          if (nbrs > 1)
            MRISsetNeighborhoodSize(mris, nbrs) ;
          MRIScomputeMetricProperties(mris) ;
          MRIScomputeSecondFundamentalForm(mris) ;
          MRISuseMeanCurvature(mris) ;
          MRISaverageCurvatures(mris, navgs) ;
          MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
          MRISnormalizeCurvature(mris, which_norm) ;
        }
        fprintf(stderr, "computing parameterization for surface %s...\n",
                surf_fname);
        if (failed)
        {
          continue ;
          MRISfree(&mris) ;
        }
        mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
        MRISPcombine(mrisp, mrisp_template, sno*3) ;
        MRISPfree(&mrisp) ;
      }
      MRISfree(&mris) ;
    }
  }

#if 0
  if (mrisp_aligned)  /* new parameterization - use rigid alignment */
  {
    MRI_SP *mrisp_tmp ;

    if (Gdiag & DIAG_WRITE)
    {
      char *cp1 ;

      FileNameOnly(template_fname, fname) ;
      cp = strchr(fname, '.') ;
      if (cp)
      {
        cp1 = strrchr(fname, '.') ;
        if (cp1 && cp1 != cp)
          strncpy(parms.base_name, cp+1, cp1-cp-1) ;
        else
          strcpy(parms.base_name, cp+1) ;
      }
      else
        strcpy(parms.base_name, "template") ;
      sprintf(fname, "%s.%s.out", hemi, parms.base_name);
      parms.fp = fopen(fname, "w") ;
      printf("writing output to '%s'\n", fname) ;
    }
    for (ino = 0 ; ino < argc-1 ; ino++)
    {
      subject = argv[ino] ;
      if (Gdiag & DIAG_WRITE)
        fprintf(parms.fp, "processing subject %s\n", subject) ;
      fprintf(stderr, "processing subject %s\n", subject) ;
      sprintf(surf_fname, "%s/%s/surf/%s.%s",
              subjects_dir, subject, hemi, sphere_name) ;
      fprintf(stderr, "reading spherical surface %s...\n", surf_fname) ;
      mris = MRISread(surf_fname) ;
      if (!mris)
        ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                  Progname, surf_fname) ;
      MRIScomputeMetricProperties(mris) ;
      MRISstoreMetricProperties(mris) ;
      MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
      sprintf(surf_fname, "%s/%s/surf/%s.%s",
              subjects_dir, subject, hemi, "sulc") ;
      if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR)
        ErrorExit(Gerror, "%s: could not read curvature file '%s'\n",
                  Progname, surf_fname) ;
      parms.frame_no = 3 ;
      parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
      parms.mrisp_template = mrisp_template ;
      parms.l_corr = 1.0f ;

      MRISrigidBodyAlignGlobal(mris, &parms, 1.0, 32.0, 8) ;
      if (Gdiag & DIAG_WRITE)
        MRISwrite(mris, "sphere.rot.global") ;
      MRISrigidBodyAlignLocal(mris, &parms) ;
      if (Gdiag & DIAG_WRITE)
        MRISwrite(mris, "sphere.rot.local") ;
      MRISPfree(&parms.mrisp) ;

#if 0
      /* write out rotated surface */
      sprintf(surf_fname, "%s.rot", mris->fname) ;
      fprintf(stderr, "writing out rigidly aligned surface to '%s'\n",
              surf_fname) ;
      MRISwrite(mris, surf_fname) ;
#endif

      /* now generate new parameterization using the optimal alignment */
      for (sno = 0; sno < SURFACES ; sno++)
      {
        if (curvature_names[sno])  /* read in precomputed curvature file */
        {
          sprintf(surf_fname, "%s/%s/surf/%s.%s",
                  subjects_dir, subject, hemi, curvature_names[sno]) ;
          if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR)
            ErrorExit(Gerror, "%s: could not read curvature file '%s'\n",
                      Progname, surf_fname) ;
        } else                       /* compute curvature of surface */
        {
          sprintf(surf_fname, "%s/%s/surf/%s.%s",
                  subjects_dir, subject, hemi, surface_names[sno]) ;
          if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR)
            ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                      Progname, surf_fname) ;

          if (nbrs > 1)
            MRISsetNeighborhoodSize(mris, nbrs) ;
          MRIScomputeMetricProperties(mris) ;
          MRIScomputeSecondFundamentalForm(mris) ;
          MRISuseMeanCurvature(mris) ;
          MRISaverageCurvatures(mris, navgs) ;
          MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
          MRISnormalizeCurvature(mris) ;
        }
        fprintf(stderr, "computing parameterization for surface %s...\n",
                surf_fname);
        mrisp = MRIStoParameterization(mris, NULL, scale, 0) ;
        MRISPcombine(mrisp, mrisp_aligned, sno*3) ;
        MRISPfree(&mrisp) ;
      }
      MRISfree(&mris) ;
    }

    if (Gdiag & DIAG_WRITE)
      fclose(parms.fp) ;

    mrisp_tmp = mrisp_aligned ;
    mrisp_aligned = mrisp_template ;
    mrisp_template = mrisp_tmp ;
    MRISPfree(&mrisp_aligned) ;
  }
#endif
  fprintf(stderr,
          "writing updated template with %d subjects to %s...\n",
          argc-1-nbad, template_fname) ;
  MRISPwrite(mrisp_template, template_fname) ;
  MRISPfree(&mrisp_template) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Пример #5
0
int
main(int argc, char *argv[])
{
  char **av, *surf_fname, *template_fname, *out_fname, fname[STRLEN],*cp;
  int ac, nargs,err, msec ;
  MRI_SURFACE  *mris ;
  MRI_SP       *mrisp_template ;

  char cmdline[CMD_LINE_LEN] ;
  struct  timeb start ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $",
   "$Name: stable5 $",
   cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $",
           "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  TimerStart(&start) ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  memset(&parms, 0, sizeof(parms)) ;
  parms.projection = PROJECT_SPHERE ;
  parms.flags |= IP_USE_CURVATURE ;
  parms.tol = 0.5 ;    // was 1e-0*2.5
  parms.min_averages = 0 ;
  parms.l_area = 0.0 ;
  parms.l_parea = 0.1f ;  // used to be 0.2
  parms.l_dist = 5.0 ; // used to be 0.5, and before that 0.1
  parms.l_corr = 1.0f ;
  parms.l_nlarea = 1 ;
  parms.l_pcorr = 0.0f ;
  parms.niterations = 25 ;
  parms.n_averages = 1024 ;   // used to be 256
  parms.write_iterations = 100 ;
  parms.dt_increase = 1.01 /* DT_INCREASE */;
  parms.dt_decrease = 0.99 /* DT_DECREASE*/ ;
  parms.error_ratio = 1.03 /*ERROR_RATIO */;
  parms.dt_increase = 1.0 ;
  parms.dt_decrease = 1.0 ;
  parms.l_external = 10000 ;   /* in case manual label is specified */
  parms.error_ratio = 1.1 /*ERROR_RATIO */;
  parms.integration_type = INTEGRATE_ADAPTIVE ;
  parms.integration_type = INTEGRATE_MOMENTUM /*INTEGRATE_LINE_MINIMIZE*/ ;
  parms.integration_type = INTEGRATE_LINE_MINIMIZE ;
  parms.dt = 0.9 ;
  parms.momentum = 0.95 ;
  parms.desired_rms_height = -1.0 ;
  parms.nbhd_size = -10 ;
  parms.max_nbrs = 10 ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (nsigmas > 0)
  {
    MRISsetRegistrationSigmas(sigmas, nsigmas) ;
  }
  parms.which_norm = which_norm ;
  if (argc < 4)
  {
    usage_exit() ;
  }

  printf("%s\n", vcid) ;
  printf("  %s\n",MRISurfSrcVersion());
  fflush(stdout);

  surf_fname = argv[1] ;
  template_fname = argv[2] ;
  out_fname = argv[3] ;

  if (parms.base_name[0] == 0)
  {
    FileNameOnly(out_fname, fname) ;
    cp = strchr(fname, '.') ;
    if (cp)
    {
      strcpy(parms.base_name, cp+1) ;
    }
    else
    {
      strcpy(parms.base_name, "sphere") ;
    }
  }

  fprintf(stderr, "reading surface from %s...\n", surf_fname) ;
  mris = MRISread(surf_fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, surf_fname) ;

  if (parms.var_smoothness)
  {
    parms.vsmoothness = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.vsmoothness == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate vsmoothness array",
                Progname) ;
    }
    parms.dist_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.dist_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate dist_error array",
                Progname) ;
    }
    parms.area_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.area_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate area_error array",
                Progname) ;
    }
    parms.geometry_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.geometry_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate geometry_error array",
                Progname) ;
    }
  }

  MRISresetNeighborhoodSize(mris, 1) ;
  if (annot_name)
  {
    if (MRISreadAnnotation(mris, annot_name) != NO_ERROR)
      ErrorExit(ERROR_BADPARM,
                "%s: could not read annot file %s",
                Progname, annot_name) ;
    MRISripMedialWall(mris) ;
  }

  MRISsaveVertexPositions(mris, TMP2_VERTICES) ;
  MRISaddCommandLine(mris, cmdline) ;
  if (!FZERO(dalpha) || !FZERO(dbeta) || !FZERO(dgamma))
    MRISrotate(mris, mris, RADIANS(dalpha), RADIANS(dbeta),
               RADIANS(dgamma)) ;

  if (curvature_fname[0])
  {
    fprintf(stderr, "reading source curvature from %s\n",curvature_fname) ;
    MRISreadCurvatureFile(mris, curvature_fname) ;
  }
  if (single_surf)
  {
    char        fname[STRLEN], *cp, surf_dir[STRLEN], hemi[10]  ;
    MRI_SURFACE *mris_template ;
    int         sno, tnbrs=3 ;

    FileNamePath(template_fname, surf_dir) ;
    cp = strrchr(template_fname, '/') ;
    if (cp == NULL) // no path - start from beginning of file name
    {
      cp = template_fname ;
    }
    cp = strchr(cp, '.') ;
    if (cp == NULL)
      ErrorExit(ERROR_NOFILE,
                "%s: could no scan hemi from %s",
                Progname, template_fname) ;
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
    fprintf(stderr, "reading spherical surface %s...\n", template_fname) ;
    mris_template = MRISread(template_fname) ;
    if (mris_template == NULL)
    {
      ErrorExit(ERROR_NOFILE, "") ;
    }
#if 0
    if (reverse_flag)
    {
      MRISreverse(mris_template, REVERSE_X, 1) ;
    }
#endif
    MRISsaveVertexPositions(mris_template, CANONICAL_VERTICES) ;
    MRIScomputeMetricProperties(mris_template) ;
    MRISstoreMetricProperties(mris_template) ;

    if (noverlays > 0)
    {
      mrisp_template = MRISPalloc(scale, IMAGES_PER_SURFACE*noverlays);
      for (sno = 0; sno < noverlays ; sno++)
      {
        sprintf(fname, "%s/../label/%s.%s", surf_dir, hemi, overlays[sno]) ;
        if (MRISreadValues(mris_template, fname)  != NO_ERROR)
          ErrorExit(ERROR_NOFILE,
                    "%s: could not read overlay from %s",
                    Progname, fname) ;
        MRIScopyValuesToCurvature(mris_template) ;
        MRISaverageCurvatures(mris_template, navgs) ;
        MRISnormalizeCurvature(mris_template, which_norm) ;
        fprintf(stderr,
                "computing parameterization for overlay %s...\n",
                fname);
        MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ;
        MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ;
      }
    }
    else
    {
      mrisp_template = MRISPalloc(scale, PARAM_IMAGES);
      for (sno = 0; sno < SURFACES ; sno++)
      {
        if (curvature_names[sno])  /* read in precomputed curvature file */
        {
          sprintf(fname, "%s/%s.%s", surf_dir, hemi, curvature_names[sno]) ;
          if (MRISreadCurvatureFile(mris_template, fname) != NO_ERROR)
            ErrorExit(Gerror,
                      "%s: could not read curvature file '%s'\n",
                      Progname, fname) ;

          /* the two next lines were not in the original code */
          MRISaverageCurvatures(mris_template, navgs) ;
          MRISnormalizeCurvature(mris_template, which_norm) ;
        }
        else                         /* compute curvature of surface */
        {
          sprintf(fname, "%s/%s.%s", surf_dir, hemi, surface_names[sno]) ;
          if (MRISreadVertexPositions(mris_template, fname) != NO_ERROR)
            ErrorExit(ERROR_NOFILE,
                      "%s: could not read surface file %s",
                      Progname, fname) ;

          if (tnbrs > 1)
          {
            MRISresetNeighborhoodSize(mris_template, tnbrs) ;
          }
          MRIScomputeMetricProperties(mris_template) ;
          MRIScomputeSecondFundamentalForm(mris_template) ;
          MRISuseMeanCurvature(mris_template) ;
          MRISaverageCurvatures(mris_template, navgs) ;
          MRISrestoreVertexPositions(mris_template, CANONICAL_VERTICES) ;
          MRISnormalizeCurvature(mris_template, which_norm) ;
        }
        fprintf(stderr,
                "computing parameterization for surface %s...\n",
                fname);
        MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ;
        MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ;
      }
    }
  }
  else
  {
    fprintf(stderr, "reading template parameterization from %s...\n",
            template_fname) ;
    mrisp_template = MRISPread(template_fname) ;
    if (!mrisp_template)
      ErrorExit(ERROR_NOFILE, "%s: could not open template file %s",
                Progname, template_fname) ;
    if (noverlays > 0)
    {
      if (mrisp_template->Ip->num_frame != IMAGES_PER_SURFACE*noverlays)
        ErrorExit(ERROR_BADPARM,
                  "template frames (%d) doesn't match input (%d x %d) = %d\n",
                  mrisp_template->Ip->num_frame, IMAGES_PER_SURFACE,noverlays,
                  IMAGES_PER_SURFACE*noverlays) ;
    }
  }
  if (use_defaults)
  {
    if (*IMAGEFseq_pix(mrisp_template->Ip, 0, 0, 2) <= 1.0)  /* 1st time */
    {
      parms.l_dist = 5.0 ;
      parms.l_corr = 1.0 ;
      parms.l_parea = 0.2 ;
    }
    else   /* subsequent alignments */
    {
      parms.l_dist = 5.0 ;
      parms.l_corr = 1.0 ;
      parms.l_parea = 0.2 ;
    }
  }

  if (nbrs > 1)
  {
    MRISresetNeighborhoodSize(mris, nbrs) ;
  }
  MRISprojectOntoSphere(mris, mris, DEFAULT_RADIUS) ;
  mris->status = MRIS_PARAMETERIZED_SPHERE ;
  MRIScomputeMetricProperties(mris) ;
  if (!FZERO(parms.l_dist))
  {
    MRISscaleDistances(mris, scale) ;
  }
#if 0
  MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
  MRISzeroNegativeAreas(mris) ;
  MRISstoreMetricProperties(mris) ;
#endif
  MRISstoreMeanCurvature(mris) ;  /* use curvature from file */
  MRISsetOriginalFileName(orig_name) ;
  if (inflated_name)
  {
    MRISsetInflatedFileName(inflated_name) ;
  }
  err = MRISreadOriginalProperties(mris, orig_name) ;
  if (err != 0)
  {
    printf("ERROR %d from MRISreadOriginalProperties().\n",err);
    exit(1);
  }

  if (MRISreadCanonicalCoordinates(mris, canon_name) != NO_ERROR)
    ErrorExit(ERROR_BADFILE, "%s: could not read canon surface %s",
              Progname, canon_name) ;

  if (reverse_flag)
  {
    MRISreverse(mris, REVERSE_X, 1) ;
    MRISsaveVertexPositions(mris, TMP_VERTICES) ;
    MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
    MRISreverse(mris, REVERSE_X, 0) ;
    MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    MRISrestoreVertexPositions(mris, TMP_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
  }
#if 0
  MRISsaveVertexPositions
  (mris, CANONICAL_VERTICES) ;  // uniform spherical positions
#endif
  if (starting_reg_fname)
    if (MRISreadVertexPositions(mris, starting_reg_fname) != NO_ERROR)
    {
      exit(Gerror) ;
    }

  if (multiframes)
  {
    if (use_initial_registration)
      MRISvectorRegister(mris, mrisp_template, &parms, max_passes,
                         min_degrees, max_degrees, nangles) ;
    parms.l_corr=parms.l_pcorr=0.0f;
#if 0
    parms.l_dist = 0.0 ;
    parms.l_corr = 0.0 ;
    parms.l_parea = 0.0 ;
    parms.l_area = 0.0 ;
    parms.l_parea = 0.0f ;
    parms.l_dist = 0.0 ;
    parms.l_corr = 0.0f ;
    parms.l_nlarea = 0.0f ;
    parms.l_pcorr = 0.0f ;
#endif
    MRISvectorRegister(mris,
                       mrisp_template,
                       &parms,
                       max_passes,
                       min_degrees,
                       max_degrees,
                       nangles) ;
  }
  else
  {
    double l_dist = parms.l_dist ;
    if (multi_scale > 0)
    {
      int i ;

      parms.l_dist = l_dist * pow(5.0, (multi_scale-1.0)) ;
      parms.flags |= IPFLAG_NOSCALE_TOL ;
      parms.flags &= ~IP_USE_CURVATURE ;
      for (i = 0 ; i < multi_scale ; i++)
      {
        printf("*************** round %d, l_dist = %2.3f **************\n", i,
               parms.l_dist) ;
        MRISregister(mris, mrisp_template,
                     &parms, max_passes,
                     min_degrees, max_degrees, nangles) ;
        parms.flags |= IP_NO_RIGID_ALIGN ;
        parms.flags &= ~IP_USE_INFLATED ;
        parms.l_dist /= 5 ;
      }

      if (parms.nbhd_size < 0)
      {
        parms.nbhd_size *= -1 ;
        printf("**** starting 2nd epoch, with long-range distances *****\n");
        parms.l_dist = l_dist * pow(5.0, (multi_scale-2.0)) ;
        for (i = 1 ; i < multi_scale ; i++)
        {
          printf("*********** round %d, l_dist = %2.3f *************\n", i,
                 parms.l_dist) ;
          MRISregister(mris, mrisp_template,
                       &parms, max_passes,
                       min_degrees, max_degrees, nangles) ;
          parms.l_dist /= 5 ;
        }
      }
      printf("****** final curvature registration ***************\n") ;
      if (parms.nbhd_size > 0)
      {
        parms.nbhd_size *= -1 ;  // disable long-range stuff
      }
      parms.l_dist *= 5 ;
      parms.flags |= (IP_USE_CURVATURE | IP_NO_SULC);
      MRISregister(mris, mrisp_template,
                   &parms, max_passes,
                   min_degrees, max_degrees, nangles) ;
    }
    else
      MRISregister(mris, mrisp_template,
                   &parms, max_passes,
                   min_degrees, max_degrees, nangles) ;

  }
  if (remove_negative)
  {
    parms.niterations = 1000 ;
    MRISremoveOverlapWithSmoothing(mris,&parms) ;
  }
  fprintf(stderr, "writing registered surface to %s...\n", out_fname) ;
  MRISwrite(mris, out_fname) ;
  if (jacobian_fname)
  {
    MRIScomputeMetricProperties(mris) ;
    compute_area_ratios(mris) ;  /* will put results in v->curv */
#if 0
    MRISwriteArea(mris, jacobian_fname) ;
#else
    MRISwriteCurvature(mris, jacobian_fname) ;
#endif
  }

  msec = TimerStop(&start) ;
  if (Gdiag & DIAG_SHOW)
    printf("registration took %2.2f hours\n",
           (float)msec/(1000.0f*60.0f*60.0f));
  MRISPfree(&mrisp_template) ;
  MRISfree(&mris) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Пример #6
0
int
main(int argc, char *argv[])
{
  char        **av, *out_name ;
  int          ac, nargs ;
  int          msec, minutes, seconds ;
  struct timeb start ;
  MRI_SURFACE  *mris ;
  GCA_MORPH    *gcam ;
  MRI          *mri = NULL ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_interpolate_warp.c,v 1.5 2011/10/07 12:07:26 fischl Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  TimerStart(&start) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
  {
    usage_exit(1) ;
  }


  /*
    note that a "forward" morph means a retraction, so we reverse the order of the argvs here.
    This means that for every voxel in the inflated image we have a vector that points to where in
    the original image it came from, and *NOT* the reverse.
  */
  mris = MRISread(argv[2]) ;
  if (mris == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read source surface %s\n", Progname,argv[2]) ;

  MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
  if (MRISreadVertexPositions(mris, argv[1]) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read target surface %s\n", Progname,argv[1]) ;

  if (like_vol_name == NULL)
  {
    mri = MRIallocSequence(mris->vg.width, mris->vg.height, mris->vg.depth, MRI_FLOAT, 3) ;
    MRIcopyVolGeomToMRI(mri, &mris->vg) ;
  }
  else
  {
    MRI *mri_tmp ;
    mri_tmp = MRIread(like_vol_name) ;
    if (mri_tmp == NULL)
    {
      ErrorExit(ERROR_NOFILE, "%s: could not like volume %s\n", like_vol_name) ;
    }
    mri = MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth, MRI_FLOAT, 3) ;
    MRIcopyHeader(mri_tmp, mri) ;
    MRIfree(&mri_tmp) ;
  }
  if (Gdiag & DIAG_SHOW && DIAG_VERBOSE_ON)
  {
    double xv, yv, zv ;
    VERTEX *v = &mris->vertices[0] ;
    MRISsurfaceRASToVoxel(mris, mri, v->x, v->y, v->z, &xv, &yv, &zv) ;
    printf("v 0: sras (%f, %f, %f) --> vox (%f, %f, %f)\n", v->x,v->y,v->z,xv,yv,zv);
    MRISsurfaceRASToVoxelCached(mris, mri, v->x, v->y, v->z, &xv, &yv, &zv) ;
    printf("v 0: sras (%f, %f, %f) --> vox (%f, %f, %f)\n", v->x,v->y,v->z,xv,yv,zv);
    DiagBreak() ;
  }
  {
    MRI *mri_tmp ;
    mri_tmp = expand_mri_to_fit_surface(mris, mri) ;
    MRIfree(&mri) ; mri = mri_tmp ;
  }
  write_surface_warp_into_volume(mris, mri, niter) ;

  if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    MRIwrite(mri, "warp.mgz") ;
  gcam = GCAMalloc(mri->width, mri->height, mri->depth) ;
  GCAMinitVolGeom(gcam, mri, mri) ;
  GCAMremoveSingularitiesAndReadWarpFromMRI(gcam, mri) ;
//  GCAMreadWarpFromMRI(gcam, mri) ;
  //  GCAsetVolGeom(gca, &gcam->atlas);
#if 0
  gcam->gca = gcaAllocMax(1, 1, 1,
			  mri->width, mri->height,
			  mri->depth,
			  0, 0) ;
 GCAMinit(gcam, mri, NULL, NULL, 0) ;
#endif
#if 0
  GCAMinvert(gcam, mri) ;
  GCAMwriteInverseWarpToMRI(gcam, mri) ;
  GCAMremoveSingularitiesAndReadWarpFromMRI(gcam, mri) ;  // should be inverse now
#endif
  if (mri_in)
  {
    MRI *mri_warped, *mri_tmp ;
    printf("applying warp to %s and writing to %s\n", mri_in->fname, out_fname) ;
    mri_tmp = MRIextractRegionAndPad(mri_in, NULL, NULL, pad) ; MRIfree(&mri_in) ; mri_in = mri_tmp ;
    mri_warped = GCAMmorphToAtlas(mri_in, gcam, NULL, -1, SAMPLE_TRILINEAR) ;
    MRIwrite(mri_warped, out_fname) ;
    if (Gdiag_no >= 0)
    {
      double  xi, yi, zi, xo, yo, zo, val;
      int     xp, yp, zp ;
      GCA_MORPH_NODE *gcamn ;

      VERTEX *v = &mris->vertices[Gdiag_no] ;
      MRISsurfaceRASToVoxelCached(mris, mri, v->origx, v->origy, v->origz, &xi, &yi, &zi) ;
      MRISsurfaceRASToVoxelCached(mris, mri, v->x, v->y, v->z, &xo, &yo, &zo) ;
      printf("surface vertex %d: inflated (%2.0f, %2.0f, %2.0f), orig (%2.0f, %2.0f, %2.0f)\n", Gdiag_no, xi, yi, zi, xo, yo, zo) ;
      MRIsampleVolume(mri_in, xo, yo, zo, &val) ;
      xp = nint(xi) ; yp = nint(yi) ; zp = nint(zi) ;
      gcamn = &gcam->nodes[xp][yp][zp] ;
      printf("warp = (%2.1f, %2.1f, %2.1f), orig (%2.1f %2.1f %2.1f) = %2.1f \n", 
	     gcamn->x, gcamn->y, gcamn->z,
	     gcamn->origx, gcamn->origy, gcamn->origz,val) ;
      DiagBreak() ;
    }
  }
  if (no_write == 0)
  {
    out_name = argv[3] ;
    GCAMwrite(gcam, out_name) ;
  }
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "warp field calculation took %d minutes and %d seconds.\n", minutes, seconds) ;
  exit(0) ;
  return(0) ;
}