void MESH_Renumber(Mesh_ptr mesh, int renum_type, MType mtype) { MVertex_ptr mv, v0=NULL; MEdge_ptr me, e0=NULL; MFace_ptr mf, f0=NULL; MRegion_ptr mr, r0=NULL; int idx, idx2, idx3; int i, j; int done; MAttrib_ptr vidatt; List_ptr vlist; double xyz[3]; double rval; int bandwidth, maxbandwidth1, maxbandwidth2; double avebandwidth1, avebandwidth2; void *pval; if (renum_type == 0) { if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); } if (mtype == MEDGE || mtype == MALLTYPE) { int ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); } if (mtype == MFACE || mtype == MALLTYPE) { int nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); } } else if (renum_type == 1) { double minx, miny, minz; int minid, maxid; int *nadj, *newmap, *adj, *offset, nconn; int nalloc, depth, maxwidth; #ifdef MSTK_USE_MARKERS int mkid = MSTK_GetMarker(); #else MAttrib_ptr mkatt = MAttrib_New(mesh, "mkatt", INT, MALLTYPE); #endif if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = MESH_Num_Vertices(mesh); /* Compute a graph of vertex connections across elements (faces for surface meshes, regions for solid meshes */ /* Start with the vertex in the lower leftmost corner */ minx = miny = minz = 1.0e+12; v0 = NULL; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Coords(mv,xyz); if (xyz[0] <= minx && xyz[1] <= miny && xyz[2] <= minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; v0 = mv; } } nadj = (int *) malloc(nv*sizeof(int)); nalloc = nv*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vfaces, adjvlist; MFace_ptr vf; MVertex_ptr adjv; adjvlist = List_New(0); vfaces = MV_Faces(mv); idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { List_ptr fverts = MF_Vertices(vf,1,0); idx3 = 0; while ((adjv = List_Next_Entry(fverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fverts); } List_Delete(vfaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vregions, adjvlist; MRegion_ptr vr; MVertex_ptr adjv; adjvlist = List_New(0); vregions = MV_Regions(mv); idx2 = 0; while ((vr = List_Next_Entry(vregions,&idx2))) { List_ptr rverts = MR_Vertices(vr); idx3 = 0; while ((adjv = List_Next_Entry(rverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rverts); } List_Delete(vregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nv*sizeof(int)); offset[0] = 0; for (i = 1; i < nv; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave vertex ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max vertex ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); newmap = (int *) malloc(nv*sizeof(int)); Graph_Renumber_GPS(nv, MV_ID(v0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Set_ID(mv,newmap[i]+1); i++; } fprintf(stderr, "Ave vertex ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max vertex ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder edges according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent nodes in ascending order of their valence) */ if (mtype == MEDGE || mtype == MALLTYPE) { int ne = MESH_Num_Edges(mesh); MEdge_ptr ve; List_ptr elist; /************************* renumbering code ****************************/ ne = MESH_Num_Edges(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vedges = MV_Edges(v0); e0 = List_Entry(vedges,0); List_Delete(vedges); } else { /* Find the edge whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; e0 = NULL; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { double exyz[2][3]; MV_Coords(ME_Vertex(me,0),exyz[0]); MV_Coords(ME_Vertex(me,1),exyz[1]); xyz[0] = (exyz[0][0]+exyz[1][0])/2.0; xyz[1] = (exyz[0][1]+exyz[1][1])/2.0; xyz[2] = (exyz[0][2]+exyz[1][2])/2.0; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; e0 = me; } } } nadj = (int *) malloc(ne*sizeof(int)); nalloc = ne*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr efaces, adjelist; MFace_ptr ef; MEdge_ptr adje; adjelist = List_New(0); efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { List_ptr fedges = MF_Edges(ef,1,0); idx3 = 0; while ((adje = List_Next_Entry(fedges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fedges); } List_Delete(efaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr eregions, adjelist; MRegion_ptr er; MEdge_ptr adje; adjelist = List_New(0); eregions = ME_Regions(me); idx2 = 0; while ((er = List_Next_Entry(eregions,&idx2))) { List_ptr redges = MR_Edges(er); idx3 = 0; while ((adje = List_Next_Entry(redges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(redges); } List_Delete(eregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(ne*sizeof(int)); offset[0] = 0; for (i = 1; i < ne; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave edge ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max edge ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(ne*sizeof(int)); Graph_Renumber_GPS(ne, ME_ID(e0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { ME_Set_ID(me,newmap[i]+1); i++; } fprintf(stderr, "Ave edge ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max edge ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder faces according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent graph nodes in ascending order of their valence) */ if (mtype == MFACE || mtype == MALLTYPE) { int nf = MESH_Num_Faces(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vfaces = MV_Faces(v0); f0 = List_Entry(vfaces,0); List_Delete(vfaces); } else { /* Find the face whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; f0 = NULL; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { double fxyz[MAXPV2][3]; int nfv; MF_Coords(mf,&nfv,fxyz); xyz[0] = fxyz[0][0]; xyz[1] = fxyz[0][1]; xyz[2] = fxyz[0][2]; for (i = 1; i < nfv; i++) { xyz[0] += fxyz[i][0]; xyz[1] += fxyz[i][1]; xyz[2] += fxyz[i][2]; } xyz[0] /= nfv; xyz[1] /= nfv; xyz[2] /= nfv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; f0 = mf; } } } nadj = (int *) malloc(nf*sizeof(int)); nalloc = nf*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr vfaces, fverts, adjflist; MFace_ptr vf, adjf; MVertex_ptr fv; adjflist = List_New(0); fverts = MF_Vertices(mf,1,0); idx2 = 0; while ((fv = List_Next_Entry(fverts,&idx2))) { List_ptr vfaces = MV_Faces(fv); idx3 = 0; while ((adjf = List_Next_Entry(vfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(vfaces); } List_Delete(fverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr fregions, adjflist; MRegion_ptr fr; MFace_ptr adjf; adjflist = List_New(0); fregions = MF_Regions(mf); idx2 = 0; while ((fr = List_Next_Entry(fregions,&idx2))) { List_ptr rfaces = MR_Faces(fr); idx3 = 0; while ((adjf = List_Next_Entry(rfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rfaces); } List_Delete(fregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nf*sizeof(int)); offset[0] = 0; for (i = 1; i < nf; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth1 /= nconn; if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference on elements before renumbering: %-d\n", maxbandwidth1); } else { fprintf(stderr, "Ave face ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference before renumbering: %-d\n", maxbandwidth1); } fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nf*sizeof(int)); Graph_Renumber_GPS(nf, MF_ID(f0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { MF_Set_ID(mf,newmap[i]+1); i++; } if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { fprintf(stderr, "Ave face ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference after renumbering: %-d\n", maxbandwidth2); } } else { nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = MESH_Num_Regions(mesh); if (nr) { if (mtype == MALLTYPE) { /* Renumbering algorithm already applied on the vertices. Use a region connected to the starting vertex as the first region */ List_ptr vregions = MV_Regions(v0); r0 = List_Entry(vregions,0); List_Delete(vregions); } else { /* Find the region whose center point is a minimum point */ minx = miny = minz = 1.0e+12; r0 = NULL; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { double rxyz[MAXPV3][3]; int nrv; MR_Coords(mr,&nrv,rxyz); xyz[0] = rxyz[0][0]; xyz[1] = rxyz[0][1]; xyz[2] = rxyz[0][2]; for (i = 1; i < nrv; i++) { xyz[0] += rxyz[i][0]; xyz[1] += rxyz[i][1]; xyz[2] += rxyz[i][2]; } xyz[0] /= nrv; xyz[1] /= nrv; xyz[2] /= nrv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; r0 = mr; } } } nadj = (int *) malloc(nr*sizeof(int)); nalloc = nr*5; adj = (int *) malloc(nalloc*sizeof(int)); int nentries = 0; i = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { List_ptr vregions, rverts, adjrlist; MRegion_ptr vr, adjr; MVertex_ptr rv; adjrlist = List_New(0); rverts = MR_Vertices(mr); idx2 = 0; while ((rv = List_Next_Entry(rverts,&idx2))) { List_ptr vregions = MV_Regions(rv); idx3 = 0; while ((adjr = List_Next_Entry(vregions,&idx3))) { if (adjr != mr) { int rmarked; #ifdef MSTK_USE_MARKERS rmarked = MEnt_IsMarked(adjr,mkid); #else MEnt_Get_AttVal(adjr, mkatt, &rmarked, &rval, &pval); #endif List_Add(adjrlist,adjr); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjr,mkid); #else MEnt_Set_AttVal(adjr, mkatt, 1, 0.0, NULL); #endif } } List_Delete(vregions); } List_Delete(rverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjrlist,mkid); #endif nadj[i] = List_Num_Entries(adjrlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjr = List_Next_Entry(adjrlist,&idx2))) adj[nentries++] = MR_ID(adjr)-1; List_Delete(adjrlist); i++; } /* Compute offsets into adj array */ offset = (int *) malloc(nr*sizeof(int)); offset[0] = 0; for (i = 1; i < nr; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave region ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max region ID difference before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nr*sizeof(int)); Graph_Renumber_GPS(nr, MR_ID(r0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { MR_Set_ID(mr,newmap[i]+1); i++; } fprintf(stderr, "Ave region ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max region ID difference after renumbering: %-d\n", maxbandwidth2); } else { nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } } #ifdef MSTK_USE_MARKERS MSTK_FreeMarker(mkid); #endif } vidatt = MAttrib_New(mesh,"vidrcm",INT,MVERTEX); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MEnt_Set_AttVal(mv,vidatt,MV_ID(mv),0.0,NULL); } /* We have to reset the max IDs stored in the mesh so that we can correctly assign IDs to new entities */ MESH_Reset_Cached_MaxIDs(mesh); return; }
int MESH_CheckTopo(Mesh_ptr mesh) { int valid = 1; char mesg[256], funcname[32] = "MESH_CheckTopo"; int idx1, idx2, idx3, idx4; MVertex_ptr mv; MEdge_ptr me, ve, fe, re; MFace_ptr mf, vf, ef, rf; MRegion_ptr mr, vr, er, fr; int found, done; int dir; int i, j, k; int nfe; int vid, eid, fid, rid; int gvid, geid, gfid, grid; int gvdim, gedim, gfdim, grdim; int maxiter = 1000; List_ptr vedges, vfaces, vregions; List_ptr efaces; List_ptr fverts, fedges, fregs, fregs1; List_ptr rverts, redges, rfaces; /*****************************************************************/ /* Vertices */ /*****************************************************************/ /* Check that edges connected to vertices reference the vertices */ /* Also check that the classification of the vertex is consistent with respect to the edge */ int first_unknown_classfn = 1; idx1 = 0; while ((mv = MESH_Next_Vertex(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MV_PType(mv) == PGHOST) continue; #endif vid = MV_ID(mv); gvdim = MV_GEntDim(mv); gvid = MV_GEntID(mv); if (gvdim == 4 && first_unknown_classfn) { sprintf(mesg, "Vertex %-d - classification unknown\n", vid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } vedges = MV_Edges(mv); if (!vedges) { sprintf(mesg,"Vertex %-d does not have any connected edges\n",vid); MSTK_Report(funcname,mesg,MSTK_WARN); continue; } idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { eid = ME_ID(ve); if (ME_Vertex(ve,0) != mv && ME_Vertex(ve,1) != mv) { sprintf(mesg,"Vertex %-d connected to edge %-d but edge does not use vertex",vid,eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (gvdim == 1) { /* If vertex is classified on a model edge, then it should be connected to two and only two edges that are classified on the same model edge */ int ne = 0; idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { gedim = ME_GEntDim(ve); geid = ME_GEntID(ve); if (gedim == 1 && geid == gvid) ne++; } if (ne != 2) { sprintf(mesg,"Vertex %-d classified on model edge %-d but it is not \n connected to two edges classified on this model edge",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } } List_Delete(vedges); if (gvdim == 2) { MEdge_ptr e0, ecur, enxt; MFace_ptr fcur; int flipped = 0; /* If vertex is classified on a model face, then we should be able to find a ring of faces classified on that model face */ vfaces = MV_Faces(mv); found = 0; idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { if (MF_GEntDim(vf) == 2) { found = 1; break; } } List_Delete(vfaces); if (!found) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not \n find connected face classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } fcur = vf; fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); e0 = List_Entry(fedges,0); ecur = e0; enxt = List_Entry(fedges,nfe-1); List_Delete(fedges); done = 0; i = 0; while (!done) { ecur = enxt; efaces = ME_Faces(ecur); found = 0; idx3 = 0; while ((ef = List_Next_Entry(efaces,&idx3))) { if (ef != fcur && MF_GEntDim(ef) == 2 && MF_GEntID(ef) == gvid) { fcur = ef; found = 1; break; } } List_Delete(efaces); if (!found) { sprintf(mesg,"Could not find next boundary face connected to vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; break; } fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); if (List_Entry(fedges,0) == ecur) enxt = List_Entry(fedges,nfe-1); else if (List_Entry(fedges,nfe-1) == ecur) { enxt = List_Entry(fedges,0); flipped = 1; } else { sprintf(mesg,"Could not find next edge while traversing around vertex %-d on model face %-d",vid,gvid); MSTK_Report(funcname,mesg,MSTK_ERROR); } List_Delete(fedges); if (enxt == e0) done = 1; if (++i > maxiter) break; } if (!done) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not find ring of faces classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (done && flipped) { List_ptr fregs = MF_Regions(fcur); if (List_Num_Entries(fregs) < 2) { sprintf(mesg,"Inconsistent orientations of boundary faces around vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (fregs) List_Delete(fregs); } } } /* while ((mv = MESH_Next_Vertex(mesh,&idx1))) */ /*****************************************************************/ /* Edges */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((me = MESH_Next_Edge(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (ME_PType(me) == PGHOST) continue; #endif eid = ME_ID(me); gedim = ME_GEntDim(me); geid = ME_GEntID(me); if (gedim == 4 && first_unknown_classfn) { sprintf(mesg, "Edge %-d - unknown classification", eid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } if (ME_Vertex(me,0) == ME_Vertex(me,1)) { sprintf(mesg,"Edge %-d has repeated vertices",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); } for (i = 0; i < 2; i++) { MVertex_ptr ev = ME_Vertex(me,i); vid = MV_ID(ev); gvid = MV_GEntID(ev); gvdim = MV_GEntDim(ev); if (gvdim != 4 && gvdim != 4) { /* vertex and edge classifn is known */ if (gedim < gvdim) { sprintf(mesg,"Edge %-d classified on lower dimensional entity than connected vertex %-d",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gvdim && geid != gvid) { sprintf(mesg,"Edge %-d and its vertex %-d classified on different entities of the same dimension",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } } vedges = MV_Edges(ev); if (!List_Contains(vedges,me)) { sprintf(mesg,"Edge %-d sees vertex %-d but not vice versa",eid,vid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(vedges); if (gedim == 2) { MFace_ptr ebf[2], fcur, fnxt; MRegion_ptr rcur; int nf, nfr; List_ptr eregs; /* Edge is classified on model face - it should be connected to two and only two faces also classified on this model face */ ebf[0] = ebf[1] = NULL; nf = 0; efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { fid = MF_ID(ef); if (MF_GEntDim(ef) == 2) { nf++; if (gedim == 2 && MF_GEntID(ef) != geid) { sprintf(mesg,"Face %-d connected to edge %-d classified on different model face",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } if (ebf[0] == NULL) ebf[0] = ef; else ebf[1] = ef; } } List_Delete(efaces); if (nf != 2) { sprintf(mesg,"Boundary edge %-d is not connected to exactly two\n faces classified on the boundary",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } eregs = ME_Regions(me); if (!eregs) continue; else List_Delete(eregs); /* Can we go from f0 to f1 in one or two dirs? */ fcur = ebf[0]; fnxt = NULL; fregs = MF_Regions(fcur); if (!fregs) { fid = MF_ID(fcur); sprintf(mesg,"Edge %-d connected to regions but face %-d is not",eid,fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } nfr = List_Num_Entries(fregs); for (i = 0; i < nfr; i++) { rcur = List_Entry(fregs,i); rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } done = 0; j = 0; while (!done) { fcur = fnxt; fid = MF_ID(fcur); if (fnxt == ebf[1]) { done = 1; break; } fregs1 = MF_Regions(fcur); idx3 = 0; while ((fr = List_Next_Entry(fregs1,&idx3))) { if (fr != rcur) { rcur = fr; found = 1; break; } } List_Delete(fregs1); if (!found) { sprintf(mesg,"Could not find next region around edge %-d",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; break; } rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } if (++j > maxiter) break; } /* while (!done) */ if (!done) { sprintf(mesg,"Could not traverse around edge %-d from face %-d to face %-d",eid,MF_ID(ebf[0]),MF_ID(ebf[1])); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } /* for (i = 0; i < nfr; i++) */ List_Delete(fregs); } /* if (geid == 2) */ } /* for (i = 0; i < 2; i++) */ } /* while ((me = MESH_Next_Edge(mesh,&idx1))) */ /*****************************************************************/ /* Faces */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((mf = MESH_Next_Face(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MF_PType(mf) == PGHOST) continue; #endif fid = MF_ID(mf); gfid = MF_GEntID(mf); gfdim = MF_GEntDim(mf); if (gfdim == 4 && first_unknown_classfn) { sprintf(mesg, "Face %-d - unknown classification", fid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } fedges = MF_Edges(mf,1,0); if (List_Num_Entries(fedges) < 3) { sprintf(mesg,"Face %-d has less than 3 edges",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); } idx2 = 0; while ((fe = List_Next_Entry(fedges,&idx2))) { eid = ME_ID(fe); geid = ME_GEntID(fe); gedim = ME_GEntDim(fe); if (gedim != 4 && gfdim != 4) { /* Edge, Face classfn is known */ if (gfdim < gedim) { sprintf(mesg,"Face %-d classified on lower order entity than edge %-d",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gfdim && geid != gfid) { sprintf(mesg,"Face %-d and edge %-d classified on different\n entities of the same dimension",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); } } efaces = ME_Faces(fe); if (!List_Contains(efaces,mf)) { sprintf(mesg,"Face %-d refers to edge %-d but not vice versa",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(efaces); } List_Delete(fedges); fregs = MF_Regions(mf); if (gfdim == 3) { if (!fregs || List_Num_Entries(fregs) != 2) { sprintf(mesg,"Interior face %-d does not have two connected regions",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (fregs) { if (List_Num_Entries(fregs) == 2) { if (MR_FaceDir(List_Entry(fregs,0),mf) == MR_FaceDir(List_Entry(fregs,1),mf)) { sprintf(mesg,"Both regions using face %-d in the same sense",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fregs); } } /* while ((mf = MESH_Next_Face(mesh,&idx1))) */ /*****************************************************************/ /* Regions */ /*****************************************************************/ idx1 = 0; while ((mr = MESH_Next_Region(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MR_PType(mr) == PGHOST) continue; #endif rid = MR_ID(mr); grid = MR_GEntID(mr); rfaces = MR_Faces(mr); int nrf = List_Num_Entries(rfaces); if (nrf < 4) { sprintf(mesg,"Region %-d has less than 4 faces",rid); MSTK_Report(funcname,mesg,MSTK_ERROR); } /* Check that face to region and region to face links are consistent with each other */ int *rfdirs = (int *) malloc(nrf*sizeof(int)); i = 0; idx2 = 0; while ((rf = List_Next_Entry(rfaces,&idx2))) { rfdirs[i] = MR_FaceDir_i(mr,i); if (mr != MF_Region(rf,!rfdirs[i])) { sprintf(mesg,"Region %-d to face %-d dir inconsistent with \n face to region dir",rid,MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } i++; } /* Check that faces of a region have consistent orientation in the region with respect to each other */ for (i = 0; i < nrf; i++) { MFace_ptr rf, rf2; rf = List_Entry(rfaces,i); fedges = MF_Edges(rf,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { fe = List_Entry(fedges,j); int fedir = MF_EdgeDir_i(rf,j); /* Find adjacent face in the region */ found = 0; for (k = 0; k < nrf; k++) { rf2 = List_Entry(rfaces,k); if (rf != rf2 && MF_UsesEntity(rf2,fe,MEDGE)) { found = 1; break; } } if (!found) { sprintf(mesg,"Cannot find another face in region %-d sharing edge %-d (ID = %-d) of face with ID = %-d",MR_ID(mr),j,ME_ID(fe),MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } int fedir_adj = MF_EdgeDir(rf2,fe); /* If the two faces use the edge in opposite directions then the region should use the faces in the same direction and vice versa */ if (((fedir_adj == fedir) && (rfdirs[i] == rfdirs[k])) || ((fedir_adj != fedir) && (rfdirs[i] != rfdirs[k]))) { sprintf(mesg,"Region %-d faces are inconsistently oriented",MR_ID(mr)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fedges); } List_Delete(rfaces); free(rfdirs); } return valid; } /* int MESH_CheckTopo */
int MESH_AssignGlobalIDs_Vertex(Mesh_ptr submesh, int have_GIDs, MSTK_Comm comm) { int i, j, nv, nbv, ne, nf, nr, mesh_info[10]; MVertex_ptr mv; List_ptr boundary_verts; RepType rtype; int index_nbv, max_nbv, iloc, num_ghost_verts, global_id; int *global_mesh_info, *vertex_ov_label, *vertex_ov_global_id, *id_on_ov_list; int rank, num; MPI_Comm_rank(comm,&rank); MPI_Comm_size(comm,&num); for (i = 0; i < 10; i++) mesh_info[i] = 0; rtype = MESH_RepType(submesh); nv = MESH_Num_Vertices(submesh); ne = MESH_Num_Edges(submesh); nf = MESH_Num_Faces(submesh); nr = MESH_Num_Regions(submesh); mesh_info[0] = rtype; mesh_info[1] = nv; mesh_info[2] = ne; mesh_info[3] = nf; mesh_info[4] = nr; /* calculate number of boundary vertices */ nbv = 0; boundary_verts = List_New(10); if (nr) { for(i = 0; i < nv; i++) { mv = MESH_Vertex(submesh,i); if (vertex_on_boundary3D(mv)) { MV_Flag_OnParBoundary(mv); List_Add(boundary_verts,mv); nbv++; } } } else { for(i = 0; i < nv; i++) { mv = MESH_Vertex(submesh,i); if (vertex_on_boundary2D(mv)) { MV_Flag_OnParBoundary(mv); List_Add(boundary_verts,mv); nbv++; } } } mesh_info[5] = nbv; /* gather submeshes information right now we only need nv and nbv, and later num_ghost_verts, but we gather all mesh_info */ global_mesh_info = (int *)malloc(10*num*sizeof(int)); MPI_Allgather(mesh_info,10,MPI_INT,global_mesh_info,10,MPI_INT,comm); /* get largest number of boundary vertices of all the processors */ max_nbv = 0; for(i = 0; i < num; i++) if(max_nbv < global_mesh_info[10*i+5]) max_nbv = global_mesh_info[10*i+5]; if (have_GIDs) { int *list_boundary_vertex_gid = (int *)malloc(max_nbv*sizeof(int)); int *recv_list_vertex_gid = (int *)malloc(num*max_nbv*sizeof(int)); /* sort boundary vertices based on Global ID, for binary search */ List_Sort(boundary_verts,nbv,sizeof(MVertex_ptr),compareGlobalID); /* only global ids are sent */ index_nbv = 0; for(i = 0; i < nbv; i++) { mv = List_Entry(boundary_verts,i); list_boundary_vertex_gid[index_nbv] = MV_GlobalID(mv); index_nbv++; } MPI_Allgather(list_boundary_vertex_gid,max_nbv,MPI_INT,recv_list_vertex_gid,max_nbv,MPI_INT,comm); /* indicate if a vertex is overlapped */ vertex_ov_label = (int *)malloc(num*max_nbv*sizeof(int)); /* store the local boundary id on ov processor it is used to assign global id of local ghost vertices no need to store master partition id, MV_MasterParID(mv) is already assigned */ id_on_ov_list = (int *)malloc(max_nbv*sizeof(int)); for (i = 0; i < num*max_nbv; i++) vertex_ov_label[i] = 0; num_ghost_verts = 0; /* for processor other than 0 */ if(rank > 0) { for(i = 0; i < nbv; i++) { mv = List_Entry(boundary_verts,i); int gid = MV_GlobalID(mv); /* check which previous processor has a vertex with same Global ID*/ for(j = 0; j < rank; j++) { /* since each processor has sorted the boundary vertices, use binary search */ int *loc = (int *)bsearch(&gid, &recv_list_vertex_gid[max_nbv*j], global_mesh_info[10*j+5], sizeof(int), compareINT); /* if found the vertex on previous processors */ if(loc) { /* here the location iloc is relative to the beginning of the jth processor */ iloc = (int)(loc - &recv_list_vertex_gid[max_nbv*j]); MV_Set_PType(mv,PGHOST); MV_Set_MasterParID(mv,j); num_ghost_verts++; /* label the original vertex as overlapped */ vertex_ov_label[max_nbv*j+iloc] |= 1; id_on_ov_list[i] = iloc; /* if found on processor j, no need to test for j+1,j+2...*/ break; } } } } free(list_boundary_vertex_gid); free(recv_list_vertex_gid); } else { double coor[3]; int *list_boundary_vertex = (int *)malloc(max_nbv*sizeof(int)); double *list_boundary_coor = (double *)malloc(3*max_nbv*sizeof(double)); int *recv_list_vertex = (int *)malloc(num*max_nbv*sizeof(int)); double *recv_list_coor = (double *)malloc(3*num*max_nbv*sizeof(double)); /* sort boundary vertices based on coordinate value, for binary search */ List_Sort(boundary_verts,nbv,sizeof(MVertex_ptr),compareVertexCoor); /* only local id and coordinate values are sent */ index_nbv = 0; for(i = 0; i < nbv; i++) { mv = List_Entry(boundary_verts,i); list_boundary_vertex[index_nbv] = MV_ID(mv); MV_Coords(mv,coor); list_boundary_coor[index_nbv*3] = coor[0]; list_boundary_coor[index_nbv*3+1] = coor[1]; list_boundary_coor[index_nbv*3+2] = coor[2]; index_nbv++; } MPI_Allgather(list_boundary_vertex,max_nbv,MPI_INT,recv_list_vertex,max_nbv,MPI_INT,comm); MPI_Allgather(list_boundary_coor,3*max_nbv,MPI_DOUBLE,recv_list_coor,3*max_nbv,MPI_DOUBLE,comm); /* indicate if a vertex is overlapped */ vertex_ov_label = (int *)malloc(num*max_nbv*sizeof(int)); /* store the local boundary id on ov processor it is used to assign global id of local ghost vertices no need to store master partition id, MV_MasterParID(mv) is already assigned */ id_on_ov_list = (int *)malloc(max_nbv*sizeof(int)); for (i = 0; i < num*max_nbv; i++) vertex_ov_label[i] = 0; num_ghost_verts = 0; /* for processor other than 0 */ if(rank > 0) { for(i = 0; i < nbv; i++) { mv = List_Entry(boundary_verts,i); MV_Coords(mv,coor); /* check which previous processor has the same coordinate vertex */ for(j = 0; j < rank; j++) { /* since each processor has sorted the boundary vertices, use binary search */ double *loc = (double *)bsearch(&coor, &recv_list_coor[3*max_nbv*j], global_mesh_info[10*j+5], 3*sizeof(double), compareCoorDouble); /* if found the vertex on previous processors */ if(loc) { /* here the location iloc is relative to the beginning of the jth processor */ iloc = (int)(loc - &recv_list_coor[3*max_nbv*j])/3; MV_Set_PType(mv,PGHOST); MV_Set_MasterParID(mv,j); num_ghost_verts++; /* label the original vertex as overlapped */ vertex_ov_label[max_nbv*j+iloc] |= 1; id_on_ov_list[i] = iloc; /* if found on processor j, no need to test for j+1,j+2...*/ break; } } } } free(list_boundary_coor); free(recv_list_coor); free(list_boundary_vertex); free(recv_list_vertex); } /* num of ghost verts */ mesh_info[9] = num_ghost_verts; /* update ghost verts number */ MPI_Allgather(mesh_info,10,MPI_INT,global_mesh_info,10,MPI_INT,comm); /* since this is a OR reduction, we can use MPI_IN_PLACE, send buffer same as recv buffer */ MPI_Allreduce(MPI_IN_PLACE,vertex_ov_label,num*max_nbv,MPI_INT,MPI_LOR,comm); /* calculate starting global id number for vertices*/ if (!have_GIDs) { global_id = 1; for(i = 0; i < rank; i++) global_id = global_id + global_mesh_info[10*i+1] - global_mesh_info[10*i+9]; for(i = 0; i < nv; i++) { mv = MESH_Vertex(submesh,i); if (MV_PType(mv) == PGHOST) continue; MV_Set_GlobalID(mv,global_id++); MV_Set_MasterParID(mv,rank); } } /* store overlapped vertices IDs and broadast */ vertex_ov_global_id = (int *)malloc(num*max_nbv*sizeof(int)); for(i = 0; i < num*max_nbv; i++) vertex_ov_global_id[i] = 0; for(i = 0; i < nbv; i++) { if(vertex_ov_label[rank*max_nbv+i]) { mv = List_Entry(boundary_verts,i); MV_Set_PType(mv,POVERLAP); vertex_ov_global_id[rank*max_nbv+i] = MV_GlobalID(mv); } } MPI_Allreduce(MPI_IN_PLACE,vertex_ov_global_id,num*max_nbv,MPI_INT,MPI_MAX,comm); for(i = 0; i < nbv; i++) { mv = List_Entry(boundary_verts,i); if(MV_PType(mv) == PGHOST) MV_Set_GlobalID(mv,vertex_ov_global_id[MV_MasterParID(mv)*max_nbv+id_on_ov_list[i]]); } List_Delete(boundary_verts); free(global_mesh_info); free(vertex_ov_label); free(vertex_ov_global_id); free(id_on_ov_list); return 1; }
UBasicVolume::VolumeType* ImportMagicaVoxel(FArchive& Ar) { // https://voxel.codeplex.com/wikipage?title=Sample%20Codes //auto* Result = new RawVolume(region); //return Result; const int MV_VERSION = 150; const int ID_VOX = MV_ID('V', 'O', 'X', ' '); const int ID_MAIN = MV_ID('M', 'A', 'I', 'N'); const int ID_SIZE = MV_ID('S', 'I', 'Z', 'E'); const int ID_XYZI = MV_ID('X', 'Y', 'Z', 'I'); const int ID_RGBA = MV_ID('R', 'G', 'B', 'A'); int32 magic; int32 version; // magic number Ar << magic; if (magic != ID_VOX) { UE_LOG(LogVoreealVolumeImporter, Warning, TEXT("magic number does not match")); return nullptr; } // version Ar << version; if (version != MV_VERSION) { UE_LOG(LogVoreealVolumeImporter, Warning, TEXT("version does not match")); return nullptr; } // main chunk vox_chunk_t mainChunk; ReadChunk(Ar, mainChunk); if (mainChunk.id != ID_MAIN) { UE_LOG(LogVoreealVolumeImporter, Warning, TEXT("main chunk is not found")); return nullptr; } bool isCustomPalette; MV_RGBA palette[256]; MV_Voxel* voxels = nullptr; int32 sizex = 0, sizey = 0, sizez = 0, numVoxels = 0; while (!Ar.AtEnd()) { // read chunk header vox_chunk_t sub; ReadChunk(Ar, sub); if (sub.id == ID_SIZE) { // size Ar << sizex << sizey << sizez; } else if (sub.id == ID_XYZI) { // numVoxels Ar << numVoxels; if (numVoxels < 0) { UE_LOG(LogVoreealVolumeImporter, Warning, TEXT("negative number of voxels")); return nullptr; } // voxels if (numVoxels > 0) { voxels = new MV_Voxel[numVoxels]; Ar.Serialize(voxels, sizeof(MV_Voxel) * numVoxels); } } else if (sub.id == ID_RGBA) { // last color is not used, so we only need to read 255 colors isCustomPalette = true; Ar.Serialize(palette + 1, sizeof(MV_RGBA) * 255); // NOTICE : skip the last reserved color MV_RGBA reserved; Ar.Serialize(&reserved, sizeof(MV_RGBA)); } } PolyVox::Region region; region.setLowerCorner(PolyVox::Vector3DInt32(0, 0, 0)); region.setUpperCorner(PolyVox::Vector3DInt32(sizex, sizey, sizez)); auto* Result = new UBasicVolume::VolumeType(region); for (int32 i = 0; i < numVoxels; i++) { auto voxel = voxels[i]; auto color = palette[voxel.colorIndex]; uint32 data = (color.r) | (color.g) << 8 | (color.b) << 16 | (color.a) << 24; Result->setVoxel(voxel.x, voxel.y, voxel.z, data); } delete[] voxels; //// print model info //printf("[Log] MV_VoxelModel :: Model : %d %d %d : %d\n", // sizex, sizey, sizez, numVoxels // ); return Result; }
int MESH_Send_NonVertexEntities_FN(Mesh_ptr mesh, int torank, MSTK_Comm comm, int *numreq, int *maxreq, MPI_Request **requests, int *numptrs2free, int *maxptrs2free, void ***ptrs2free) { int i, j, nv, ne, nf, nr; int nevs, nfes, nrfs, nfe, nrv, nrf, dir; int maxnfe, maxnrf; int *mesh_info; int *list_edge=NULL, *list_face=NULL, *list_region=NULL; MVertex_ptr mv; MEdge_ptr me; MFace_ptr mf; MRegion_ptr mr; List_ptr mfedges, mrfaces, mrverts; RepType rtype; double coor[3]; MPI_Request mpirequest; if (requests == NULL) MSTK_Report("MESH_Surf_SendMesh","MPI requests array is NULL",MSTK_FATAL); if (*maxreq == 0) { *maxreq = 25; *requests = (MPI_Request *) malloc(*maxreq*sizeof(MPI_Request)); *numreq = 0; } else if (*maxreq < (*numreq) + 13) { *maxreq = 2*(*maxreq) + 11; *requests = (MPI_Request *) realloc(*requests,*maxreq*sizeof(MPI_Request)); } ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); /* some other known quantitites - 5 items per edge (2 for verts and 3 for extra data), maxnfe+4 items per face (1 for number of edges, maxnfe for edge indices, anad 3 for extra data), maxnrf+4 items per region (1 for number of faces, maxnrf for face indices and 3 for extra data */ maxnfe = 0; for (i = 0; i < nf; i++) { mf = MESH_Face(mesh,i); nfe = MF_Num_Edges(mf); if (nfe > maxnfe) maxnfe = nfe; } maxnrf = 0; for (i = 0; i < nr; i++) { mr = MESH_Region(mesh,i); nrf = MR_Num_Faces(mr); if (nrf > maxnrf) maxnrf = nrf; } // The amount of extra info we are sending and their meaning is obviously // known on the receiving side too. So nevs, nfes and nrfs can be // calculated without us sending it nevs = (2+3)*ne; nfes = (1 + maxnfe + 3)*nf; nrfs = (1 + maxnrf + 3)*nr; /* Reserve nevs spots for each edge */ list_edge = (int *) malloc(5*ne*sizeof(int)); nevs = 0; /* Store the vertex ids, then the 3 auxilliary data fields */ for(i = 0; i < ne; i++) { me = MESH_Edge(mesh,i); list_edge[nevs] = MV_ID(ME_Vertex(me,0)); list_edge[nevs+1] = MV_ID(ME_Vertex(me,1)); list_edge[nevs+2] = (ME_GEntID(me)<<3) | (ME_GEntDim(me)); list_edge[nevs+3] = (ME_MasterParID(me) <<3) | (ME_OnParBoundary(me)<<2) | (ME_PType(me)); list_edge[nevs+4] = ME_GlobalID(me); nevs += 5; } /* send detailed edge info */ MPI_Isend(list_edge,nevs,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; /* Reserve nfes spots for each face */ list_face = (int *) malloc(nfes*sizeof(int)); nfes = 0; /* first store nfe, then the edge ids, then the 3 auxilliary data fields */ for(i = 0; i < nf; i++) { mf = MESH_Face(mesh,i); mfedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(mfedges); list_face[nfes] = nfe; for(j = 0; j < nfe; j++) { dir = MF_EdgeDir_i(mf,j) ? 1 : -1; list_face[nfes+j+1] = dir*ME_ID(List_Entry(mfedges,j)); } list_face[nfes+nfe+1] = (MF_GEntID(mf)<<3) | (MF_GEntDim(mf)); list_face[nfes+nfe+2] = (MF_MasterParID(mf)<<3) | (MF_OnParBoundary(mf)<<2) | (MF_PType(mf)); list_face[nfes+nfe+3] = MF_GlobalID(mf); nfes += (nfe + 4); List_Delete(mfedges); } /* send detailed face info */ MPI_Isend(list_face,nfes,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; if (nr) { list_region = (int *) malloc(nrfs*sizeof(int)); nrfs = 0; /* first store nrf, then the face ids, then the 3 auxilliary data fields */ for(i = 0; i < nr; i++) { mr = MESH_Region(mesh,i); mrfaces = MR_Faces(mr); nrf = List_Num_Entries(mrfaces); list_region[nrfs] = nrf; for(j = 0; j < nrf; j++) { dir = MR_FaceDir_i(mr,j) == 1 ? 1 : -1; list_region[nrfs+j+1] = dir*MF_ID(List_Entry(mrfaces,j)); } list_region[nrfs+nrf+1] = (MR_GEntID(mr)<<3) | (MR_GEntDim(mr)); list_region[nrfs+nrf+2] = (MR_MasterParID(mr)<<3) | (MR_PType(mr)); /* MR_PType is 2 bits; 3 bit is 0 */ list_region[nrfs+nrf+3] = MR_GlobalID(mr); nrfs += (nrf + 4); List_Delete(mrfaces); } /* send detailed region info */ MPI_Isend(list_region,nrfs,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; } /* collect allocated memory so it can be freed in a higher level routine after MPI_Waitall or MPI_Test has ensured that the send has been completed */ if (ptrs2free == NULL) MSTK_Report("MESH_Surf_SendMesh_FN","ptrs2free array is NULL",MSTK_FATAL); int nptrs = 3; if (*maxptrs2free == 0) { *maxptrs2free = 25; *ptrs2free = (void **) malloc(*maxptrs2free*sizeof(void *)); *numptrs2free = 0; } else if (*maxptrs2free < (*numptrs2free) + nptrs) { *maxptrs2free = 2*(*maxptrs2free) + nptrs; *ptrs2free = (void **) realloc(*ptrs2free,(*maxptrs2free)*sizeof(void *)); } if (ne) (*ptrs2free)[(*numptrs2free)++] = list_edge; if (nf) (*ptrs2free)[(*numptrs2free)++] = list_face; if (nr) (*ptrs2free)[(*numptrs2free)++] = list_region; return 1; }