Пример #1
0
void structExcitation :: v_info () {
	double *y = z [1];
	long numberOfMaxima = 0;
	structData :: v_info ();
	MelderInfo_writeLine (L"Loudness: ", Melder_half (Excitation_getLoudness (this)), L" sones");
	for (long i = 2; i < nx; i ++) if (y [i] > y [i - 1] && y [i] >= y [i + 1]) {
		double i_real, formant_bark, strength;
		if (++ numberOfMaxima > 15) break;
		strength = NUMimproveMaximum (z [1], nx, i, NUM_PEAK_INTERPOLATE_SINC70, & i_real);
		formant_bark = x1 + (i_real - 1) * dx;
		MelderInfo_write (L"Peak at ", Melder_single (formant_bark), L" Bark");
		MelderInfo_write (L", ", Melder_integer ((long) NUMbarkToHertz (formant_bark)), L" Hz");
		MelderInfo_writeLine (L", ", Melder_half (strength), L" phon.");
	}
}
Пример #2
0
static double PairDistributions_getTotalWeight_checkPositive (PairDistribution me) throw (MelderError) {
	double totalWeight = 0.0;
	for (long ipair = 1; ipair <= my pairs -> size; ipair ++) {
		PairProbability prob = static_cast <PairProbability> (my pairs -> item [ipair]);
		totalWeight += prob -> weight;
	}
	if (totalWeight <= 0.0) {
		Melder_throw (me, U": the total probability weight is ", Melder_half (totalWeight), U" but should be greater than zero for this operation.");
	}
	return totalWeight;
}
Пример #3
0
void structOTGrammarEditor :: v_draw () {
	OTGrammar ot = (OTGrammar) data;
	static char32 text [1000];
	Graphics_clearWs (g);
	if (ot -> decisionStrategy == kOTGrammar_decisionStrategy_EXPONENTIAL_HG ||
		ot -> decisionStrategy == kOTGrammar_decisionStrategy_EXPONENTIAL_MAXIMUM_ENTROPY)
	{
		HyperPage_listItem (this, U"\t\t      %%ranking value\t      %disharmony\t      %plasticity\t   %%e^^disharmony");
	} else {
		HyperPage_listItem (this, U"\t\t      %%ranking value\t      %disharmony\t      %plasticity");
	}
	for (long icons = 1; icons <= ot -> numberOfConstraints; icons ++) {
		OTGrammarConstraint constraint = & ot -> constraints [ot -> index [icons]];
		if (ot -> decisionStrategy == kOTGrammar_decisionStrategy_EXPONENTIAL_HG ||
			ot -> decisionStrategy == kOTGrammar_decisionStrategy_EXPONENTIAL_MAXIMUM_ENTROPY)
		{
			Melder_sprint (text,1000,
				U"\t", icons == selected ? U"♠︎ " : U"   ",
				U"@@", icons,
				U"|", constraint -> name,
				U"@\t      ", Melder_fixed (constraint -> ranking, 3),
				U"\t      ", Melder_fixed (constraint -> disharmony, 3),
				U"\t      ", Melder_fixed (constraint -> plasticity, 6),
				U"\t ", Melder_float (Melder_half (exp (constraint -> disharmony))));
		} else {
			Melder_sprint (text,1000,
				U"\t", icons == selected ? U"♠︎ " : U"   ",
				U"@@", icons,
				U"|", constraint -> name,
				U"@\t      ", Melder_fixed (constraint -> ranking, 3),
				U"\t      ", Melder_fixed (constraint -> disharmony, 3),
				U"\t      ", Melder_fixed (constraint -> plasticity, 6));
		}
		HyperPage_listItem (this, text);
	}
	Graphics_setAtSignIsLink (g, FALSE);
	for (long itab = 1; itab <= ot -> numberOfTableaus; itab ++) {
		OTGrammarTableau tableau = & ot -> tableaus [itab];
		double rowHeight = 0.25;
		double tableauHeight = rowHeight * (tableau -> numberOfCandidates + 2);
		drawTableau_ot = ot;
		drawTableau_input = tableau -> input;
		drawTableau_constraintsAreDrawnVertically = d_constraintsAreDrawnVertically;
		HyperPage_picture (this, 20, tableauHeight, drawTableau);
	}
	Graphics_setAtSignIsLink (g, TRUE);
}
Пример #4
0
void structFormantGridEditor :: v_draw () {
	FormantGrid grid = (FormantGrid) our data;
	Ordered tiers = our editingBandwidths ? grid -> bandwidths : grid -> formants;
	RealTier selectedTier = (RealTier) tiers -> item [selectedFormant];
	double ymin = our editingBandwidths ? our p_bandwidthFloor   : our p_formantFloor;
	double ymax = our editingBandwidths ? our p_bandwidthCeiling : our p_formantCeiling;
	Graphics_setColour (our d_graphics, Graphics_WHITE);
	Graphics_setWindow (our d_graphics, 0, 1, 0, 1);
	Graphics_fillRectangle (our d_graphics, 0, 1, 0, 1);
	Graphics_setWindow (our d_graphics, our d_startWindow, our d_endWindow, ymin, ymax);
	Graphics_setColour (our d_graphics, Graphics_RED);
	Graphics_line (our d_graphics, our d_startWindow, our ycursor, our d_endWindow, our ycursor);
	Graphics_setTextAlignment (our d_graphics, Graphics_RIGHT, Graphics_HALF);
	Graphics_text (our d_graphics, our d_startWindow, our ycursor, Melder_float (Melder_half (our ycursor)));
	Graphics_setColour (our d_graphics, Graphics_BLUE);
	Graphics_setTextAlignment (our d_graphics, Graphics_LEFT, Graphics_TOP);
	Graphics_text (our d_graphics, our d_endWindow, ymax, Melder_float (Melder_half (ymax)), U" Hz");
	Graphics_setTextAlignment (our d_graphics, Graphics_LEFT, Graphics_HALF);
	Graphics_text (our d_graphics, our d_endWindow, ymin, Melder_float (Melder_half (ymin)), U" Hz");
	Graphics_setLineWidth (our d_graphics, 1);
	Graphics_setColour (our d_graphics, Graphics_GREY);
	for (long iformant = 1; iformant <= grid -> formants -> size; iformant ++) if (iformant != our selectedFormant) {
		RealTier tier = (RealTier) tiers -> item [iformant];
		long imin = AnyTier_timeToHighIndex (tier, our d_startWindow);
		long imax = AnyTier_timeToLowIndex (tier, our d_endWindow);
		long n = tier -> points -> size;
		if (n == 0) {
		} else if (imax < imin) {
			double yleft = RealTier_getValueAtTime (tier, our d_startWindow);
			double yright = RealTier_getValueAtTime (tier, our d_endWindow);
			Graphics_line (our d_graphics, our d_startWindow, yleft, our d_endWindow, yright);
		} else for (long i = imin; i <= imax; i ++) {
			RealPoint point = (RealPoint) tier -> points -> item [i];
			double t = point -> number, y = point -> value;
			Graphics_fillCircle_mm (our d_graphics, t, y, 2);
			if (i == 1)
				Graphics_line (our d_graphics, our d_startWindow, y, t, y);
			else if (i == imin)
				Graphics_line (our d_graphics, t, y, our d_startWindow, RealTier_getValueAtTime (tier, our d_startWindow));
			if (i == n)
				Graphics_line (our d_graphics, t, y, our d_endWindow, y);
			else if (i == imax)
				Graphics_line (our d_graphics, t, y, our d_endWindow, RealTier_getValueAtTime (tier, our d_endWindow));
			else {
				RealPoint pointRight = (RealPoint) tier -> points -> item [i + 1];
				Graphics_line (our d_graphics, t, y, pointRight -> number, pointRight -> value);
			}
		}
	}
	Graphics_setColour (our d_graphics, Graphics_BLUE);
	long ifirstSelected = AnyTier_timeToHighIndex (selectedTier, our d_startSelection);
	long ilastSelected = AnyTier_timeToLowIndex (selectedTier, our d_endSelection);
	long n = selectedTier -> points -> size;
	long imin = AnyTier_timeToHighIndex (selectedTier, our d_startWindow);
	long imax = AnyTier_timeToLowIndex (selectedTier, our d_endWindow);
	Graphics_setLineWidth (our d_graphics, 2);
	if (n == 0) {
		Graphics_setTextAlignment (our d_graphics, Graphics_CENTRE, Graphics_HALF);
		Graphics_text (our d_graphics, 0.5 * (our d_startWindow + our d_endWindow),
			0.5 * (ymin + ymax), U"(no points in selected formant tier)");
	} else if (imax < imin) {
		double yleft = RealTier_getValueAtTime (selectedTier, our d_startWindow);
		double yright = RealTier_getValueAtTime (selectedTier, our d_endWindow);
		Graphics_line (our d_graphics, our d_startWindow, yleft, our d_endWindow, yright);
	} else for (long i = imin; i <= imax; i ++) {
		RealPoint point = (RealPoint) selectedTier -> points -> item [i];
		double t = point -> number, y = point -> value;
		if (i >= ifirstSelected && i <= ilastSelected)
			Graphics_setColour (our d_graphics, Graphics_RED);
		Graphics_fillCircle_mm (our d_graphics, t, y, 3);
		Graphics_setColour (our d_graphics, Graphics_BLUE);
		if (i == 1)
			Graphics_line (our d_graphics, our d_startWindow, y, t, y);
		else if (i == imin)
			Graphics_line (our d_graphics, t, y, our d_startWindow, RealTier_getValueAtTime (selectedTier, our d_startWindow));
		if (i == n)
			Graphics_line (our d_graphics, t, y, our d_endWindow, y);
		else if (i == imax)
			Graphics_line (our d_graphics, t, y, our d_endWindow, RealTier_getValueAtTime (selectedTier, our d_endWindow));
		else {
			RealPoint pointRight = (RealPoint) selectedTier -> points -> item [i + 1];
			Graphics_line (our d_graphics, t, y, pointRight -> number, pointRight -> value);
		}
	}
	Graphics_setLineWidth (our d_graphics, 1);
	Graphics_setColour (our d_graphics, Graphics_BLACK);
}
Пример #5
0
void structPitch :: v_info () {
	long nVoiced;
	autoNUMvector <double> frequencies (Sampled_getSortedValues (this, Pitch_LEVEL_FREQUENCY, kPitch_unit_HERTZ, & nVoiced), 1);
	structDaata :: v_info ();
	MelderInfo_writeLine (U"Time domain:");
	MelderInfo_writeLine (U"   Start time: ", xmin, U" seconds");
	MelderInfo_writeLine (U"   End time: ", xmax, U" seconds");
	MelderInfo_writeLine (U"   Total duration: ", xmax - xmin, U" seconds");
	MelderInfo_writeLine (U"Time sampling:");
	MelderInfo_writeLine (U"   Number of frames: ", nx, U" (", nVoiced, U" voiced)");
	MelderInfo_writeLine (U"   Time step: ", dx, U" seconds");
	MelderInfo_writeLine (U"   First frame centred at: ", x1, U" seconds");
	MelderInfo_writeLine (U"Ceiling at: ", ceiling, U" Hz");

	if (nVoiced >= 1) {   // quantiles
		double quantile10, quantile16, quantile50, quantile84, quantile90;
		quantile10 = NUMquantile (nVoiced, frequencies.peek(), 0.10);
		quantile16 = NUMquantile (nVoiced, frequencies.peek(), 0.16);
		quantile50 = NUMquantile (nVoiced, frequencies.peek(), 0.50);   // median
		quantile84 = NUMquantile (nVoiced, frequencies.peek(), 0.84);
		quantile90 = NUMquantile (nVoiced, frequencies.peek(), 0.90);
		MelderInfo_writeLine (U"\nEstimated quantiles:");
		MelderInfo_write (U"   10% = ", Melder_single (quantile10), U" Hz = ", Melder_single (MEL (quantile10)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (quantile10)), U" semitones above 100 Hz = ", Melder_single (ERB (quantile10)), U" ERB");
		MelderInfo_write (U"   16% = ", Melder_single (quantile16), U" Hz = ", Melder_single (MEL (quantile16)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (quantile16)), U" semitones above 100 Hz = ", Melder_single (ERB (quantile16)), U" ERB");
		MelderInfo_write (U"   50% = ", Melder_single (quantile50), U" Hz = ", Melder_single (MEL (quantile50)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (quantile50)), U" semitones above 100 Hz = ", Melder_single (ERB (quantile50)), U" ERB");
		MelderInfo_write (U"   84% = ", Melder_single (quantile84), U" Hz = ", Melder_single (MEL (quantile84)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (quantile84)), U" semitones above 100 Hz = ", Melder_single (ERB (quantile84)), U" ERB");
		MelderInfo_write (U"   90% = ", Melder_single (quantile90), U" Hz = ", Melder_single (MEL (quantile90)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (quantile90)), U" semitones above 100 Hz = ", Melder_single (ERB (quantile90)), U" ERB");
		if (nVoiced > 1) {
			double corr = sqrt (nVoiced / (nVoiced - 1.0));
			MelderInfo_writeLine (U"\nEstimated spreading:");
			MelderInfo_write (U"   84%-median = ", Melder_half ((quantile84 - quantile50) * corr), U" Hz = ", Melder_half ((MEL (quantile84) - MEL (quantile50)) * corr), U" Mel = ");
			MelderInfo_writeLine (Melder_half ((SEMITONES (quantile84) - SEMITONES (quantile50)) * corr), U" semitones = ", Melder_half ((ERB (quantile84) - ERB (quantile50)) * corr), U" ERB");
			MelderInfo_write (U"   median-16% = ", Melder_half ((quantile50 - quantile16) * corr), U" Hz = ", Melder_half ((MEL (quantile50) - MEL (quantile16)) * corr), U" Mel = ");
			MelderInfo_writeLine (Melder_half ((SEMITONES (quantile50) - SEMITONES (quantile16)) * corr), U" semitones = ", Melder_half ((ERB (quantile50) - ERB (quantile16)) * corr), U" ERB");
			MelderInfo_write (U"   90%-10% = ", Melder_half ((quantile90 - quantile10) * corr), U" Hz = ", Melder_half ((MEL (quantile90) - MEL (quantile10)) * corr), U" Mel = ");
			MelderInfo_writeLine (Melder_half ((SEMITONES (quantile90) - SEMITONES (quantile10)) * corr), U" semitones = ", Melder_half ((ERB (quantile90) - ERB (quantile10)) * corr), U" ERB");
		}
	}
	if (nVoiced >= 1) {   // extrema, range, mean and standard deviation
		double minimum = Pitch_getMinimum (this, xmin, xmax, kPitch_unit_HERTZ, false);
		double maximum = Pitch_getMaximum (this, xmin, xmax, kPitch_unit_HERTZ, false);
		double meanHertz, meanMel, meanSemitones, meanErb;
		MelderInfo_write (U"\nMinimum ", Melder_single (minimum), U" Hz = ", Melder_single (MEL (minimum)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (minimum)), U" semitones above 100 Hz = ", Melder_single (ERB (minimum)), U" ERB");
		MelderInfo_write (U"Maximum ", Melder_single (maximum), U" Hz = ", Melder_single (MEL (maximum)), U" Mel = ");
		MelderInfo_writeLine (Melder_single (SEMITONES (maximum)), U" semitones above 100 Hz = ", Melder_single (ERB (maximum)), U" ERB");
		MelderInfo_write (U"Range ", Melder_half (maximum - minimum), U" Hz = ", Melder_single (MEL (maximum) - MEL (minimum)), U" Mel = ");
		MelderInfo_writeLine (Melder_half (SEMITONES (maximum) - SEMITONES (minimum)), U" semitones = ", Melder_half (ERB (maximum) - ERB (minimum)), U" ERB");
		meanHertz = Pitch_getMean (this, 0, 0, kPitch_unit_HERTZ);
		meanMel = Pitch_getMean (this, 0, 0, kPitch_unit_MEL);
		meanSemitones = Pitch_getMean (this, 0, 0, kPitch_unit_SEMITONES_100);
		meanErb = Pitch_getMean (this, 0, 0, kPitch_unit_ERB);
		MelderInfo_write (U"Average: ", Melder_single (meanHertz), U" Hz = ", Melder_single (meanMel), U" Mel = ");
		MelderInfo_writeLine (Melder_single (meanSemitones), U" semitones above 100 Hz = ", Melder_single (meanErb), U" ERB");
		if (nVoiced >= 2) {
			double stdevHertz = Pitch_getStandardDeviation (this, 0, 0, kPitch_unit_HERTZ);
			double stdevMel = Pitch_getStandardDeviation (this, 0, 0, kPitch_unit_MEL);
			double stdevSemitones = Pitch_getStandardDeviation (this, 0, 0, kPitch_unit_SEMITONES_100);
			double stdevErb = Pitch_getStandardDeviation (this, 0, 0, kPitch_unit_ERB);
			MelderInfo_write (U"Standard deviation: ", Melder_half (stdevHertz), U" Hz = ", Melder_half (stdevMel), U" Mel = ");
			MelderInfo_writeLine (Melder_half (stdevSemitones), U" semitones = ", Melder_half (stdevErb), U" ERB");
		}
	}
	if (nVoiced > 1) {   // variability: mean absolute slope
		double slopeHertz, slopeMel, slopeSemitones, slopeErb, slopeWithoutOctaveJumps;
		Pitch_getMeanAbsoluteSlope (this, & slopeHertz, & slopeMel, & slopeSemitones, & slopeErb, & slopeWithoutOctaveJumps);
		MelderInfo_write (U"\nMean absolute slope: ", Melder_half (slopeHertz), U" Hz/s = ", Melder_half (slopeMel), U" Mel/s = ");
		MelderInfo_writeLine (Melder_half (slopeSemitones), U" semitones/s = ", Melder_half (slopeErb), U" ERB/s");
		MelderInfo_writeLine (U"Mean absolute slope without octave jumps: ", Melder_half (slopeWithoutOctaveJumps), U" semitones/s");
	}
}
Пример #6
0
void TimeSoundEditor_drawSound (TimeSoundEditor me, double globalMinimum, double globalMaximum) {
	Sound sound = my d_sound.data;
	LongSound longSound = my d_longSound.data;
	Melder_assert (!! sound != !! longSound);
	int nchan = sound ? sound -> ny : longSound -> numberOfChannels;
	bool cursorVisible = my d_startSelection == my d_endSelection && my d_startSelection >= my d_startWindow && my d_startSelection <= my d_endWindow;
	Graphics_setColour (my d_graphics, Graphics_BLACK);
	bool fits;
	try {
		fits = sound ? true : LongSound_haveWindow (longSound, my d_startWindow, my d_endWindow);
	} catch (MelderError) {
		bool outOfMemory = !! str32str (Melder_getError (), U"memory");
		if (Melder_debug == 9) Melder_flushError (); else Melder_clearError ();
		Graphics_setWindow (my d_graphics, 0.0, 1.0, 0.0, 1.0);
		Graphics_setTextAlignment (my d_graphics, Graphics_CENTRE, Graphics_HALF);
		Graphics_text (my d_graphics, 0.5, 0.5, outOfMemory ? U"(out of memory)" : U"(cannot read sound file)");
		return;
	}
	if (! fits) {
		Graphics_setWindow (my d_graphics, 0.0, 1.0, 0.0, 1.0);
		Graphics_setTextAlignment (my d_graphics, Graphics_CENTRE, Graphics_HALF);
		Graphics_text (my d_graphics, 0.5, 0.5, U"(window too large; zoom in to see the data)");
		return;
	}
	long first, last;
	if (Sampled_getWindowSamples (sound ? (Sampled) sound : (Sampled) longSound, my d_startWindow, my d_endWindow, & first, & last) <= 1) {
		Graphics_setWindow (my d_graphics, 0.0, 1.0, 0.0, 1.0);
		Graphics_setTextAlignment (my d_graphics, Graphics_CENTRE, Graphics_HALF);
		Graphics_text (my d_graphics, 0.5, 0.5, U"(zoom out to see the data)");
		return;
	}
	const int numberOfVisibleChannels = nchan > 8 ? 8 : nchan;
	const int firstVisibleChannel = my d_sound.channelOffset + 1;
	int lastVisibleChannel = my d_sound.channelOffset + numberOfVisibleChannels;
	if (lastVisibleChannel > nchan) lastVisibleChannel = nchan;
	double maximumExtent = 0.0, visibleMinimum = 0.0, visibleMaximum = 0.0;
	if (my p_sound_scalingStrategy == kTimeSoundEditor_scalingStrategy_BY_WINDOW) {
		if (longSound)
			LongSound_getWindowExtrema (longSound, my d_startWindow, my d_endWindow, firstVisibleChannel, & visibleMinimum, & visibleMaximum);
		else
			Matrix_getWindowExtrema (sound, first, last, firstVisibleChannel, firstVisibleChannel, & visibleMinimum, & visibleMaximum);
		for (int ichan = firstVisibleChannel + 1; ichan <= lastVisibleChannel; ichan ++) {
			double visibleChannelMinimum, visibleChannelMaximum;
			if (longSound)
				LongSound_getWindowExtrema (longSound, my d_startWindow, my d_endWindow, ichan, & visibleChannelMinimum, & visibleChannelMaximum);
			else
				Matrix_getWindowExtrema (sound, first, last, ichan, ichan, & visibleChannelMinimum, & visibleChannelMaximum);
			if (visibleChannelMinimum < visibleMinimum)
				visibleMinimum = visibleChannelMinimum;
			if (visibleChannelMaximum > visibleMaximum)
				visibleMaximum = visibleChannelMaximum;
		}
		maximumExtent = visibleMaximum - visibleMinimum;
	}
	for (int ichan = firstVisibleChannel; ichan <= lastVisibleChannel; ichan ++) {
		double cursorFunctionValue = longSound ? 0.0 :
			Vector_getValueAtX (sound, 0.5 * (my d_startSelection + my d_endSelection), ichan, 70);
		/*
		 * BUG: this will only work for mono or stereo, until Graphics_function16 handles quadro.
		 */
		double ymin = (double) (numberOfVisibleChannels - ichan + my d_sound.channelOffset) / numberOfVisibleChannels;
		double ymax = (double) (numberOfVisibleChannels + 1 - ichan + my d_sound.channelOffset) / numberOfVisibleChannels;
		Graphics_Viewport vp = Graphics_insetViewport (my d_graphics, 0, 1, ymin, ymax);
		bool horizontal = false;
		double minimum = sound ? globalMinimum : -1.0, maximum = sound ? globalMaximum : 1.0;
		if (my p_sound_scalingStrategy == kTimeSoundEditor_scalingStrategy_BY_WINDOW) {
			if (nchan > 2) {
				if (longSound) {
					LongSound_getWindowExtrema (longSound, my d_startWindow, my d_endWindow, ichan, & minimum, & maximum);
				} else {
					Matrix_getWindowExtrema (sound, first, last, ichan, ichan, & minimum, & maximum);
				}
				if (maximumExtent > 0.0) {
					double middle = 0.5 * (minimum + maximum);
					minimum = middle - 0.5 * maximumExtent;
					maximum = middle + 0.5 * maximumExtent;
				}
			} else {
				minimum = visibleMinimum;
				maximum = visibleMaximum;
			}
		} else if (my p_sound_scalingStrategy == kTimeSoundEditor_scalingStrategy_BY_WINDOW_AND_CHANNEL) {
			if (longSound) {
				LongSound_getWindowExtrema (longSound, my d_startWindow, my d_endWindow, ichan, & minimum, & maximum);
			} else {
				Matrix_getWindowExtrema (sound, first, last, ichan, ichan, & minimum, & maximum);
			}
		} else if (my p_sound_scalingStrategy == kTimeSoundEditor_scalingStrategy_FIXED_HEIGHT) {
			if (longSound) {
				LongSound_getWindowExtrema (longSound, my d_startWindow, my d_endWindow, ichan, & minimum, & maximum);
			} else {
				Matrix_getWindowExtrema (sound, first, last, ichan, ichan, & minimum, & maximum);
			}
			double channelExtent = my p_sound_scaling_height;
			double middle = 0.5 * (minimum + maximum);
			minimum = middle - 0.5 * channelExtent;
			maximum = middle + 0.5 * channelExtent;
		} else if (my p_sound_scalingStrategy == kTimeSoundEditor_scalingStrategy_FIXED_RANGE) {
			minimum = my p_sound_scaling_minimum;
			maximum = my p_sound_scaling_maximum;
		}
		if (minimum == maximum) { horizontal = true; minimum -= 1.0; maximum += 1.0;}
		Graphics_setWindow (my d_graphics, my d_startWindow, my d_endWindow, minimum, maximum);
		if (horizontal) {
			Graphics_setTextAlignment (my d_graphics, Graphics_RIGHT, Graphics_HALF);
			double mid = 0.5 * (minimum + maximum);
			Graphics_text (my d_graphics, my d_startWindow, mid, Melder_float (Melder_half (mid)));
		} else {
			if (! cursorVisible || ! NUMdefined (cursorFunctionValue) || Graphics_dyWCtoMM (my d_graphics, cursorFunctionValue - minimum) > 5.0) {
				Graphics_setTextAlignment (my d_graphics, Graphics_RIGHT, Graphics_BOTTOM);
				Graphics_text (my d_graphics, my d_startWindow, minimum, Melder_float (Melder_half (minimum)));
			}
			if (! cursorVisible || ! NUMdefined (cursorFunctionValue) || Graphics_dyWCtoMM (my d_graphics, maximum - cursorFunctionValue) > 5.0) {
				Graphics_setTextAlignment (my d_graphics, Graphics_RIGHT, Graphics_TOP);
				Graphics_text (my d_graphics, my d_startWindow, maximum, Melder_float (Melder_half (maximum)));
			}
		}
		if (minimum < 0 && maximum > 0 && ! horizontal) {
			Graphics_setWindow (my d_graphics, 0, 1, minimum, maximum);
			if (! cursorVisible || ! NUMdefined (cursorFunctionValue) || fabs (Graphics_dyWCtoMM (my d_graphics, cursorFunctionValue - 0.0)) > 3.0) {
				Graphics_setTextAlignment (my d_graphics, Graphics_RIGHT, Graphics_HALF);
				Graphics_text (my d_graphics, 0, 0, U"0");
			}
			Graphics_setColour (my d_graphics, Graphics_CYAN);
			Graphics_setLineType (my d_graphics, Graphics_DOTTED);
			Graphics_line (my d_graphics, 0, 0, 1, 0);
			Graphics_setLineType (my d_graphics, Graphics_DRAWN);
		}
		/*
		 * Garnish the drawing area of each channel.
		 */
		Graphics_setWindow (my d_graphics, 0, 1, 0, 1);
		Graphics_setColour (my d_graphics, Graphics_CYAN);
		Graphics_innerRectangle (my d_graphics, 0, 1, 0, 1);
		Graphics_setColour (my d_graphics, Graphics_BLACK);
		if (nchan > 1) {
			Graphics_setTextAlignment (my d_graphics, Graphics_LEFT, Graphics_HALF);
			const char32 *channelName = my v_getChannelName (ichan);
			static MelderString channelLabel;
			MelderString_copy (& channelLabel, ( channelName ? U"ch" : U"Channel " ), ichan);
			if (channelName)
				MelderString_append (& channelLabel, U": ", channelName);
			if (ichan > 8 && ichan - my d_sound.channelOffset == 1) {
				MelderString_append (& channelLabel, U" " UNITEXT_UPWARDS_ARROW);
			} else if (ichan >= 8 && ichan - my d_sound.channelOffset == 8 && ichan < nchan) {
				MelderString_append (& channelLabel, U" " UNITEXT_DOWNWARDS_ARROW);
			}
			Graphics_text (my d_graphics, 1, 0.5, channelLabel.string);
		}
		/*
		 * Draw a very thin separator line underneath.
		 */
		if (ichan < nchan) {
			/*Graphics_setColour (d_graphics, Graphics_BLACK);*/
			Graphics_line (my d_graphics, 0, 0, 1, 0);
		}
		/*
		 * Draw the samples.
		 */
		/*if (ichan == 1) FunctionEditor_SoundAnalysis_drawPulses (this);*/
		if (sound) {
			Graphics_setWindow (my d_graphics, my d_startWindow, my d_endWindow, minimum, maximum);
			if (cursorVisible && NUMdefined (cursorFunctionValue))
				FunctionEditor_drawCursorFunctionValue (me, cursorFunctionValue, Melder_float (Melder_half (cursorFunctionValue)), U"");
			Graphics_setColour (my d_graphics, Graphics_BLACK);
			Graphics_function (my d_graphics, sound -> z [ichan], first, last,
				Sampled_indexToX (sound, first), Sampled_indexToX (sound, last));
		} else {
			Graphics_setWindow (my d_graphics, my d_startWindow, my d_endWindow, minimum * 32768, maximum * 32768);
			Graphics_function16 (my d_graphics,
				longSound -> buffer - longSound -> imin * nchan + (ichan - 1), nchan - 1, first, last,
				Sampled_indexToX (longSound, first), Sampled_indexToX (longSound, last));
		}
		Graphics_resetViewport (my d_graphics, vp);
	}
	Graphics_setWindow (my d_graphics, 0.0, 1.0, 0.0, 1.0);
	Graphics_rectangle (my d_graphics, 0.0, 1.0, 0.0, 1.0);
}
Пример #7
0
void structSound :: v_info () {
	structData :: v_info ();
	const double rho_c = 400;   /* rho = 1.14 kg m-3; c = 353 m s-1; [rho c] = kg m-2 s-1 */
	double minimum = z [1] [1], maximum = minimum;
	MelderInfo_writeLine (U"Number of channels: ", ny, ny == 1 ? U" (mono)" : ny == 2 ? U" (stereo)" : U"");
	MelderInfo_writeLine (U"Time domain:");
	MelderInfo_writeLine (U"   Start time: ", xmin, U" seconds");
	MelderInfo_writeLine (U"   End time: ", xmax, U" seconds");
	MelderInfo_writeLine (U"   Total duration: ", xmax - xmin, U" seconds");
	MelderInfo_writeLine (U"Time sampling:");
	MelderInfo_writeLine (U"   Number of samples: ", nx);
	MelderInfo_writeLine (U"   Sampling period: ", dx, U" seconds");
	MelderInfo_writeLine (U"   Sampling frequency: ", Melder_single (1.0 / dx), U" Hz");
	MelderInfo_writeLine (U"   First sample centred at: ", x1, U" seconds");
	{// scope
		double sum = 0.0, sumOfSquares = 0.0;
		for (long channel = 1; channel <= ny; channel ++) {
			double *amplitude = z [channel];
			for (long i = 1; i <= nx; i ++) {
				double value = amplitude [i];
				sum += value;
				sumOfSquares += value * value;
				if (value < minimum) minimum = value;
				if (value > maximum) maximum = value;
			}
		}
		MelderInfo_writeLine (U"Amplitude:");
		MelderInfo_writeLine (U"   Minimum: ", Melder_single (minimum), U" Pascal");
		MelderInfo_writeLine (U"   Maximum: ", Melder_single (maximum), U" Pascal");
		double mean = sum / (nx * ny);
		MelderInfo_writeLine (U"   Mean: ", Melder_single (mean), U" Pascal");
		MelderInfo_writeLine (U"   Root-mean-square: ", Melder_single (sqrt (sumOfSquares / (nx * ny))), U" Pascal");
		double penergy = sumOfSquares * dx / ny;   /* Pa2 s = kg2 m-2 s-3 */
		MelderInfo_write (U"Total energy: ", Melder_single (penergy), U" Pascal\u00B2 sec");
		double energy = penergy / rho_c;   /* kg s-2 = Joule m-2 */
		MelderInfo_writeLine (U" (energy in air: ", Melder_single (energy), U" Joule/m\u00B2)");
		double power = energy / (dx * nx);   /* kg s-3 = Watt/m2 */
		MelderInfo_write (U"Mean power (intensity) in air: ", Melder_single (power), U" Watt/m\u00B2");
		if (power != 0.0) {
			MelderInfo_writeLine (U" = ", Melder_half (10 * log10 (power / 1e-12)), U" dB");
		} else {
			MelderInfo_writeLine (U"");
		}
	}
	if (nx > 1) {
		for (long channel = 1; channel <= ny; channel ++) {
			double *amplitude = z [channel];
			double sum = 0.0;
			for (long i = 1; i <= nx; i ++) {
				double value = amplitude [i];
				sum += value;
			}
			double mean = sum / nx, stdev = 0.0;
			for (long i = 1; i <= nx; i ++) {
				double value = amplitude [i] - mean;
				stdev += value * value;
			}
			stdev = sqrt (stdev / (nx - 1));
			MelderInfo_writeLine (U"Standard deviation in channel ", channel, U": ", Melder_single (stdev), U" Pascal");
		}
	}
}
Пример #8
0
static void info (I) {
	iam (Sound);
	const double rho_c = 400;   /* rho = 1.14 kg m-3; c = 353 m s-1; [rho c] = kg m-2 s-1 */
	long numberOfSamples = my nx;
	double minimum = my z [1] [1], maximum = minimum;
	classData -> info (me);
	MelderInfo_writeLine3 (L"Number of channels: ", Melder_integer (my ny),
		my ny == 1 ? L" (mono)" : my ny == 2 ? L" (stereo)" : L"");
	MelderInfo_writeLine1 (L"Time domain:");
	MelderInfo_writeLine3 (L"   Start time: ", Melder_double (my xmin), L" seconds");
	MelderInfo_writeLine3 (L"   End time: ", Melder_double (my xmax), L" seconds");
	MelderInfo_writeLine3 (L"   Total duration: ", Melder_double (my xmax - my xmin), L" seconds");
	MelderInfo_writeLine1 (L"Time sampling:");
	MelderInfo_writeLine2 (L"   Number of samples: ", Melder_integer (my nx));
	MelderInfo_writeLine3 (L"   Sampling period: ", Melder_double (my dx), L" seconds");
	MelderInfo_writeLine3 (L"   Sampling frequency: ", Melder_single (1.0 / my dx), L" Hz");
	MelderInfo_writeLine3 (L"   First sample centred at: ", Melder_double (my x1), L" seconds");
	double sum = 0.0, sumOfSquares = 0.0;
	for (long channel = 1; channel <= my ny; channel ++) {
		double *amplitude = my z [channel];
		for (long i = 1; i <= numberOfSamples; i ++) {
			double value = amplitude [i];
			sum += value;
			sumOfSquares += value * value;
			if (value < minimum) minimum = value;
			if (value > maximum) maximum = value;
		}
	}
	MelderInfo_writeLine1 (L"Amplitude:");
	MelderInfo_writeLine3 (L"   Minimum: ", Melder_single (minimum), L" Pascal");
	MelderInfo_writeLine3 (L"   Maximum: ", Melder_single (maximum), L" Pascal");
	double mean = sum / (my nx * my ny);
	MelderInfo_writeLine3 (L"   Mean: ", Melder_single (mean), L" Pascal");
	MelderInfo_writeLine3 (L"   Root-mean-square: ", Melder_single (sqrt (sumOfSquares / (my nx * my ny))), L" Pascal");
	double penergy = sumOfSquares * my dx / my ny;   /* Pa2 s = kg2 m-2 s-3 */
	MelderInfo_write3 (L"Total energy: ", Melder_single (penergy), L" Pascal\u00B2 sec");
	double energy = penergy / rho_c;   /* kg s-2 = Joule m-2 */
	MelderInfo_writeLine3 (L" (energy in air: ", Melder_single (energy), L" Joule/m\u00B2)");
	double power = energy / (my dx * my nx);   /* kg s-3 = Watt/m2 */
	MelderInfo_write3 (L"Mean power (intensity) in air: ", Melder_single (power), L" Watt/m\u00B2");
	if (power != 0.0) {
		MelderInfo_writeLine3 (L" = ", Melder_half (10 * log10 (power / 1e-12)), L" dB");
	} else {
		MelderInfo_writeLine1 (L"");
	}
	if (my nx > 1) {
		for (long channel = 1; channel <= my ny; channel ++) {
			double *amplitude = my z [channel];
			double sum = 0.0;
			for (long i = 1; i <= numberOfSamples; i ++) {
				double value = amplitude [i];
				sum += value;
			}
			double mean = sum / my nx, stdev = 0.0;
			for (long i = 1; i <= numberOfSamples; i ++) {
				double value = amplitude [i] - mean;
				stdev += value * value;
			}
			stdev = sqrt (stdev / (my nx - 1));
			MelderInfo_writeLine5 (L"Standard deviation in channel ", Melder_integer (channel), L": ", Melder_single (stdev), L" Pascal");
		}
	}
}
Пример #9
0
Sound Artword_Speaker_to_Sound (Artword artword, Speaker speaker,
	double fsamp, int oversampling,
	Sound *out_w1, int iw1, Sound *out_w2, int iw2, Sound *out_w3, int iw3,
	Sound *out_p1, int ip1, Sound *out_p2, int ip2, Sound *out_p3, int ip3,
	Sound *out_v1, int iv1, Sound *out_v2, int iv2, Sound *out_v3, int iv3)
{
	try {
		autoSound result = Sound_createSimple (1, artword -> totalTime, fsamp);
		long numberOfSamples = result -> nx;
		double minTract [1+78], maxTract [1+78];   /* For drawing. */
		double Dt = 1 / fsamp / oversampling,
			rho0 = 1.14,
			c = 353,
			onebyc2 = 1.0 / (c * c),
			rho0c2 = rho0 * c * c,
			halfDt = 0.5 * Dt,
			twoDt = 2 * Dt,
			halfc2Dt = 0.5 * c * c * Dt,
			twoc2Dt = 2 * c * c * Dt,
			onebytworho0 = 1.0 / (2.0 * rho0),
			Dtbytworho0 = Dt / (2.0 * rho0);
		double tension, rrad, onebygrad, totalVolume;
		autoArt art = Art_create ();
		long sample;
		int n, m, M;
		autoDelta delta = Speaker_to_Delta (speaker);
		autoMelderMonitor monitor (U"Articulatory synthesis");
		Artword_intoArt (artword, art.peek(), 0.0);
		Art_Speaker_intoDelta (art.peek(), speaker, delta.peek());
		M = delta -> numberOfTubes;
		autoSound w1, w2, w3, p1, p2, p3, v1, v2, v3;
		if (iw1 > 0 && iw1 <= M) w1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw1 = 0;
		if (iw2 > 0 && iw2 <= M) w2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw2 = 0;
		if (iw3 > 0 && iw3 <= M) w3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw3 = 0;
		if (ip1 > 0 && ip1 <= M) p1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip1 = 0;
		if (ip2 > 0 && ip2 <= M) p2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip2 = 0;
		if (ip3 > 0 && ip3 <= M) p3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip3 = 0;
		if (iv1 > 0 && iv1 <= M) v1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv1 = 0;
		if (iv2 > 0 && iv2 <= M) v2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv2 = 0;
		if (iv3 > 0 && iv3 <= M) v3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv3 = 0;
		/* Initialize drawing. */
		{ int i; for (i = 1; i <= 78; i ++) { minTract [i] = 100; maxTract [i] = -100; } }
		totalVolume = 0.0;
		for (m = 1; m <= M; m ++) {
			Delta_Tube t = delta->tube + m;
			if (! t -> left1 && ! t -> right1) continue;
			t->Dx = t->Dxeq; t->dDxdt = 0;   /* 5.113 */
			t->Dy = t->Dyeq; t->dDydt = 0;   /* 5.113 */
			t->Dz = t->Dzeq;   /* 5.113 */
			t->A = t->Dz * ( t->Dy >= t->dy ? t->Dy + Dymin :
				t->Dy <= - t->dy ? Dymin :
				(t->dy + t->Dy) * (t->dy + t->Dy) / (4 * t->dy) + Dymin );   /* 4.4, 4.5 */
			#if EQUAL_TUBE_WIDTHS
				t->A = 0.0001;
			#endif
			t->Jleft = t->Jright = 0;   /* 5.113 */
			t->Qleft = t->Qright = rho0c2;   /* 5.113 */
			t->pleft = t->pright = 0;   /* 5.114 */
			t->Kleft = t->Kright = 0;   /* 5.114 */
			t->V = t->A * t->Dx;   /* 5.114 */
			totalVolume += t->V;
		}
		//Melder_casual (U"Starting volume: ", totalVolume * 1000, U" litres.");
		for (sample = 1; sample <= numberOfSamples; sample ++) {
			double time = (sample - 1) / fsamp;
			Artword_intoArt (artword, art.peek(), time);
			Art_Speaker_intoDelta (art.peek(), speaker, delta.peek());
			if (sample % MONITOR_SAMPLES == 0 && monitor.graphics()) {   // because we can be in batch
				Graphics graphics = monitor.graphics();
				double area [1+78];
				Graphics_Viewport vp;
				for (int i = 1; i <= 78; i ++) {
					area [i] = delta -> tube [i]. A;
					if (area [i] < minTract [i]) minTract [i] = area [i];
					if (area [i] > maxTract [i]) maxTract [i] = area [i];
				}
				Graphics_clearWs (graphics);

				vp = Graphics_insetViewport (monitor.graphics(), 0, 0.5, 0.5, 1);
				Graphics_setWindow (graphics, 0, 1, 0, 0.05);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 1, 35, 0, 0.9);
				Graphics_function (graphics, maxTract, 1, 35, 0, 0.9);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 1, 35, 0, 0.9);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0, 0.5, 0, 0.5);
				Graphics_setWindow (graphics, 0, 1, -0.000003, 0.00001);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 36, 37, 0.2, 0.8);
				Graphics_function (graphics, maxTract, 36, 37, 0.2, 0.8);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 36, 37, 0.2, 0.8);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0.5, 1, 0.5, 1);
				Graphics_setWindow (graphics, 0, 1, 0, 0.001);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 38, 64, 0, 1);
				Graphics_function (graphics, maxTract, 38, 64, 0, 1);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 38, 64, 0, 1);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0.5, 1, 0, 0.5);
				Graphics_setWindow (graphics, 0, 1, 0.001, 0);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 65, 78, 0.5, 1);
				Graphics_function (graphics, maxTract, 65, 78, 0.5, 1);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 65, 78, 0.5, 1);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);
				Melder_monitor ((double) sample / numberOfSamples, U"Articulatory synthesis: ", Melder_half (time), U" seconds");
			}
			for (n = 1; n <= oversampling; n ++) {
				for (m = 1; m <= M; m ++) {
					Delta_Tube t = delta -> tube + m;
					if (! t -> left1 && ! t -> right1) continue;

					/* New geometry. */

					#if CONSTANT_TUBE_LENGTHS
						t->Dxnew = t->Dx;
					#else
						t->dDxdtnew = (t->dDxdt + Dt * 10000 * (t->Dxeq - t->Dx)) /
							(1 + 200 * Dt);   /* Critical damping, 10 ms. */
						t->Dxnew = t->Dx + t->dDxdtnew * Dt;
					#endif
					/* 3-way: equal lengths. */
					/* This requires left tubes to be processed before right tubes. */
					if (t->left1 && t->left1->right2) t->Dxnew = t->left1->Dxnew;
					t->Dz = t->Dzeq;   /* immediate... */
					t->eleft = (t->Qleft - t->Kleft) * t->V;   /* 5.115 */
					t->eright = (t->Qright - t->Kright) * t->V;   /* 5.115 */
					t->e = 0.5 * (t->eleft + t->eright);   /* 5.116 */
					t->p = 0.5 * (t->pleft + t->pright);   /* 5.116 */
					t->DeltaP = t->e / t->V - rho0c2;   /* 5.117 */
					t->v = t->p / (rho0 + onebyc2 * t->DeltaP);   /* 5.118 */
					{
						double dDy = t->Dyeq - t->Dy;
						double cubic = t->k3 * dDy * dDy;
						Delta_Tube l1 = t->left1, l2 = t->left2, r1 = t->right1, r2 = t->right2;
						tension = dDy * (t->k1 + cubic);
						t->B = 2 * t->Brel * sqrt (t->mass * (t->k1 + 3 * cubic));
						if (t->k1left1 != 0.0 && l1)
							tension += t->k1left1 * t->k1 * (dDy - (l1->Dyeq - l1->Dy));
						if (t->k1left2 != 0.0 && l2)
							tension += t->k1left2 * t->k1 * (dDy - (l2->Dyeq - l2->Dy));
						if (t->k1right1 != 0.0 && r1)
							tension += t->k1right1 * t->k1 * (dDy - (r1->Dyeq - r1->Dy));
						if (t->k1right2 != 0.0 && r2)
							tension += t->k1right2 * t->k1 * (dDy - (r2->Dyeq - r2->Dy));
					}
					if (t->Dy < t->dy) {
						if (t->Dy >= - t->dy) {
							double dDy = t->dy - t->Dy, dDy2 = dDy * dDy;
							tension += dDy2 / (4 * t->dy) * (t->s1 + 0.5 * t->s3 * dDy2);
							t->B += 2 * dDy / (2 * t->dy) *
								sqrt (t->mass * (t->s1 + t->s3 * dDy2));
						} else {
							tension -= t->Dy * (t->s1 + t->s3 * (t->Dy * t->Dy + t->dy * t->dy));
							t->B += 2 * sqrt (t->mass * (t->s1 + t->s3 * (3 * t->Dy * t->Dy + t->dy * t->dy)));
						}
					}
					t->dDydtnew = (t->dDydt + Dt / t->mass * (tension + 2 * t->DeltaP * t->Dz * t->Dx)) /
						(1 + t->B * Dt / t->mass);   /* 5.119 */
					t->Dynew = t->Dy + t->dDydtnew * Dt;   /* 5.119 */
					#if NO_MOVING_WALLS
						t->Dynew = t->Dy;
					#endif
					t->Anew = t->Dz * ( t->Dynew >= t->dy ? t->Dynew + Dymin :
						t->Dynew <= - t->dy ? Dymin :
						(t->dy + t->Dynew) * (t->dy + t->Dynew) / (4 * t->dy) + Dymin );   /* 4.4, 4.5 */
					#if EQUAL_TUBE_WIDTHS
						t->Anew = 0.0001;
					#endif
					t->Ahalf = 0.5 * (t->A + t->Anew);   /* 5.120 */
					t->Dxhalf = 0.5 * (t->Dxnew + t->Dx);   /* 5.121 */
					t->Vnew = t->Anew * t->Dxnew;   /* 5.128 */
					{ double oneByDyav = t->Dz / t->A;
					/*t->R = 12 * 1.86e-5 * t->parallel * t->parallel * oneByDyav * oneByDyav;*/
					if (t->Dy < 0)
						t->R = 12 * 1.86e-5 / (Dymin * Dymin + t->dy * t->dy);
					else
						t->R = 12 * 1.86e-5 * t->parallel * t->parallel /
							((t->Dy + Dymin) * (t->Dy + Dymin) + t->dy * t->dy);
					t->R += 0.3 * t->parallel * oneByDyav;   /* 5.23 */ }
					t->r = (1 + t->R * Dt / rho0) * t->Dxhalf / t->Anew;   /* 5.122 */
					t->ehalf = t->e + halfc2Dt * (t->Jleft - t->Jright);   /* 5.123 */
					t->phalf = (t->p + halfDt * (t->Qleft - t->Qright) / t->Dx) / (1 + Dtbytworho0 * t->R);   /* 5.123 */
					#if MASS_LEAPFROG
						t->ehalf = t->ehalfold + 2 * halfc2Dt * (t->Jleft - t->Jright);
					#endif
					t->Jhalf = t->phalf * t->Ahalf;   /* 5.124 */
					t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf) + onebytworho0 * t->phalf * t->phalf;   /* 5.124 */
					#if NO_BERNOULLI_EFFECT
						t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf);
					#endif
				}
				for (m = 1; m <= M; m ++) {   /* Compute Jleftnew and Qleftnew. */
					Delta_Tube l = delta->tube + m, r1 = l -> right1, r2 = l -> right2, r = r1;
					Delta_Tube l1 = l, l2 = r ? r -> left2 : NULL;
					if (l->left1 == NULL) {   /* Closed boundary at the left side (diaphragm)? */
						if (r == NULL) continue;   /* Tube not connected at all. */
						l->Jleftnew = 0;   /* 5.132. */
						l->Qleftnew = (l->eleft - twoc2Dt * l->Jhalf) / l->Vnew;   /* 5.132. */
					}
					else   /* Left boundary open to another tube will be handled... */
						(void) 0;   /* ...together with the right boundary of the tube to the left. */
					if (r == NULL) {   /* Open boundary at the right side (lips, nostrils)? */
						rrad = 1 - c * Dt / 0.02;   /* Radiation resistance, 5.135. */
						onebygrad = 1 / (1 + c * Dt / 0.02);   /* Radiation conductance, 5.135. */
						#if NO_RADIATION_DAMPING
							rrad = 0;
							onebygrad = 0;
						#endif
						l->prightnew = ((l->Dxhalf / Dt + c * onebygrad) * l->pright +
							 2 * ((l->Qhalf - rho0c2) - (l->Qright - rho0c2) * onebygrad)) /
							(l->r * l->Anew / Dt + c * onebygrad);   /* 5.136 */
						l->Jrightnew = l->prightnew * l->Anew;   /* 5.136 */
						l->Qrightnew = (rrad * (l->Qright - rho0c2) +
							c * (l->prightnew - l->pright)) * onebygrad + rho0c2;   /* 5.136 */
					} else if (l2 == NULL && r2 == NULL) {   /* Two-way boundary. */
						if (l->v > criticalVelocity && l->A < r->A) {
							l->Pturbrightnew = -0.5 * rho0 * (l->v - criticalVelocity) *
								(1 - l->A / r->A) * (1 - l->A / r->A) * l->v;
							if (l->Pturbrightnew != 0.0)
								l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * l->A */;
						}
						if (r->v < - criticalVelocity && r->A < l->A) {
							l->Pturbrightnew = 0.5 * rho0 * (r->v + criticalVelocity) *
								(1 - r->A / l->A) * (1 - r->A / l->A) * r->v;
							if (l->Pturbrightnew != 0.0)
								l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * r->A */;
						}
						#if NO_TURBULENCE
							l->Pturbrightnew = 0;
						#endif
						l->Jrightnew = r->Jleftnew =
							(l->Dxhalf * l->pright + r->Dxhalf * r->pleft +
							 twoDt * (l->Qhalf - r->Qhalf + l->Pturbright)) /
							(l->r + r->r);   /* 5.127 */
						#if B91
							l->Jrightnew = r->Jleftnew =
								(l->pright + r->pleft +
								 2 * twoDt * (l->Qhalf - r->Qhalf + l->Pturbright) / (l->Dxhalf + r->Dxhalf)) /
								(l->r / l->Dxhalf + r->r / r->Dxhalf);
						#endif
						l->prightnew = l->Jrightnew / l->Anew;   /* 5.128 */
						r->pleftnew = r->Jleftnew / r->Anew;   /* 5.128 */
						l->Krightnew = onebytworho0 * l->prightnew * l->prightnew;   /* 5.128 */
						r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							l->Krightnew = r->Kleftnew = 0;
						#endif
						l->Qrightnew =
							(l->eright + r->eleft + twoc2Dt * (l->Jhalf - r->Jhalf)
							 + l->Krightnew * l->Vnew + (r->Kleftnew - l->Pturbrightnew) * r->Vnew) /
							(l->Vnew + r->Vnew);   /* 5.131 */
						r->Qleftnew = l->Qrightnew + l->Pturbrightnew;   /* 5.131 */
					} else if (r2) {   /* Two adjacent tubes at the right side (velic). */
						r1->Jleftnew =
							(r1->Jleft * r1->Dxhalf * (1 / (l->A + r2->A) + 1 / r1->A) +
							 twoDt * ((l->Ahalf * l->Qhalf + r2->Ahalf * r2->Qhalf ) / (l->Ahalf  + r2->Ahalf) - r1->Qhalf)) /
							(1 / (1 / l->r + 1 / r2->r) + r1->r);   /* 5.138 */
						r2->Jleftnew =
							(r2->Jleft * r2->Dxhalf * (1 / (l->A + r1->A) + 1 / r2->A) +
							 twoDt * ((l->Ahalf * l->Qhalf + r1->Ahalf * r1->Qhalf ) / (l->Ahalf  + r1->Ahalf) - r2->Qhalf)) /
							(1 / (1 / l->r + 1 / r1->r) + r2->r);   /* 5.138 */
						l->Jrightnew = r1->Jleftnew + r2->Jleftnew;   /* 5.139 */
						l->prightnew = l->Jrightnew / l->Anew;   /* 5.128 */
						r1->pleftnew = r1->Jleftnew / r1->Anew;   /* 5.128 */
						r2->pleftnew = r2->Jleftnew / r2->Anew;   /* 5.128 */
						l->Krightnew = onebytworho0 * l->prightnew * l->prightnew;   /* 5.128 */
						r1->Kleftnew = onebytworho0 * r1->pleftnew * r1->pleftnew;   /* 5.128 */
						r2->Kleftnew = onebytworho0 * r2->pleftnew * r2->pleftnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							l->Krightnew = r1->Kleftnew = r2->Kleftnew = 0;
						#endif
						l->Qrightnew = r1->Qleftnew = r2->Qleftnew =
							(l->eright + r1->eleft + r2->eleft + twoc2Dt * (l->Jhalf - r1->Jhalf - r2->Jhalf) +
							 l->Krightnew * l->Vnew + r1->Kleftnew * r1->Vnew + r2->Kleftnew * r2->Vnew) /
							(l->Vnew + r1->Vnew + r2->Vnew);   /* 5.137 */
					} else {
						Melder_assert (l2 != NULL);
						l1->Jrightnew =
							(l1->Jright * l1->Dxhalf * (1 / (r->A + l2->A) + 1 / l1->A) -
							 twoDt * ((r->Ahalf * r->Qhalf + l2->Ahalf * l2->Qhalf ) / (r->Ahalf  + l2->Ahalf) - l1->Qhalf)) /
							(1 / (1 / r->r + 1 / l2->r) + l1->r);   /* 5.138 */
						l2->Jrightnew =
							(l2->Jright * l2->Dxhalf * (1 / (r->A + l1->A) + 1 / l2->A) -
							 twoDt * ((r->Ahalf * r->Qhalf + l1->Ahalf  * l1->Qhalf ) / (r->Ahalf  + l1->Ahalf) - l2->Qhalf)) /
							(1 / (1 / r->r + 1 / l1->r) + l2->r);   /* 5.138 */
						r->Jleftnew = l1->Jrightnew + l2->Jrightnew;   /* 5.139 */
						r->pleftnew = r->Jleftnew / r->Anew;   /* 5.128 */
						l1->prightnew = l1->Jrightnew / l1->Anew;   /* 5.128 */
						l2->prightnew = l2->Jrightnew / l2->Anew;   /* 5.128 */
						r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew;   /* 5.128 */
						l1->Krightnew = onebytworho0 * l1->prightnew * l1->prightnew;   /* 5.128 */
						l2->Krightnew = onebytworho0 * l2->prightnew * l2->prightnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							r->Kleftnew = l1->Krightnew = l2->Krightnew = 0;
						#endif
						r->Qleftnew = l1->Qrightnew = l2->Qrightnew =
							(r->eleft + l1->eright + l2->eright + twoc2Dt * (l1->Jhalf + l2->Jhalf - r->Jhalf) +
							 r->Kleftnew * r->Vnew + l1->Krightnew * l1->Vnew + l2->Krightnew * l2->Vnew) /
							(r->Vnew + l1->Vnew + l2->Vnew);   /* 5.137 */
					}
				}

				/* Save some results. */

				if (n == (oversampling + 1) / 2) {
					double out = 0.0;
					for (m = 1; m <= M; m ++) {
						Delta_Tube t = delta->tube + m;
						out += rho0 * t->Dx * t->Dz * t->dDydt * Dt * 1000;   /* Radiation of wall movement, 5.140. */
						if (t->right1 == NULL)
							out += t->Jrightnew - t->Jright;   /* Radiation of open tube end. */
					}
					result -> z [1] [sample] = out /= 4 * NUMpi * 0.4 * Dt;   /* At 0.4 metres. */
					if (iw1) w1 -> z [1] [sample] = delta->tube[iw1].Dy;
					if (iw2) w2 -> z [1] [sample] = delta->tube[iw2].Dy;
					if (iw3) w3 -> z [1] [sample] = delta->tube[iw3].Dy;
					if (ip1) p1 -> z [1] [sample] = delta->tube[ip1].DeltaP;
					if (ip2) p2 -> z [1] [sample] = delta->tube[ip2].DeltaP;
					if (ip3) p3 -> z [1] [sample] = delta->tube[ip3].DeltaP;
					if (iv1) v1 -> z [1] [sample] = delta->tube[iv1].v;
					if (iv2) v2 -> z [1] [sample] = delta->tube[iv2].v;
					if (iv3) v3 -> z [1] [sample] = delta->tube[iv3].v;
				}
				for (m = 1; m <= M; m ++) {
					Delta_Tube t = delta->tube + m;
					t->Jleft = t->Jleftnew;
					t->Jright = t->Jrightnew;
					t->Qleft = t->Qleftnew;
					t->Qright = t->Qrightnew;
					t->Dy = t->Dynew;
					t->dDydt = t->dDydtnew;
					t->A = t->Anew;
					t->Dx = t->Dxnew;
					t->dDxdt = t->dDxdtnew;
					t->eleft = t->eleftnew;
					t->eright = t->erightnew;
					#if MASS_LEAPFROG
						t->ehalfold = t->ehalf;
					#endif
					t->pleft = t->pleftnew;
					t->pright = t->prightnew;
					t->Kleft = t->Kleftnew;
					t->Kright = t->Krightnew;
					t->V = t->Vnew;
					t->Pturbright = t->Pturbrightnew;
				}
			}
		}
		totalVolume = 0.0;
		for (m = 1; m <= M; m ++)
			totalVolume += delta->tube [m]. V;
		//Melder_casual (U"Ending volume: ", totalVolume * 1000, U" litres.");
		if (out_w1) *out_w1 = w1.transfer();
		if (out_w2) *out_w2 = w2.transfer();
		if (out_w3) *out_w3 = w3.transfer();
		if (out_p1) *out_p1 = p1.transfer();
		if (out_p2) *out_p2 = p2.transfer();
		if (out_p3) *out_p3 = p3.transfer();
		if (out_v1) *out_v1 = v1.transfer();
		if (out_v2) *out_v2 = v2.transfer();
		if (out_v3) *out_v3 = v3.transfer();
		return result.transfer();
	} catch (MelderError) {
		Melder_throw (artword, U" & ", speaker, U": articulatory synthesis not performed.");
	}
}