Пример #1
0
END_TEST


START_TEST (test_L3_Model_id)
{
  const char *id = "mitochondria";


  fail_unless( !Model_isSetId(M) );
  
  Model_setId(M, id);

  fail_unless( !strcmp(Model_getId(M), id) );
  fail_unless( Model_isSetId(M) );

  if (Model_getId(M) == id)
  {
    fail("Model_setId(...) did not make a copy of string.");
  }
 
  Model_unsetId(M);
  
  fail_unless( !Model_isSetId(M) );

  if (Model_getId(M) != NULL)
  {
    fail("Model_unsetId(M) did not clear string.");
  }
}
Пример #2
0
int
main (int argc, char *argv[])
{
  const char *filename;

  SBMLDocument_t *d;
  Model_t        *m;

  unsigned int level, version;


  if (argc != 2)
  {
    printf("Usage: printSBML filename\n");
    return 2;
  }


  filename = argv[1];
  d        = readSBML(filename);

  SBMLDocument_printErrors(d, stdout);

  m = SBMLDocument_getModel(d);

  level   = SBMLDocument_getLevel  (d);
  version = SBMLDocument_getVersion(d);

  printf("\n");
  printf("File: %s (Level %u, version %u)\n", filename, level, version);

  if (m == NULL)
  {
    printf("No model present.");
    return 1;
  }

  printf("         ");
  printf("  model id: %s\n",  Model_isSetId(m) ? Model_getId(m) : "(empty)");

  printf( "functionDefinitions: %d\n",  Model_getNumFunctionDefinitions(m) );
  printf( "    unitDefinitions: %d\n",  Model_getNumUnitDefinitions    (m) );
  printf( "   compartmentTypes: %d\n",  Model_getNumCompartmentTypes   (m) );
  printf( "        specieTypes: %d\n",  Model_getNumSpeciesTypes       (m) );
  printf( "       compartments: %d\n",  Model_getNumCompartments       (m) );
  printf( "            species: %d\n",  Model_getNumSpecies            (m) );
  printf( "         parameters: %d\n",  Model_getNumParameters         (m) );
  printf( " initialAssignments: %d\n",  Model_getNumInitialAssignments (m) );
  printf( "              rules: %d\n",  Model_getNumRules              (m) );
  printf( "        constraints: %d\n",  Model_getNumConstraints        (m) );
  printf( "          reactions: %d\n",  Model_getNumReactions          (m) );
  printf( "             events: %d\n",  Model_getNumEvents             (m) );
  printf( "\n" );

  SBMLDocument_free(d);
  return 0;
}
Пример #3
0
void
printMath (Model_t *m)
{
  unsigned int  n;

  /* a digraph must have a name thus
   * need to check that Model_getId does not return NULL
   * and provide a name if it does
   */

  if (Model_getId(m) != NULL) {
    fprintf(fout, "digraph %s {\n", Model_getId(m));
  }
  else {
    fprintf(fout, "digraph example {\n");
  }
  fprintf(fout, "compound=true;\n");

  for (n = 0; n < Model_getNumFunctionDefinitions(m); ++n)
  {
    printFunctionDefinition(n + 1, Model_getFunctionDefinition(m, n));
  }

  for (n = 0; n < Model_getNumRules(m); ++n)
  {
    printRuleMath(n + 1, Model_getRule(m, n));
  }

  printf("\n");

  for (n = 0; n < Model_getNumReactions(m); ++n)
  {
    printReactionMath(n + 1, Model_getReaction(m, n));
  }

  printf("\n");

  for (n = 0; n < Model_getNumEvents(m); ++n)
  {
    printEventMath(n + 1, Model_getEvent(m, n));
  }

  fprintf(fout, "}\n");
}
Пример #4
0
static int drawJacobyTxt(cvodeData_t *data, char *file)
{

  int i, j;
  char filename[WORDSIZE];
  FILE *f;

  sprintf(filename, "%s.dot", file);
  f = fopen(filename, "w");
  fprintf(f ,"digraph jacoby {\n");
  fprintf(f ,"overlap=scale;\n");
  if ( Model_isSetName(data->model->m) )
    fprintf(f ,"label=\"%s at time %g\";\n", Model_getName(data->model->m),
	    data->currenttime);
  else if ( Model_isSetId(data->model->m) )
    fprintf(f ,"label=\"%s at time %g\";\n", Model_getId(data->model->m),
	    data->currenttime);
  else
    fprintf(f ,"label=\"at time %g\";\n", data->currenttime);


  /*
    Set edges from species A to species B if the
    corresponding entry in the jacobian ((d[B]/dt)/d[A])
    is not '0'. Set edge color 'red' and arrowhead 'tee'
    if negative.
  */


  for ( i=0; i<data->model->neq; i++ )
  {
    for ( j=0; j<data->model->neq; j++ )
    {
      if ( evaluateAST(data->model->jacob[i][j], data) != 0 )
      {
	fprintf(f ,"%s->%s [label=\"%g\" ",
		data->model->names[j],
		data->model->names[i],
		evaluateAST(data->model->jacob[i][j],
			    data));
	if ( evaluateAST(data->model->jacob[i][j], data) < 0 )
	  fprintf(f ,"arrowhead=tee color=red];\n");
	else
	  fprintf(f ,"];\n");
      }
    }
  }
  for ( i=0; i<data->model->neq; i++ )
  {
    fprintf(f ,"%s [label=\"%s\"];", data->model->names[i],
	    data->model->names[i]);
  }   
  fprintf(f, "}\n");
  return 1;
}
Пример #5
0
END_TEST


START_TEST (test_L3_Model_createWithNS )
{
  XMLNamespaces_t *xmlns = XMLNamespaces_create();
  XMLNamespaces_add(xmlns, "http://www.sbml.org", "testsbml");
  SBMLNamespaces_t *sbmlns = SBMLNamespaces_create(3,1);
  SBMLNamespaces_addNamespaces(sbmlns,xmlns);

  Model_t *m = 
    Model_createWithNS (sbmlns);


  fail_unless( SBase_getTypeCode  ((SBase_t *) m) == SBML_MODEL );
  fail_unless( SBase_getMetaId    ((SBase_t *) m) == NULL );
  fail_unless( SBase_getNotes     ((SBase_t *) m) == NULL );
  fail_unless( SBase_getAnnotation((SBase_t *) m) == NULL );

  fail_unless( SBase_getLevel       ((SBase_t *) m) == 3 );
  fail_unless( SBase_getVersion     ((SBase_t *) m) == 1 );

  fail_unless( Model_getNamespaces     (m) != NULL );
  fail_unless( XMLNamespaces_getLength(Model_getNamespaces(m)) == 2 );


  fail_unless( Model_getId     (m) == NULL );
  fail_unless( Model_getName   (m) == NULL );
  fail_unless( Model_getSubstanceUnits(m) == NULL );
  fail_unless( Model_getTimeUnits(m) == NULL );
  fail_unless( Model_getVolumeUnits(m) == NULL );
  fail_unless( Model_getAreaUnits(m) == NULL );
  fail_unless( Model_getLengthUnits(m) == NULL );
  fail_unless( Model_getConversionFactor(m) == NULL );

  fail_unless( !Model_isSetId     (m) );
  fail_unless( !Model_isSetName   (m) );
  fail_unless( !Model_isSetSubstanceUnits(m) );
  fail_unless( !Model_isSetTimeUnits(m) );
  fail_unless( !Model_isSetVolumeUnits(m) );
  fail_unless( !Model_isSetAreaUnits(m) );
  fail_unless( !Model_isSetLengthUnits(m) );
  fail_unless( !Model_isSetConversionFactor(m) );

  Model_free(m);
  XMLNamespaces_free(xmlns);
  SBMLNamespaces_free(sbmlns);
}
Пример #6
0
static int openXMGrace(cvodeData_t *data)
{
  double maxY;

  /* Open XMGrace */
  if ( !GraceIsOpen() ) {     
    GraceRegisterErrorFunction(grace_error); 
    /* Start Grace with a buffer size of 2048 and open the pipe */
    if ( GraceOpen(2048) == -1 ) {
      fprintf(stderr, "Can't run Grace. \n");
      return 1;
    }
    else if ( GraceIsOpen() ) {
      maxY = 1.0;
      /*
	"with g%d" might become useful, when printing multiple
	graphs into one XMGrace subprocess.
      */
      /* GracePrintf("with g%d", data->results->xmgrace); */
      GracePrintf("world xmax %g", data->currenttime);
      GracePrintf("world ymax %g", 1.25*maxY);
      GracePrintf("xaxis tick major %g", data->currenttime/10);
      /* GracePrintf("xaxis tick minor %d", (int) data->currenttime/100); */
      GracePrintf("yaxis tick major %g", (1.25*maxY)/12.5 );
      GracePrintf("xaxis label font 4");
      GracePrintf("xaxis label \"time\"");
      GracePrintf("xaxis ticklabel font 4");
      GracePrintf("xaxis ticklabel char size 0.7");
      GracePrintf("yaxis label font 4");
      GracePrintf("yaxis label \"concentration\"");    
      GracePrintf("yaxis ticklabel font 4");
      GracePrintf("yaxis ticklabel char size 0.7");
      if ( Model_isSetName(data->model->simple) )
	GracePrintf("subtitle \"%s\"", Model_getName(data->model->simple));
      else if  ( Model_isSetId(data->model->simple) )
	GracePrintf("subtitle \"%s\"", Model_getId(data->model->simple));
      else 
	GracePrintf("subtitle \"model has no name/id\"");
      GracePrintf("subtitle font 8");   
    }
  }
  else {
    fprintf(stderr, "Please close XMGrace first.\n");
    return 1;
  }

  return 0;
}
Пример #7
0
void printModel(Model_t *m, FILE *f)
{
  fprintf(f, "\n");
  fprintf(f, "Model Statistics:\n");
  fprintf(f, " Model id:     %s\n",
	 Model_isSetId(m) ? Model_getId(m) : "(not set)");
  fprintf(f, " Model name:   %s\n",
	 Model_isSetName(m) ? Model_getName(m) : "(not set)"); 
  fprintf(f, "\n");
  fprintf(f, " Compartments: %d\n",  Model_getNumCompartments(m)); 
  fprintf(f, " Species:      %d\n",  Model_getNumSpecies(m));
  fprintf(f, " Reactions:    %d\n",  Model_getNumReactions(m));
  fprintf(f, " Rules:        %d\n",  Model_getNumRules(m));
  fprintf(f, " Events:       %d\n",  Model_getNumEvents(m));
  fprintf(f, " Functions:    %d\n",  Model_getNumFunctionDefinitions(m) ); 
  fprintf(f, "\n");
}
Пример #8
0
myResult* simulate_implicit(Model_t *m, myResult *result, mySpecies *sp[], myParameter *param[], myCompartment *comp[], myReaction *re[], myRule *rule[], myEvent *event[], myInitialAssignment *initAssign[], myAlgebraicEquations *algEq, timeVariantAssignments *timeVarAssign, double sim_time, double dt, int print_interval, double *time, int order, int use_lazy_method, int print_amount, allocated_memory *mem){
  unsigned int i, j;
  int cycle;
  int error;
  int end_cycle = get_end_cycle(sim_time, dt);
  double reverse_time;
  double *value_time_p = result->values_time;
  double *value_sp_p = result->values_sp;
  double *value_param_p = result->values_param;
  double *value_comp_p = result->values_comp;
  double **coefficient_matrix = NULL;
  double *constant_vector = NULL;
  int *alg_pivot = NULL;
  double reactants_numerator, products_numerator;
  double min_value;
  double *init_val;
  /* for implicit */
  double **jacobian;
  int is_convergence = 0;
  double *b;
  double *pre_b;
  int    *p; /* for pivot selection */
  boolean flag;
  double delta = 1.0e-8;
  double tolerance = 1.0e-4; /* error tolerance of neuton method */
  unsigned int loop;
  double *delta_value;
  double k_next; /* speculated k value : k(t+1) */
  double *k_t;   /* k(t) */

  /* num of SBase objects */
  unsigned int num_of_species = Model_getNumSpecies(m);
  unsigned int num_of_parameters = Model_getNumParameters(m);
  unsigned int num_of_compartments = Model_getNumCompartments(m);
  unsigned int num_of_reactions = Model_getNumReactions(m);
  unsigned int num_of_rules = Model_getNumRules(m);
  unsigned int num_of_events = Model_getNumEvents(m);
  unsigned int num_of_initialAssignments = Model_getNumInitialAssignments(m);

  /* num of variables whose quantity is not a constant */
  unsigned int num_of_all_var_species = 0;
  unsigned int num_of_all_var_parameters = 0;
  unsigned int num_of_all_var_compartments = 0;
  unsigned int num_of_all_var_species_reference = 0;
  /* num of variables (which is NOT changed by assignment nor algebraic rule) */
  unsigned int num_of_var_species = 0;
  unsigned int num_of_var_parameters = 0;
  unsigned int num_of_var_compartments = 0;
  unsigned int num_of_var_species_reference = 0;
  unsigned int sum_num_of_vars;
  /* All variables (whose quantity is not a constant) */
  mySpecies **all_var_sp;           /* all variable species */
  myParameter **all_var_param;      /* all variable parameters */
  myCompartment **all_var_comp;     /* all variable compartments */
  mySpeciesReference **all_var_spr; /* all varialbe SpeciesReferences */
  /* variables (which is NOT changed by assignment nor algebraic rule) */
  mySpecies **var_sp;
  myParameter **var_param;
  myCompartment **var_comp;
  mySpeciesReference **var_spr;

  set_seed();

  check_num(num_of_species, num_of_parameters, num_of_compartments, num_of_reactions, &num_of_all_var_species, &num_of_all_var_parameters, &num_of_all_var_compartments, &num_of_all_var_species_reference, &num_of_var_species, &num_of_var_parameters, &num_of_var_compartments, &num_of_var_species_reference, sp, param, comp, re);

  /* create objects */
  all_var_sp = (mySpecies **)malloc(sizeof(mySpecies *) * num_of_all_var_species);
  all_var_param = (myParameter **)malloc(sizeof(myParameter *) * num_of_all_var_parameters);
  all_var_comp = (myCompartment **)malloc(sizeof(myCompartment *) * num_of_all_var_compartments);
  all_var_spr = (mySpeciesReference **)malloc(sizeof(mySpeciesReference *) * num_of_all_var_species_reference);
  var_sp = (mySpecies **)malloc(sizeof(mySpecies *) * num_of_var_species);
  var_param = (myParameter **)malloc(sizeof(myParameter *) * num_of_var_parameters);
  var_comp = (myCompartment **)malloc(sizeof(myCompartment *) * num_of_var_compartments);
  var_spr = (mySpeciesReference **)malloc(sizeof(mySpeciesReference *) * num_of_var_species_reference);
  /* mySpecies *all_var_sp[num_of_all_var_species]; */
  /* myParameter *all_var_param[num_of_all_var_parameters]; */
  /* myCompartment *all_var_comp[num_of_all_var_compartments]; */
  /* mySpeciesReference *all_var_spr[num_of_all_var_species_reference]; */
  /* mySpecies *var_sp[num_of_var_species]; */
  /* myParameter *var_param[num_of_var_parameters]; */
  /* myCompartment *var_comp[num_of_var_compartments]; */
  /* mySpeciesReference *var_spr[num_of_var_species_reference]; */

  create_calc_object_list(num_of_species, num_of_parameters, num_of_compartments, num_of_reactions, all_var_sp, all_var_param, all_var_comp, all_var_spr, var_sp, var_param, var_comp, var_spr, sp, param, comp, re);

  sum_num_of_vars = num_of_var_species + num_of_var_parameters +
                    num_of_var_compartments + num_of_var_species_reference;

  jacobian = (double**)malloc(sizeof(double*)*(sum_num_of_vars));
  for(i=0; i<sum_num_of_vars; i++){
    jacobian[i] = (double*)malloc(sizeof(double)*(sum_num_of_vars));
  }

  b = (double *)malloc(sizeof(double) * (sum_num_of_vars));
  pre_b = (double *)malloc(sizeof(double) * (sum_num_of_vars));
  p = (int *)malloc(sizeof(int) * (sum_num_of_vars));
  delta_value = (double *)malloc(sizeof(double) * (sum_num_of_vars));
  k_t = (double *)malloc(sizeof(double) * (sum_num_of_vars));
  /*
  double b[sum_num_of_vars];
  double pre_b[sum_num_of_vars];
  int p[sum_num_of_vars];
  double delta_value[sum_num_of_vars];
  double k_t[sum_num_of_vars];
  */

  if(algEq != NULL){
    coefficient_matrix = (double**)malloc(sizeof(double*)*(algEq->num_of_algebraic_variables));
    for(i=0; i<algEq->num_of_algebraic_variables; i++){
      coefficient_matrix[i] = (double*)malloc(sizeof(double)*(algEq->num_of_algebraic_variables));
    }
    constant_vector = (double*)malloc(sizeof(double)*(algEq->num_of_algebraic_variables));
    alg_pivot = (int*)malloc(sizeof(int)*(algEq->num_of_algebraic_variables));
  }

  PRG_TRACE(("Simulation for [%s] Starts!\n", Model_getId(m)));
  cycle = 0;

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 0);

  /* calc temp value by assignment */
  for(i=0; i<num_of_all_var_species; i++){
    if(all_var_sp[i]->depending_rule != NULL && all_var_sp[i]->depending_rule->is_assignment){
      all_var_sp[i]->temp_value = calc(all_var_sp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_parameters; i++){
    if(all_var_param[i]->depending_rule != NULL && all_var_param[i]->depending_rule->is_assignment){
      all_var_param[i]->temp_value = calc(all_var_param[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_compartments; i++){
    if(all_var_comp[i]->depending_rule != NULL && all_var_comp[i]->depending_rule->is_assignment){
      all_var_comp[i]->temp_value = calc(all_var_comp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_species_reference; i++){
    if(all_var_spr[i]->depending_rule != NULL && all_var_spr[i]->depending_rule->is_assignment){
      all_var_spr[i]->temp_value = calc(all_var_spr[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  /* forwarding value */
  forwarding_value(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference);

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 0);

  /* calc InitialAssignment */
  calc_initial_assignment(initAssign, num_of_initialAssignments, dt, cycle, &reverse_time);

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 0);

  /* rewriting for explicit delay */
  for(i=0; i<num_of_initialAssignments; i++){
    for(j=0; j<initAssign[i]->eq->math_length; j++){
      if(initAssign[i]->eq->number[j] == time){
        TRACE(("time is replaced with reverse time\n"));
        initAssign[i]->eq->number[j] = &reverse_time;
      }else if(initAssign[i]->eq->number[j] != NULL){
        init_val = (double*)malloc(sizeof(double));
        *init_val = *initAssign[i]->eq->number[j];
        mem->memory[mem->num_of_allocated_memory++] = init_val;
        initAssign[i]->eq->number[j] = init_val;
      }
    }
  }
  for(i=0; i<timeVarAssign->num_of_time_variant_assignments; i++){
    for(j=0; j<timeVarAssign->eq[i]->math_length; j++){
      if(timeVarAssign->eq[i]->number[j] == time){
        TRACE(("time is replaced with reverse time\n"));
        timeVarAssign->eq[i]->number[j] = &reverse_time;
      }else if(timeVarAssign->eq[i]->number[j] != NULL){
        init_val = (double*)malloc(sizeof(double));
        *init_val = *timeVarAssign->eq[i]->number[j];
        mem->memory[mem->num_of_allocated_memory++] = init_val;
        timeVarAssign->eq[i]->number[j] = init_val;
      }
    }
  }

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 0);

  /* calc temp value by assignment */
  for(i=0; i<num_of_all_var_species; i++){
    if(all_var_sp[i]->depending_rule != NULL && all_var_sp[i]->depending_rule->is_assignment){
      all_var_sp[i]->temp_value = calc(all_var_sp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_parameters; i++){
    if(all_var_param[i]->depending_rule != NULL && all_var_param[i]->depending_rule->is_assignment){
      all_var_param[i]->temp_value = calc(all_var_param[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_compartments; i++){
    if(all_var_comp[i]->depending_rule != NULL && all_var_comp[i]->depending_rule->is_assignment){
      all_var_comp[i]->temp_value = calc(all_var_comp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  for(i=0; i<num_of_all_var_species_reference; i++){
    if(all_var_spr[i]->depending_rule != NULL && all_var_spr[i]->depending_rule->is_assignment){
      all_var_spr[i]->temp_value = calc(all_var_spr[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
    }
  }
  /* forwarding value */
  forwarding_value(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference);

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 0);

  /* calc temp value algebraic by algebraic */
  if(algEq != NULL){
    if(algEq->num_of_algebraic_variables > 1){
      /* initialize pivot */
      for(i=0; i<algEq->num_of_algebraic_variables; i++){
        alg_pivot[i] = i;
      }
      for(i=0; i<algEq->num_of_algebraic_variables; i++){
        for(j=0; j<algEq->num_of_algebraic_variables; j++){
          coefficient_matrix[i][j] = calc(algEq->coefficient_matrix[i][j], dt, cycle, &reverse_time, 0);
          /* TRACE(("coefficient matrix[%d][%d] = %lf\n", i, j, coefficient_matrix[i][j])); */
        }
      }
      for(i=0; i<algEq->num_of_algebraic_variables; i++){
        constant_vector[i] = -calc(algEq->constant_vector[i], dt, cycle, &reverse_time, 0);
        /* TRACE(("constant vector[%d] = %lf\n", i, constant_vector[i])); */
      }
      /* LU decompostion */
      error = lu_decomposition(coefficient_matrix, alg_pivot, algEq->num_of_algebraic_variables);
      if(error == 0){/* failure in LU decomposition */
        return NULL;
      }
      /* forward substitution & backward substitution */
      lu_solve(coefficient_matrix, alg_pivot, algEq->num_of_algebraic_variables, constant_vector);
      /*       for(i=0; i<algEq->num_of_algebraic_variables; i++){ */
      /*  TRACE(("ans[%d] = %lf\n", i, constant_vector[i])); */
      /*       } */
      for(i=0; i<algEq->num_of_alg_target_sp; i++){
        algEq->alg_target_species[i]->target_species->temp_value = constant_vector[algEq->alg_target_species[i]->order];
      }    
      for(i=0; i<algEq->num_of_alg_target_param; i++){
        algEq->alg_target_parameter[i]->target_parameter->temp_value = constant_vector[algEq->alg_target_parameter[i]->order];
      }    
      for(i=0; i<algEq->num_of_alg_target_comp; i++){
        /* new code */
        for(j=0; j<algEq->alg_target_compartment[i]->target_compartment->num_of_including_species; j++){
          if(algEq->alg_target_compartment[i]->target_compartment->including_species[j]->is_concentration){
            algEq->alg_target_compartment[i]->target_compartment->including_species[j]->temp_value = algEq->alg_target_compartment[i]->target_compartment->including_species[j]->temp_value*algEq->alg_target_compartment[i]->target_compartment->temp_value/constant_vector[algEq->alg_target_compartment[i]->order];
          }
        }
       /* new code end */
        algEq->alg_target_compartment[i]->target_compartment->temp_value = constant_vector[algEq->alg_target_compartment[i]->order];
      }
    }else{
      if(algEq->target_species != NULL){
        algEq->target_species->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
      }
      if(algEq->target_parameter != NULL){
        algEq->target_parameter->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
      }
      if(algEq->target_compartment != NULL){
        /* new code */
        for(i=0; i<algEq->target_compartment->num_of_including_species; i++){
          if(algEq->target_compartment->including_species[i]->is_concentration){
            algEq->target_compartment->including_species[i]->temp_value = algEq->target_compartment->including_species[i]->temp_value*algEq->target_compartment->temp_value/(-calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0));
          }
        }
       /* new code end */
        algEq->target_compartment->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
      }
    }
    /* forwarding value */
    forwarding_value(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference);
  }

  /* initialize delay_val */
  initialize_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, sim_time, dt, 1);

  /* cycle start */
  for(cycle=0; cycle<=end_cycle; cycle++){
    /* calculate unreversible fast reaction */
    for(i=0; i<num_of_reactions; i++){
      if(re[i]->is_fast && !re[i]->is_reversible){
        if(calc(re[i]->eq, dt, cycle, &reverse_time, 0) > 0){
          min_value = DBL_MAX;
          for(j=0; j<re[i]->num_of_reactants; j++){
            if(min_value > re[i]->reactants[j]->mySp->value/calc(re[i]->reactants[j]->eq, dt, cycle, &reverse_time, 0)){
              min_value = re[i]->reactants[j]->mySp->value/calc(re[i]->reactants[j]->eq, dt, cycle, &reverse_time, 0);
            }
          }
          for(j=0; j<re[i]->num_of_products; j++){
            if(!Species_getBoundaryCondition(re[i]->products[j]->mySp->origin)){
              re[i]->products[j]->mySp->value += calc(re[i]->products[j]->eq, dt, cycle, &reverse_time, 0)*min_value;
              re[i]->products[j]->mySp->temp_value = re[i]->products[j]->mySp->value;
            }
          }
          for(j=0; j<re[i]->num_of_reactants; j++){
            if(!Species_getBoundaryCondition(re[i]->reactants[j]->mySp->origin)){
              re[i]->reactants[j]->mySp->value -= calc(re[i]->reactants[j]->eq, dt, cycle, &reverse_time, 0)*min_value;
              re[i]->reactants[j]->mySp->temp_value = re[i]->reactants[j]->mySp->value;
            }
          }
        }
      }
    }
    /* calculate reversible fast reactioin */
    for(i=0; i<num_of_reactions; i++){
      if(re[i]->is_fast && re[i]->is_reversible){
        if(!(Species_getBoundaryCondition(re[i]->products[0]->mySp->origin) 
              && Species_getBoundaryCondition(re[i]->reactants[0]->mySp->origin))){
          products_numerator = calc(re[i]->products_equili_numerator, dt, cycle, &reverse_time, 0);
          reactants_numerator = calc(re[i]->reactants_equili_numerator, dt, cycle, &reverse_time, 0);
          if(products_numerator > 0 || reactants_numerator > 0){
            if(Species_getBoundaryCondition(re[i]->products[0]->mySp->origin)){
              re[i]->reactants[0]->mySp->value = (reactants_numerator/products_numerator)*re[i]->products[0]->mySp->value;
              re[i]->reactants[0]->mySp->temp_value = re[i]->reactants[0]->mySp->value;
            }else if(Species_getBoundaryCondition(re[i]->reactants[0]->mySp->origin)){
              re[i]->products[0]->mySp->value = (products_numerator/reactants_numerator)*re[i]->reactants[0]->mySp->value;
              re[i]->products[0]->mySp->temp_value = re[i]->products[0]->mySp->value;	    
            }else{
              re[i]->products[0]->mySp->value = (products_numerator/(products_numerator+reactants_numerator))*(re[i]->products[0]->mySp->temp_value+re[i]->reactants[0]->mySp->temp_value);
              re[i]->reactants[0]->mySp->value = (reactants_numerator/(products_numerator+reactants_numerator))*(re[i]->products[0]->mySp->temp_value+re[i]->reactants[0]->mySp->temp_value);
              re[i]->products[0]->mySp->temp_value = re[i]->products[0]->mySp->value;
              re[i]->reactants[0]->mySp->temp_value = re[i]->reactants[0]->mySp->value;
            }
          }
        }
      }
    }

    /* event */
    calc_event(event, num_of_events, dt, *time, cycle, &reverse_time);    

    /* substitute delay val */
    substitute_delay_val(sp, num_of_species, param, num_of_parameters, comp, num_of_compartments, re, num_of_reactions, cycle);

    /* progress */
    if(cycle%(int)(end_cycle/10) == 0){
      PRG_TRACE(("%3d %%\n", (int)(100*((double)cycle/(double)end_cycle))));
      PRG_TRACE(("\x1b[1A"));
      PRG_TRACE(("\x1b[5D"));
    }
    /* print result */
    if(cycle%print_interval == 0){
      /*  Time */
      *value_time_p = *time;
      value_time_p++;
      /*  Species */
      for(i=0; i<num_of_species; i++){
        /*         if(!(Species_getConstant(sp[i]->origin) && Species_getBoundaryCondition(sp[i]->origin))){ // XXX must remove this */
        if(print_amount){
          if(sp[i]->is_concentration){
            *value_sp_p = sp[i]->value*sp[i]->locating_compartment->value;
          }else{
            *value_sp_p = sp[i]->value;
          }
        }else{
          if(sp[i]->is_amount){
            *value_sp_p = sp[i]->value/sp[i]->locating_compartment->value;
          }else{
            *value_sp_p = sp[i]->value;
          }
        }
        value_sp_p++;
        /*         } */
      }
      /*  Parameter */
      for(i=0; i<num_of_parameters; i++){
        /*         if(!Parameter_getConstant(param[i]->origin)){ // XXX must remove this */
        *value_param_p = param[i]->value;
        /*         } */
        value_param_p++;
      }
      /*  Compartment */
      for(i=0; i<num_of_compartments; i++){
        /*         if(!Compartment_getConstant(comp[i]->origin)){ // XXX must remove this */
        *value_comp_p = comp[i]->value;
        /*         } */
        value_comp_p++;
      }
    }

    /* time increase */
    *time = (cycle+1)*dt;

    /* implicit method */
    /* define init value by Euler start */
    calc_k(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference, re, num_of_reactions, rule, num_of_rules, cycle, dt, &reverse_time, 0, 1);

    /* preserve k(t) value */
    for(i=0; i<sum_num_of_vars; i++){
      if(i < num_of_var_species){
        k_t[i] = var_sp[i]->k[0];
      }else if(i < num_of_var_species+num_of_var_parameters){
        k_t[i] = var_param[i-num_of_var_species]->k[0];
      }else if(i < num_of_var_species+num_of_var_parameters+num_of_var_compartments){
        k_t[i] = var_comp[i-num_of_var_species-num_of_var_parameters]->k[0];
      }else{
        k_t[i] = var_spr[i-num_of_var_species-num_of_var_parameters-num_of_var_compartments]->k[0];
      }
    }

    calc_temp_value(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference, dt, 0);
    /* define init value by Euler end */

    /* newton method */
    if(use_lazy_method){
      is_convergence = 0;
      for(i=0; i<sum_num_of_vars; i++){
        pre_b[i] = 0;
      }
    }
    flag = 1;
    while(flag){
      /* calc b */
      calc_k(var_sp, num_of_var_species, var_param, num_of_var_parameters, var_comp, num_of_var_compartments, var_spr, num_of_var_species_reference, re, num_of_reactions, rule, num_of_rules, cycle, dt, &reverse_time, 0, 0);
      for(i=0; i<num_of_var_species; i++){
        k_next = var_sp[i]->k[0];
        b[i] = calc_implicit_formula(order, var_sp[i]->temp_value, var_sp[i]->value, var_sp[i]->prev_val[0], var_sp[i]->prev_val[1], var_sp[i]->prev_val[2], k_next, k_t[i], var_sp[i]->prev_k[0], var_sp[i]->prev_k[1], dt);
      }
      for(i=0; i<num_of_var_parameters; i++){
        b[num_of_var_species+i] = calc_implicit_formula(order, var_param[i]->temp_value, var_param[i]->value, var_param[i]->prev_val[0], var_param[i]->prev_val[1], var_param[i]->prev_val[2], var_param[i]->k[0], k_t[num_of_var_species+i], var_param[i]->prev_k[0], var_param[i]->prev_k[1], dt);
      }
      for(i=0; i<num_of_var_compartments; i++){
        b[num_of_var_species+num_of_var_parameters+i] = calc_implicit_formula(order, var_comp[i]->temp_value, var_comp[i]->value, var_comp[i]->prev_val[0], var_comp[i]->prev_val[1], var_comp[i]->prev_val[2], var_comp[i]->k[0], k_t[num_of_var_species+num_of_var_parameters+i], var_comp[i]->prev_k[0], var_comp[i]->prev_k[1], dt);
      }
      for(i=0; i<num_of_var_species_reference; i++){
        b[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i] = calc_implicit_formula(order, var_spr[i]->temp_value, var_spr[i]->value, var_spr[i]->prev_val[0], var_spr[i]->prev_val[1], var_spr[i]->prev_val[2], var_spr[i]->k[0], k_t[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i], var_spr[i]->prev_k[0], var_spr[i]->prev_k[1], dt);
      }

      if(!use_lazy_method || !is_convergence){
        /* calc jacobian by numerical differentiation */
        for(loop=0; loop<sum_num_of_vars; loop++){
          if(loop < num_of_var_species){
            var_sp[loop]->temp_value += delta;
          }else if(loop < num_of_var_species+num_of_var_parameters){
            var_param[loop-num_of_var_species]->temp_value += delta;
          }else if(loop < num_of_var_species+num_of_var_parameters+num_of_var_compartments){
            var_comp[loop-num_of_var_species-num_of_var_parameters]->temp_value += delta;
          }else{
            var_spr[loop-num_of_var_species-num_of_var_parameters-num_of_var_compartments]->temp_value += delta;
          }
          calc_k(var_sp, num_of_var_species, var_param, num_of_var_parameters, var_comp, num_of_var_compartments, var_spr, num_of_var_species_reference, re, num_of_reactions, rule, num_of_rules, cycle, dt, &reverse_time, 0, 0);
          for(i=0; i<num_of_var_species; i++){
            k_next = var_sp[i]->k[0];
            delta_value[i] = calc_implicit_formula(order, var_sp[i]->temp_value, var_sp[i]->value, var_sp[i]->prev_val[0], var_sp[i]->prev_val[1], var_sp[i]->prev_val[2], k_next, k_t[i], var_sp[i]->prev_k[0], var_sp[i]->prev_k[1], dt);
            /* numerical differentiation */
            jacobian[i][loop] = (delta_value[i]-b[i])/delta;
          }
          for(i=0; i<num_of_var_parameters; i++){
            delta_value[num_of_var_species+i] = calc_implicit_formula(order, var_param[i]->temp_value, var_param[i]->value, var_param[i]->prev_val[0], var_param[i]->prev_val[1], var_param[i]->prev_val[2], var_param[i]->k[0], k_t[num_of_var_species+i], var_param[i]->prev_k[0], var_param[i]->prev_k[1], dt);
            /* numerical differentiation */
            jacobian[num_of_var_species+i][loop] = (delta_value[num_of_var_species+i]-b[num_of_var_species+i])/delta;
          }
          for(i=0; i<num_of_var_compartments; i++){
            delta_value[num_of_var_species+num_of_var_parameters+i] = calc_implicit_formula(order, var_comp[i]->temp_value, var_comp[i]->value, var_comp[i]->prev_val[0], var_comp[i]->prev_val[1], var_comp[i]->prev_val[2], var_comp[i]->k[0], k_t[num_of_var_species+num_of_var_parameters+i], var_comp[i]->prev_k[0], var_comp[i]->prev_k[1], dt);
            /* numerical differentiation */
            jacobian[num_of_var_species+num_of_var_parameters+i][loop] = (delta_value[num_of_var_species+num_of_var_parameters+i]-b[num_of_var_species+num_of_var_parameters+i])/delta;
          }
          for(i=0; i<num_of_var_species_reference; i++){
            delta_value[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i] = calc_implicit_formula(order, var_spr[i]->temp_value, var_spr[i]->value, var_spr[i]->prev_val[0], var_spr[i]->prev_val[1], var_spr[i]->prev_val[2], var_spr[i]->k[0], k_t[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i], var_spr[i]->prev_k[0], var_spr[i]->prev_k[1], dt);
            /* numerical differentiation */
            jacobian[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i][loop] = (delta_value[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i]-b[num_of_var_species+num_of_var_parameters+num_of_var_compartments+i])/delta;
          }
          if(loop < num_of_var_species){
            var_sp[loop]->temp_value -= delta;
          }else if(loop < num_of_var_species+num_of_var_parameters){
            var_param[loop-num_of_var_species]->temp_value -= delta;
          }else if(loop < num_of_var_species+num_of_var_parameters+num_of_var_compartments){
            var_comp[loop-num_of_var_species-num_of_var_parameters]->temp_value -= delta;
          }else{
            var_spr[loop-num_of_var_species-num_of_var_parameters-num_of_var_compartments]->temp_value -= delta;
          }
        }
      }

      /* initialize p */
      for(i=0; i<sum_num_of_vars; i++){
        p[i] = i;
      }

      /* LU decomposition */
      error = lu_decomposition(jacobian, p, sum_num_of_vars);
      if(error == 0){/* failure in LU decomposition */
        return NULL;
      }

      /* forward substitution & backward substitution */
      lu_solve(jacobian, p, sum_num_of_vars, b);

      /* calculate next temp value */
      for(i=0; i<sum_num_of_vars; i++){
        if(i < num_of_var_species){
          var_sp[i]->temp_value -= b[i];
        }else if(i < num_of_var_species+num_of_var_parameters){
          var_param[i-num_of_var_species]->temp_value -= b[i];
        }else if(i < num_of_var_species+num_of_var_parameters+num_of_var_compartments){
          var_comp[i-num_of_var_species-num_of_var_parameters]->temp_value -= b[i];
        }else{
          var_spr[i-num_of_var_species-num_of_var_parameters-num_of_var_compartments]->temp_value -= b[i];
        }
      }

      /* convergence judgement */
      if(use_lazy_method){
        is_convergence = 1;
        for(i=0; i<sum_num_of_vars; i++){
          if(fabs(b[i]) > fabs(pre_b[i])){
            is_convergence = 0;
          }
        }
        for(i=0; i<sum_num_of_vars; i++){
          pre_b[i] = b[i];
        }
      }

      /* error judgement */
      flag = 0;
      for(i=0; i<sum_num_of_vars; i++){
        if(fabs(b[i]) > tolerance){
          flag = 1;
        }
      }
    }

    /* calc temp value by assignment */
    for(i=0; i<num_of_all_var_species; i++){
      if(all_var_sp[i]->depending_rule != NULL && all_var_sp[i]->depending_rule->is_assignment){
        all_var_sp[i]->temp_value = calc(all_var_sp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
      }
    }
    for(i=0; i<num_of_all_var_parameters; i++){
      if(all_var_param[i]->depending_rule != NULL && all_var_param[i]->depending_rule->is_assignment){
        all_var_param[i]->temp_value = calc(all_var_param[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
      }
    }
    for(i=0; i<num_of_all_var_compartments; i++){
      if(all_var_comp[i]->depending_rule != NULL && all_var_comp[i]->depending_rule->is_assignment){
        all_var_comp[i]->temp_value = calc(all_var_comp[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
      }
    }
    for(i=0; i<num_of_all_var_species_reference; i++){
      if(all_var_spr[i]->depending_rule != NULL && all_var_spr[i]->depending_rule->is_assignment){
        all_var_spr[i]->temp_value = calc(all_var_spr[i]->depending_rule->eq, dt, cycle, &reverse_time, 0);
      }
    }

    /* calc temp value algebraic by algebraic */
    if(algEq != NULL){
      if(algEq->num_of_algebraic_variables > 1){
        /* initialize pivot */
        for(i=0; i<algEq->num_of_algebraic_variables; i++){
          alg_pivot[i] = i;
        }
        for(i=0; i<algEq->num_of_algebraic_variables; i++){
          for(j=0; j<algEq->num_of_algebraic_variables; j++){
            coefficient_matrix[i][j] = calc(algEq->coefficient_matrix[i][j], dt, cycle, &reverse_time, 0);
          }
        }
        for(i=0; i<algEq->num_of_algebraic_variables; i++){
          constant_vector[i] = -calc(algEq->constant_vector[i], dt, cycle, &reverse_time, 0);
        }
        /* LU decompostion */
        error = lu_decomposition(coefficient_matrix, alg_pivot, algEq->num_of_algebraic_variables);
        if(error == 0){/* failure in LU decomposition */
          return NULL;
        }
        /* forward substitution & backward substitution */
        lu_solve(coefficient_matrix, alg_pivot, algEq->num_of_algebraic_variables, constant_vector);
        for(i=0; i<algEq->num_of_alg_target_sp; i++){
          algEq->alg_target_species[i]->target_species->temp_value = constant_vector[algEq->alg_target_species[i]->order];
        }    
        for(i=0; i<algEq->num_of_alg_target_param; i++){
          algEq->alg_target_parameter[i]->target_parameter->temp_value = constant_vector[algEq->alg_target_parameter[i]->order];
        }    
        for(i=0; i<algEq->num_of_alg_target_comp; i++){
          /* new code */
          for(j=0; j<algEq->alg_target_compartment[i]->target_compartment->num_of_including_species; j++){
            if(algEq->alg_target_compartment[i]->target_compartment->including_species[j]->is_concentration){
              algEq->alg_target_compartment[i]->target_compartment->including_species[j]->temp_value = algEq->alg_target_compartment[i]->target_compartment->including_species[j]->temp_value*algEq->alg_target_compartment[i]->target_compartment->temp_value/constant_vector[algEq->alg_target_compartment[i]->order];
            }
          }
         /* new code end */
          algEq->alg_target_compartment[i]->target_compartment->temp_value = constant_vector[algEq->alg_target_compartment[i]->order];
        }    
      }else{
        if(algEq->target_species != NULL){
          algEq->target_species->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
        }
        if(algEq->target_parameter != NULL){
          algEq->target_parameter->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
        }
        if(algEq->target_compartment != NULL){
          /* new code */
          for(i=0; i<algEq->target_compartment->num_of_including_species; i++){
            if(algEq->target_compartment->including_species[i]->is_concentration){
              algEq->target_compartment->including_species[i]->temp_value = algEq->target_compartment->including_species[i]->temp_value*algEq->target_compartment->temp_value/(-calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0));
            }
          }
         /* new code end */
          algEq->target_compartment->temp_value = -calc(algEq->constant, dt, cycle, &reverse_time, 0)/calc(algEq->coefficient, dt, cycle, &reverse_time, 0);
        }
      }
    }

    /* preserve prev_value and prev_k for multistep solution */
    for(i=0; i<num_of_var_species; i++){
      var_sp[i]->prev_val[2] = var_sp[i]->prev_val[1];
      var_sp[i]->prev_val[1] = var_sp[i]->prev_val[0];
      var_sp[i]->prev_val[0] = var_sp[i]->value;
      var_sp[i]->prev_k[2] = var_sp[i]->prev_k[1];
      var_sp[i]->prev_k[1] = var_sp[i]->prev_k[0];
      var_sp[i]->prev_k[0] = k_t[i];
    }
    for(i=0; i<num_of_var_parameters; i++){
      var_param[i]->prev_val[2] = var_param[i]->prev_val[1];
      var_param[i]->prev_val[1] = var_param[i]->prev_val[0];
      var_param[i]->prev_val[0] = var_param[i]->value;
      var_param[i]->prev_k[2] = var_param[i]->prev_k[1];
      var_param[i]->prev_k[1] = var_param[i]->prev_k[0];
      var_param[i]->prev_k[0] = k_t[num_of_var_species+i];
    }
    for(i=0; i<num_of_var_compartments; i++){
      var_comp[i]->prev_val[2] = var_comp[i]->prev_val[1];
      var_comp[i]->prev_val[1] = var_comp[i]->prev_val[0];
      var_comp[i]->prev_val[0] = var_comp[i]->value;
      var_comp[i]->prev_k[2] = var_comp[i]->prev_k[1];
      var_comp[i]->prev_k[1] = var_comp[i]->prev_k[0];
      var_comp[i]->prev_k[0] = k_t[num_of_var_species+num_of_var_parameters+i];
    }
    for(i=0; i<num_of_var_species_reference; i++){
      var_spr[i]->prev_val[2] = var_spr[i]->prev_val[1];
      var_spr[i]->prev_val[1] = var_spr[i]->prev_val[0];
      var_spr[i]->prev_val[0] = var_spr[i]->value;
      var_spr[i]->prev_k[2] = var_spr[i]->prev_k[1];
      var_spr[i]->prev_k[1] = var_spr[i]->prev_k[0];
      var_spr[i]->prev_k[0] = k_t[num_of_var_species+num_of_var_parameters+i];
    }

    /* forwarding value */
    forwarding_value(all_var_sp, num_of_all_var_species, all_var_param, num_of_all_var_parameters, all_var_comp, num_of_all_var_compartments, all_var_spr, num_of_all_var_species_reference);
  }
  PRG_TRACE(("Simulation for [%s] Ends!\n", Model_getId(m)));
  if(algEq != NULL){
    for(i=0; i<algEq->num_of_algebraic_variables; i++){
      free(coefficient_matrix[i]);
    }
    free(coefficient_matrix);
    free(constant_vector);
    free(alg_pivot);
  }
  for(i=0; i<sum_num_of_vars; i++){
    free(jacobian[i]);
  }
  free(all_var_sp);
  free(all_var_param);
  free(all_var_comp);
  free(all_var_spr);
  free(var_sp);
  free(var_param);
  free(var_comp);
  free(var_spr);
  /* for implicit */
  free(jacobian);
  return result;
}
Пример #9
0
int
main (int argc, char* argv[])
{
  unsigned int i,j,errors;
  const char* filename;
  SBMLDocument_t* document;
  Model_t* m;

  if (argc != 2)
  {
    printf("\nUsage: printNotes filename\n\n");
    return 1;
  }

  filename  = argv[1];
  document  = readSBML(filename);

  errors = SBMLDocument_getNumErrors( document);

  printf("\n%s\n\n", filename);

  if(errors > 0)
  {
    SBMLDocument_printErrors(document, stderr);
    SBMLDocument_free(document);
    return errors;
  }


  /* Model */

  m = SBMLDocument_getModel(document);
  printNotes((SBase_t*)m, Model_getId(m));

  for(i=0; i < Model_getNumReactions(m); i++)
  {
    Reaction_t* re = Model_getReaction( m, i);
    printNotes((SBase_t*)re, Reaction_getId(re));

    /* SpeciesReference (Reactant) */

    for(j=0; j < Reaction_getNumReactants( re); j++)
    {
      SpeciesReference_t* rt =  Reaction_getReactant(re, j);
      if (SBase_isSetNotes((SBase_t*) rt)) printf("   ");
      printNotes((SBase_t*)rt, SpeciesReference_getSpecies( rt ) );
    }

    /* SpeciesReference (Product) */

    for(j=0; j < Reaction_getNumProducts( re ); j++)
    {
      SpeciesReference_t* rt = Reaction_getProduct( re, j);
      if (SBase_isSetNotes((SBase_t*) rt)) printf("   ");
      printNotes((SBase_t*)rt, SpeciesReference_getSpecies( rt ) );
    }

    /* ModifierSpeciesReference (Modifiers) */

    for(j=0; j < Reaction_getNumModifiers( re ); j++)
    {
      SpeciesReference_t* md = Reaction_getModifier(re, j);
      if (SBase_isSetNotes((SBase_t*) md)) printf("   ");
      printNotes((SBase_t*)md, SpeciesReference_getSpecies( md ) );
    }

    /* KineticLaw */

    if(Reaction_isSetKineticLaw( re ))
    {
      KineticLaw_t* kl = Reaction_getKineticLaw( re );
      if (SBase_isSetNotes((SBase_t*) kl)) printf("   ");
      printNotes((SBase_t*)kl, "");

      /* Parameter */

      for(j=0; j < KineticLaw_getNumParameters( kl ); j++)
      {
        Parameter_t* pa = KineticLaw_getParameter( kl, j);
        if (SBase_isSetNotes((SBase_t*) pa)) printf("   ");
        printNotes((SBase_t*)pa, Parameter_getId(pa));
      }
    }

  }

  /* Species */

  for(i=0; i < Model_getNumSpecies(m); i++)
  {
    Species_t* sp = Model_getSpecies(m, i);
    printNotes((SBase_t*)sp, Species_getId(sp));
  }

  /* Compartments */

  for(i=0; i < Model_getNumCompartments( m ); i++)
  {
    Compartment_t* sp = Model_getCompartment(m, i);
    printNotes((SBase_t*)sp, Compartment_getId(sp));
  }

  /* FunctionDefinition */

  for(i=0; i < Model_getNumFunctionDefinitions(m); i++)
  {
    FunctionDefinition_t* sp = Model_getFunctionDefinition(m, i);
    printNotes((SBase_t*)sp, FunctionDefinition_getId(sp));
  }

  /* UnitDefinition */

  for(i=0; i < Model_getNumUnitDefinitions(m); i++)
  {
    UnitDefinition_t* sp = Model_getUnitDefinition( m, i);
    printNotes((SBase_t*)sp, UnitDefinition_getId(sp));
  }

  /* Parameter */

  for(i=0; i < Model_getNumParameters( m ); i++)
  {
    Parameter_t* sp = Model_getParameter( m, i);
    printNotes((SBase_t*)sp, Parameter_getId(sp));
  }

  /* Rule */

  for(i=0; i < Model_getNumReactions( m ); i++)
  {
    Rule_t* sp = Model_getRule(m, i);
    printNotes((SBase_t*)sp, "");
  }

  /* InitialAssignment */

  for(i=0; i < Model_getNumInitialAssignments(m); i++)
  {
    InitialAssignment_t* sp = Model_getInitialAssignment(m, i);
    printNotes((SBase_t*)sp, "");
  }

  /* Event */

  for(i=0; i < Model_getNumEvents(m); i++)
  {
    Event_t* sp = Model_getEvent(m, i);
    printNotes((SBase_t*)sp, Event_getId(sp));

    /* Trigger */

    if(Event_isSetTrigger( sp ))
    {
      Trigger_t* tg = Event_getTrigger(sp);
      if (SBase_isSetNotes( (SBase_t*) tg)) printf( "   " );
      printNotes((SBase_t*)tg, "");
    }

    /* Delay */

    if(Event_isSetDelay(sp))
    {
      Delay_t* dl = Event_getDelay(sp);
      if (SBase_isSetNotes( (SBase_t*) dl)) printf( "   " );
      printNotes((SBase_t*) dl, "");
    }

    /* EventAssignment */

    for(j=0; j < Event_getNumEventAssignments(sp); j++)
    {
      EventAssignment_t* ea = Event_getEventAssignment(sp, j);
      if (SBase_isSetNotes( (SBase_t*) ea)) printf( "   " );      
      printNotes((SBase_t*)ea, "");
    }
  }

  /* SpeciesType */

  for(i=0; i < Model_getNumSpeciesTypes(m); i++)
  {
    SpeciesType_t* sp = Model_getSpeciesType(m, i);
    printNotes((SBase_t*)sp, SpeciesType_getId(sp));
  }

  /* Constraints */

  for(i=0; i < Model_getNumConstraints(m); i++)
  {
    Constraint_t* sp = Model_getConstraint(m, i);
    printNotes((SBase_t*)sp, "");
  }

  SBMLDocument_free( document );
  return errors;
}
Пример #10
0
static int
drawModelTxt(Model_t *m, char *file) {

  Species_t *s;
  Reaction_t *re;
  const ASTNode_t *math;
  SpeciesReference_t *sref;
  ModifierSpeciesReference_t *mref;
  int i,j;
  int reversible;
  char filename[WORDSIZE];
  FILE *f;
  
  sprintf(filename, "%s.dot", file);
  f = fopen(filename, "w");

  fprintf(f ,"digraph reactionnetwork {\n");
  fprintf(f ,"label=\"%s\";\n",
	  Model_isSetName(m) ?
	  Model_getName(m) : (Model_isSetId(m) ? Model_getId(m) : "noId") );
  fprintf(f ,"overlap=scale;\n");
 
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    
    re = Model_getReaction(m,i);
    reversible = Reaction_getReversible(re);
    
    for ( j=0; j<Reaction_getNumModifiers(re); j++ ) {
      mref = Reaction_getModifier(re,j);
      fprintf(f ,"%s->%s [style=dashed arrowhead=odot];\n",
	      ModifierSpeciesReference_getSpecies(mref), Reaction_getId(re));
    }
    for ( j=0; j<Reaction_getNumReactants(re); j++ ) {
      sref = Reaction_getReactant(re,j);
      fprintf(f ,"%s->%s [label=\"",
	      SpeciesReference_getSpecies(sref), Reaction_getId(re));
      
      if ( (SpeciesReference_isSetStoichiometryMath(sref)) ) {
	math = SpeciesReference_getStoichiometryMath(sref);
	if ( (strcmp(SBML_formulaToString(math),"1") !=
	      0) ) {
	  fprintf(f ,"%s", SBML_formulaToString(math));
	}	
      }
      else {
	if ( SpeciesReference_getStoichiometry(sref) != 1) {
	  fprintf(f ,"%g",SpeciesReference_getStoichiometry(sref));
	}
      }
      if ( reversible == 1 ) {
	fprintf(f ,"\" arrowtail=onormal];\n");
      }
      else {
	fprintf(f ,"\" ];\n");
      }
    }
    for ( j=0; j<Reaction_getNumProducts(re); j++ ) {
      sref = Reaction_getProduct(re,j);
      fprintf(f ,"%s->%s [label=\"",
	      Reaction_getId(re), SpeciesReference_getSpecies(sref));
      if ( (SpeciesReference_isSetStoichiometryMath(sref)) ) {
	math = SpeciesReference_getStoichiometryMath(sref);
	if ( (strcmp(SBML_formulaToString(math),"1") !=
	      0) ) {
	  fprintf(f ,"%s ", SBML_formulaToString(math));
	}
      }
      else {
	if ( SpeciesReference_getStoichiometry(sref) != 1) {
	  fprintf(f ,"%g ",SpeciesReference_getStoichiometry(sref));
	}
      }
      if ( reversible == 1 ) {
	fprintf(f ,"\" arrowtail=onormal];\n");
      }
      else {
	fprintf(f ,"\" ];\n");
      }    

    }
    
  }
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    re = Model_getReaction(m,i);
    fprintf(f ,"%s [label=\"%s\" shape=box];\n",
	    Reaction_getId(re),
	    Reaction_isSetName(re) ?
	    Reaction_getName(re) : Reaction_getId(re));
  }

  for ( i=0; i<Model_getNumSpecies(m); i++) {
    s = Model_getSpecies(m, i);
    fprintf(f ,"%s [label=\"%s\"];",
	    Species_getId(s),
	    Species_isSetName(s) ? Species_getName(s) : Species_getId(s));
  }  
  fprintf(f ,"}\n");
  return 1;
}
Пример #11
0
SBML_ODESOLVER_API int drawJacoby(cvodeData_t *data, char *file, char *format) {

#if !USE_GRAPHVIZ

  SolverError_error(
		    WARNING_ERROR_TYPE,
		    SOLVER_ERROR_NO_GRAPHVIZ,
		    "odeSolver has been compiled without GRAPHIZ functionality. ",
		    "Graphs are printed to stdout in the graphviz' .dot format.");

  drawJacobyTxt(data, file);

#else

  int i, j;
  GVC_t *gvc;
  Agraph_t *g;
  Agnode_t *r;
  Agnode_t *s;  
  Agedge_t *e;
  Agsym_t *a;
  char name[WORDSIZE];
  char label[WORDSIZE];  
  char *output[3];
  char *command = "dot";
  char *formatopt;
  char *outfile;
  

  /* setting name of outfile */
  ASSIGN_NEW_MEMORY_BLOCK(outfile, strlen(file)+ strlen(format)+7, char, 0);
  sprintf(outfile, "-o%s_jm.%s", file, format);
  
  /* setting output format */
  ASSIGN_NEW_MEMORY_BLOCK(formatopt, strlen(format)+3, char, 0);
  sprintf(formatopt, "-T%s", format); 

  /* construct command-line */
  output[0] = command;
  output[1] = formatopt;
  output[2] = outfile;
  output[3] = NULL;
    
  /* set up renderer context */
  gvc = (GVC_t *) gvContext();
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION < 4
  dotneato_initialize(gvc, 3, output);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION == 4
  parse_args(gvc, 3, output);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION >= 6 || GRAPHVIZ_MAJOR_VERSION >= 3
  gvParseArgs(gvc, 3, output);
#endif

  g = agopen("G", AGDIGRAPH);

  /* avoid overlapping nodes, for graph embedding by neato */
  a = agraphattr(g, "overlap", "");
  agxset(g, a->index, "scale");

  /* set graph label */
  if ( Model_isSetName(data->model->m) )
    sprintf(label, "%s at time %g",  Model_getName(data->model->m),
	    data->currenttime);
  else if ( Model_isSetId(data->model->m) )
    sprintf(label, "%s at time %g",  Model_getId(data->model->m),
	    data->currenttime);
  else
    sprintf(label, "label=\"at time %g\";\n", data->currenttime);

  a = agraphattr(g, "label", "");
  agxset(g, a->index, label);
  
  /*
    Set edges from species A to species B if the
    corresponding entry in the jacobian ((d[B]/dt)/d[A])
    is not '0'. Set edge color 'red' and arrowhead 'tee'
    if negative.
  */

  for ( i=0; i<data->model->neq; i++ ) {
    for ( j=0; j<data->model->neq; j++ ) {
      if ( evaluateAST(data->model->jacob[i][j], data) != 0 ) {
	
	sprintf(name, "%s", data->model->names[j]);
	r = agnode(g,name);
	agset(r, "label", data->model->names[j]);

	sprintf(label, "%s.htm", data->model->names[j]);
	a = agnodeattr(g, "URL", "");
	agxset(r, a->index, label);
	
	sprintf(name,"%s", data->model->names[i]);
	s = agnode(g,name);
	agset(s, "label", data->model->names[i]);

	sprintf(label, "%s.htm", data->model->names[i]);	
	a = agnodeattr(g, "URL", "");
	agxset(s, a->index, label);
	
	e = agedge(g,r,s);

	a = agedgeattr(g, "label", "");
	sprintf(name, "%g",  evaluateAST(data->model->jacob[i][j], data)); 
	agxset (e, a->index, name);


	
	if ( evaluateAST(data->model->jacob[i][j], data) < 0 ) {
	  a = agedgeattr(g, "arrowhead", "");
	  agxset(e, a->index, "tee");
	  a = agedgeattr(g, "color", "");
	  agxset(e, a->index, "red"); 	    
	}	
      }
    }
  }
  
  /* Compute a layout */
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION <= 2
  gvBindContext(gvc, g);
  dot_layout(g);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION == 4
  gvlayout_layout(gvc, g);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION >= 6 || GRAPHVIZ_MAJOR_VERSION >= 3
  gvLayoutJobs(gvc, g);
#endif
  
  /* Write the graph according to -T and -o options */
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION <= 2
  dotneato_write(gvc);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION == 4
  emit_jobs(gvc, g);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION >= 6 || GRAPHVIZ_MAJOR_VERSION >= 3
  gvRenderJobs(gvc, g);
#endif
  
  /* Clean out layout data */
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION <= 2
  dot_cleanup(g);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION == 4
  gvlayout_cleanup(gvc, g);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION >= 6 || GRAPHVIZ_MAJOR_VERSION >= 3
  gvFreeLayout(gvc, g);
#endif
  
  /* Free graph structures */
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION <= 2
  dot_cleanup(g);
#endif
  agclose(g);

  /* Clean up output file and errors */
#if GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION <= 2
  gvFREEcontext(gvc);
  dotneato_eof(gvc);
#elif GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION == 4
  dotneato_terminate(gvc);
#elif (GRAPHVIZ_MAJOR_VERSION == 2 && GRAPHVIZ_MINOR_VERSION >= 6) || GRAPHVIZ_MAJOR_VERSION >= 3
  gvFreeContext(gvc);
#endif

  xfree(formatopt);
  xfree(outfile);

#endif

  return 1;
}
Пример #12
0
static int
drawSensitivityTxt(cvodeData_t *data, char *file, double threshold) {

  int i, j;
  char filename[WORDSIZE];
  FILE *f;
  odeModel_t *om;
  double *highest;
  double *lowest;
  
  om = data->model;

  sprintf(filename, "%s.dot", file);
  f = fopen(filename, "w");
  fprintf(f ,"digraph jacoby {\n");
  fprintf(f ,"overlap=scale;\n");
  if ( Model_isSetName(om->m) )
    fprintf(f ,"label=\"%s at time %g\";\n", Model_getName(om->m),
	    data->currenttime);
  else if ( Model_isSetId(om->m) )
    fprintf(f ,"label=\"%s at time %g\";\n", Model_getId(om->m),
	    data->currenttime);
  else
    fprintf(f ,"label=\"at time %g\";\n", data->currenttime);


  /*
    Set edges from species A to species B if the
    corresponding entry in the jacobian ((d[B]/dt)/d[A])
    is not '0'. Set edge color 'red' and arrowhead 'tee'
    if negative.
  */

  ASSIGN_NEW_MEMORY_BLOCK(highest, data->nsens, double, 0);  
  ASSIGN_NEW_MEMORY_BLOCK(lowest, data->nsens, double, 0);  
  for ( j=0; j<data->nsens; j++ ) {
    highest[j] = 0;
    lowest[j] = 0;
    for ( i=0; i<om->neq; i++ ) {
      if ( data->sensitivity[i][j] > highest[j] )
	highest[j] = data->sensitivity[i][j];
      if ( data->sensitivity[i][j] < lowest[j] )
	lowest[j] = data->sensitivity[i][j];
    }
  }
  
  for ( i=0; i<om->neq; i++ ) {
    for ( j=0; j<data->nsens; j++ ) {
      if ( (data->sensitivity[i][j] > threshold*highest[j]) ||
	   (data->sensitivity[i][j] < threshold*lowest[j]) ) {
	
	fprintf(f ,"%s->%s [label=\"%g\" ",
		om->names[om->index_sens[j]],
		om->names[i],
		data->sensitivity[i][j]);
	
	if ( data->sensitivity[i][j] < 0 ) {
	  fprintf(f ,"arrowhead=tee color=red];\n");
	}
	else {
	  fprintf(f ,"];\n");
	}
      }
    }
  }
  for ( i=0; i<om->neq; i++ ) {
    fprintf(f ,"%s [label=\"%s\"];", om->names[i],
	    om->names[i]);
  }
  for ( i=0; i<data->nsens; i++ ) {
    fprintf(f ,"%s [label=\"%s\"];", om->names[om->index_sens[i]],
	    om->names[om->index_sens[i]]);
  }  
  fprintf(f, "}\n");
  return 1;
}
Пример #13
0
static int printXMGReactionTimeCourse ( cvodeData_t *data )
{

  int i, j, k, n;
  double maxY, minY, result;
  
  Model_t *m;
  Reaction_t *r;
  KineticLaw_t *kl;
  ASTNode_t **kls;
  
  odeModel_t *om = data->model;
  cvodeResults_t *results = data->results;

  maxY = 0.0;
  minY = 0.0;

  fprintf(stderr,
	  "Printing time development of reaction fluxes to XMGrace!\n");


  if ( om->m == NULL ) {
    fprintf(stderr, "Error: No reaction model availabe\n");
    return 1;
  }
  else m = om->m;

  if ( openXMGrace(data) > 0 ) {
    fprintf(stderr,  "Error: Couldn't open XMGrace\n");
    return 1;
  }
  
  GracePrintf("yaxis label \"%s\"", "flux [substance/time]");
  if ( Model_isSetName(m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getName(m),
		"reaction flux time courses");
  else if  ( Model_isSetId(m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getId(m),
		"reaction flux time courses");
  else 
    GracePrintf("subtitle \"model has no name, %s/id\"",
		"reaction flux time courses");


  /* print legend */  
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    if ( Reaction_isSetName(r) )
      GracePrintf("g0.s%d legend  \"%s: %s \"\n", i+1,
		  Reaction_getId(r), Reaction_getName(r));
    else
      GracePrintf("g0.s%d legend  \"%s \"\n", i+1, Reaction_getId(r));      
  }  
  GracePrintf("legend 1.155, 0.85");
  GracePrintf("legend font 8");
  GracePrintf("legend char size 0.6");

  if(!(kls = (ASTNode_t **)calloc(Model_getNumReactions(m),
				  sizeof(ASTNode_t *)))) 
    fprintf(stderr, "failed!\n");
  
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    kl = Reaction_getKineticLaw(r);
    kls[i] = copyAST(KineticLaw_getMath(kl));
    AST_replaceNameByParameters(kls[i], KineticLaw_getListOfParameters(kl));
    AST_replaceConstants(m, kls[i]);
  }
  
  /* evaluate flux for each time point and print to XMGrace */
  
  for ( i=0; i<=results->nout; i++ ) {  
    n = 1;
    /* set time and variable values to values at time[k] */
    data->currenttime = results->time[i];
    for ( j=0; j<data->model->neq; j++ )
      data->value[j] = results->value[j][i];

    /* evaluate kinetic law expressions */
    for ( j=0; j<Model_getNumReactions(m); j++ ) {
      result = evaluateAST(kls[j], data);
      if ( result > maxY ) {
	maxY = result;
	GracePrintf("world ymax %g", 1.25*maxY);
      }
      if ( result < minY ) {
	minY = result;
	GracePrintf("world ymin %g", 1.25*minY);
      }
      GracePrintf("g0.s%d point %g, %g",
		  n, results->time[i], result);
      n++;
    }
  }

  GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
  GracePrintf("redraw");
  closeXMGrace(data, "flux");

  /* free temporary ASTNodes */
  for ( i=0; i<Model_getNumReactions(m); i++ ) 
    ASTNode_free(kls[i]);
  free(kls);

  return 0;
  
}
Пример #14
0
void printPhase(cvodeData_t *data)
{

#if !USE_GRACE

  fprintf(stderr,
	  "odeSolver has been compiled without XMGRACE functionality.\n");
  fprintf(stderr,
	  "Phase diagrams can only be printed to XMGrace at the moment.\n");

#else
  
  int i,j;
  double maxY;
  double minY;
  double maxX;
  char *x;
  double xvalue;
  char *y;
  double yvalue;

  cvodeResults_t *results;

  maxY = 1.0;
  maxX = 1.0;
  minY = 0.0;
  
  if ( data==NULL || data->results==NULL ) {
    Warn(stderr,
	 "No data available to print! Please integrate model first!\n");
    return;
  }

  results = data->results;

  if ( openXMGrace(data) > 0 ) {
    fprintf(stderr,
	    "Error: Couldn't open XMGrace\n");
    return;
  }

  GracePrintf("world xmax %g", 1.25*maxX);
  GracePrintf("world ymax %g", 1.25*maxY);

  GracePrintf("xaxis tick major %g", (1.25*maxX)/12.5);
  /*     GracePrintf("xaxis tick minor %d", (int) data->currenttime/100); */
  GracePrintf("yaxis tick major %g", (1.25*maxY)/12.5 );

  if ( Model_isSetName(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getName(data->model->m),
		"phase diagram");
  else if  ( Model_isSetId(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getId(data->model->m),
		"phase diagram");
  else
    GracePrintf("subtitle \"model has no name, %s/id\"", "phase diagram");
      
  GracePrintf("xaxis label \"species 1\"");
  GracePrintf("yaxis label \"species 2\"");

  printf("Please enter the IDs and NOT the NAMES of species!\n");
  printf("In interactive mode press 'c' to see ID/NAME pairs.\n\n");
  printf("Please enter the ID of the species for the x axis: ");
  x = get_line(stdin);
  x = util_trim(x);
  GracePrintf("xaxis label \"%s\"", x);
  GracePrintf("redraw");
  
  printf("Please enter the ID of the species for the y axis: ");
  y = get_line(stdin);
  y = util_trim(y);
  GracePrintf("yaxis label \"%s\"", y);
  GracePrintf("redraw");
  
  /* check if species exist */
  xvalue = 1;
  yvalue = 1;
  for ( j=0; j<data->model->neq; j++ ) {
    if ( !strcmp(x, data->model->names[j]) ) {
      xvalue = 0;
      GracePrintf("xaxis label \"%s\"", data->model->names[j]);
    }
    if ( !strcmp(y, data->model->names[j]) ) {
      yvalue = 0;
      GracePrintf("yaxis label \"%s\"", data->model->names[j]);
    }
  }
  if ( xvalue || yvalue ) {
    fprintf(stderr, "One of the entered species does not exist.\n");
    GraceClose();
    fprintf(stderr, "XMGrace subprocess closed. Please try again");
    free(x);
    free(y);
    return;
  }

  fprintf(stderr, "Printing phase diagram to XMGrace!\n");

  for ( i=0; i<=results->nout; ++i ) {     
    for ( j=0; j<data->model->neq; j++ ){
      if ( !strcmp(x, data->model->names[j]) ) {
	xvalue = results->value[j][i];
      }
      if ( !strcmp(y, data->model->names[j]) ) {
	yvalue = results->value[j][i];
      }
    }
    GracePrintf("g0.s1 point %g, %g", xvalue, yvalue);

    if ( yvalue > maxY ) {
      maxY = 1.25*yvalue;
      GracePrintf("world ymax %g", maxY);
      GracePrintf("yaxis tick major %g", maxY/10);      
    }
    if ( xvalue > maxX ) {
      maxX = 1.25*xvalue;
      GracePrintf("world xmax %g", maxX);
      GracePrintf("xaxis tick major %g", maxX/10);
    }

    /*
      redrawing on each 10th step gives an impression,
      how fast the two values change within the phase
      diagram.
    */
    if ( i%10 == 0 ) {
      GracePrintf("redraw");
    }
  }

  GracePrintf("redraw");
  closeXMGrace(data, "phase");
  free(x);  
  free(y);

#endif

  return;
}
Пример #15
0
static int printXMGOdeTimeCourse(cvodeData_t *data)
{  
  int i, j, n;
  double maxY;
  double minY; 
  double result;

  cvodeResults_t *results;

  maxY = 0.01;
  minY = 0.0;
  

  fprintf(stderr,
	  "Printing time development of the ODEs (rates) to XMGrace!\n");

  results = data->results;

  if ( openXMGrace(data) > 0 ) {
    fprintf(stderr,
	    "Error: Couldn't open XMGrace\n");
    return 1;     
  }

  GracePrintf("yaxis label \"%s\"", "ODE values");
  if ( Model_isSetName(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getName(data->model->m),
		  "ODEs time course");
  else if  ( Model_isSetId(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getId(data->model->m),
		  "ODEs time course");
  else 
    GracePrintf("subtitle \"model has no name/id, %s\"",
		  "ODEs time course");

  /* print legend */  
  if ( printXMGLegend(data, data->model->neq) > 0 ){
    fprintf(stderr,
	    "Warning: Couldn't print legend\n");
    return 1;
  }


  /* evaluate ODE at each time point and print to XMGrace */

  for ( i=0; i<=results->nout; ++i ) {
    n = 1;
    data->currenttime = results->time[i];
    for ( j=0; j<data->model->neq; j++ ) {
      data->value[j] = results->value[j][i];
    }
    for ( j=0; j<data->model->neq; j++ ) {
      result = evaluateAST(data->model->ode[j],data);
      if ( result > maxY ) {
	maxY = result;
	GracePrintf("world ymax %g", 1.25*maxY);
      }
      if ( result < minY ) {
	minY = result;
	GracePrintf("world ymin %g", 1.25*minY);
      }

      GracePrintf("g0.s%d point %g, %g",
		  n, results->time[i], result);
      n++;     
    }

    /*
    if ( i%10 == 0 ) {
      GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
      GracePrintf("redraw");
    }
    */
  }
  GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
  GracePrintf("redraw");
  closeXMGrace(data, "rates");

  return 0;
}
Пример #16
0
static int printXMGJacobianTimeCourse ( cvodeData_t *data )
{
  int i, j, k, n;
  double maxY;
  double minY; 
  double result;

  cvodeResults_t *results;

  maxY = 0.0;
  minY = 0.0;
  

  fprintf(stderr,
	  "Printing time development of the jacobian matrix to XMGrace!\n");

  results = data->results;

  if ( openXMGrace(data) > 0 ) {
    fprintf(stderr,
	    "Error: Couldn't open XMGrace\n");
    return 1;
  }
  
  GracePrintf("yaxis label \"%s\"", "jacobian matrix value");
  if ( Model_isSetName(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getName(data->model->m),
		"jacobian matrix time course");
  else if  ( Model_isSetId(data->model->m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getId(data->model->m),
		"jacobian matrix time course");
  else 
    GracePrintf("subtitle \"model has no name, %s/id\"",
		"jacobian matrix time course");


  /* print legend */  
  n = 1;  
  for ( i=0; i<data->model->neq; i++ ) {
    for ( j=0; j<data->model->neq; j++ ) {
      GracePrintf("g0.s%d legend  \"%s / %s\"\n",
		  n, data->model->names[i], data->model->names[j]);
      n++;
    }
  }  
  GracePrintf("legend 1.155, 0.85");
  GracePrintf("legend font 8");
  GracePrintf("legend char size 0.6");

  /* evaluate jacobian matrix for each time point and print to XMGrace */
  
  for ( k = 0; k<=results->nout; k++ ) {  
    n = 1;
    data->currenttime = results->time[i];
    for ( i=0; i<data->model->neq; i++ ) {
      
      /* set specie values to values at time[k] */
      data->value[i] = results->value[i][k];
      
      for ( j=0; j<data->model->neq; j++ ) {
	
	result =  evaluateAST(data->model->jacob[i][j], data);
	
	if ( result > maxY ) {	  
	  maxY = result;
	  GracePrintf("world ymax %g", 1.25*maxY);
	}
	if ( result < minY ) {
	  minY = result;
	  GracePrintf("world ymin %g", 1.25*minY);
	}
	
	GracePrintf("g0.s%d point %g, %g",
		    n, results->time[k], result);
	n++;

      }
    }
    /*
    if ( k%10 == 0 ) {
      GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
      GracePrintf("redraw");
    }
    */
  }
  GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
  GracePrintf("redraw");
  closeXMGrace(data, "jac");


  return 0;
}