static void FilterAdaptation(aec_t *aec, float *fft, float ef[2][PART_LEN1], int ip[IP_LEN], float wfft[W_LEN]) { int i, j; for (i = 0; i < NR_PART; i++) { int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); int pos; // Check for wrap if (i + aec->xfBufBlockPos >= NR_PART) { xPos -= NR_PART * PART_LEN1; } pos = i * PART_LEN1; #ifdef UNCONSTR for (j = 0; j < PART_LEN1; j++) { aec->wfBuf[pos + j][0] += MulRe(aec->xfBuf[xPos + j][0], -aec->xfBuf[xPos + j][1], ef[j][0], ef[j][1]); aec->wfBuf[pos + j][1] += MulIm(aec->xfBuf[xPos + j][0], -aec->xfBuf[xPos + j][1], ef[j][0], ef[j][1]); } #else for (j = 0; j < PART_LEN; j++) { fft[2 * j] = MulRe(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); fft[2 * j + 1] = MulIm(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); } fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], -aec->xfBuf[1][xPos + PART_LEN], ef[0][PART_LEN], ef[1][PART_LEN]); aec_rdft_128(-1, fft, ip, wfft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; for (j = 0; j < PART_LEN; j++) { fft[j] *= scale; } } aec_rdft_128(1, fft, ip, wfft); aec->wfBuf[0][pos] += fft[0]; aec->wfBuf[0][pos + PART_LEN] += fft[1]; for (j = 1; j < PART_LEN; j++) { aec->wfBuf[0][pos + j] += fft[2 * j]; aec->wfBuf[1][pos + j] += fft[2 * j + 1]; } #endif // UNCONSTR } }
static void FilterAdaptation_background(aec_t *aec, float *fft, float ef[2][PART_LEN1]) { int i, j; for (i = 0; i < NR_PART; i++) { int xPos = (i + aec->xfBufBlockPos_background)*(PART_LEN1); int pos; // Check for wrap if (i + aec->xfBufBlockPos_background >= NR_PART) { xPos -= NR_PART * PART_LEN1; } pos = i * PART_LEN1; for (j = 0; j < PART_LEN1; j++) { aec->wfBuf_background[0][pos + j] += MulRe(aec->xfBuf_background[0][xPos + j], -aec->xfBuf_background[1][xPos + j], ef[0][j], ef[1][j]); aec->wfBuf_background[1][pos + j] += MulIm(aec->xfBuf_background[0][xPos + j], -aec->xfBuf_background[1][xPos + j], ef[0][j], ef[1][j]); } } }
static void FilterAdaptation(aec_t *aec, float *fft, float ef[2][PART_LEN1]) { int i, j; for (i = 0; i < NR_PART; i++) { int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); int pos; // Check for wrap if (i + aec->xfBufBlockPos >= NR_PART) { xPos -= NR_PART * PART_LEN1; } pos = i * PART_LEN1; for (j = 0; j < PART_LEN; j++) { fft[2 * j] = MulRe(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); fft[2 * j + 1] = MulIm(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); } fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], -aec->xfBuf[1][xPos + PART_LEN], ef[0][PART_LEN], ef[1][PART_LEN]); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; for (j = 0; j < PART_LEN; j++) { fft[j] *= scale; } } aec_rdft_forward_128(fft); aec->wfBuf[0][pos] += fft[0]; aec->wfBuf[0][pos + PART_LEN] += fft[1]; for (j = 1; j < PART_LEN; j++) { aec->wfBuf[0][pos + j] += fft[2 * j]; aec->wfBuf[1][pos + j] += fft[2 * j + 1]; } } }
static void FilterFarSSE2( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float y_fft[2][PART_LEN1]) { int i; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * (PART_LEN1); } // vectorized code (four at once) for (j = 0; j + 3 < PART_LEN1; j += 4) { const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]); const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]); const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re); const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im); const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im); const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re); const __m128 e = _mm_sub_ps(a, b); const __m128 f = _mm_add_ps(c, d); const __m128 g = _mm_add_ps(y_fft_re, e); const __m128 h = _mm_add_ps(y_fft_im, f); _mm_storeu_ps(&y_fft[0][j], g); _mm_storeu_ps(&y_fft[1][j], h); } // scalar code for the remaining items. for (; j < PART_LEN1; j++) { y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); } } }
static void FilterFarNEON( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float y_fft[2][PART_LEN1]) { int i; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } // vectorized code (four at once) for (j = 0; j + 3 < PART_LEN1; j += 4) { const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]); const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]); const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]); const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]); const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]); const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]); const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re); const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im); const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im); const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re); const float32x4_t g = vaddq_f32(y_fft_re, e); const float32x4_t h = vaddq_f32(y_fft_im, f); vst1q_f32(&y_fft[0][j], g); vst1q_f32(&y_fft[1][j], h); } // scalar code for the remaining items. for (; j < PART_LEN1; j++) { y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); } } }
static void FilterFarSSE2(AecCore* aec, float yf[2][PART_LEN1]) { int i; const int num_partitions = aec->num_partitions; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= num_partitions) { xPos -= num_partitions * (PART_LEN1); } // vectorized code (four at once) for (j = 0; j + 3 < PART_LEN1; j += 4) { const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); const __m128 yf_re = _mm_loadu_ps(&yf[0][j]); const __m128 yf_im = _mm_loadu_ps(&yf[1][j]); const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re); const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im); const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im); const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re); const __m128 e = _mm_sub_ps(a, b); const __m128 f = _mm_add_ps(c, d); const __m128 g = _mm_add_ps(yf_re, e); const __m128 h = _mm_add_ps(yf_im, f); _mm_storeu_ps(&yf[0][j], g); _mm_storeu_ps(&yf[1][j], h); } // scalar code for the remaining items. for (; j < PART_LEN1; j++) { yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); } } }
static void FilterFarNEON(AecCore* aec, float yf[2][PART_LEN1]) { int i; const int num_partitions = aec->num_partitions; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } // vectorized code (four at once) for (j = 0; j + 3 < PART_LEN1; j += 4) { const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]); const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]); const float32x4_t wfBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]); const float32x4_t wfBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]); const float32x4_t yf_re = vld1q_f32(&yf[0][j]); const float32x4_t yf_im = vld1q_f32(&yf[1][j]); const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re); const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im); const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im); const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re); const float32x4_t g = vaddq_f32(yf_re, e); const float32x4_t h = vaddq_f32(yf_im, f); vst1q_f32(&yf[0][j], g); vst1q_f32(&yf[1][j], h); } // scalar code for the remaining items. for (; j < PART_LEN1; j++) { yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); } } }
static void FilterFar(aec_t *aec, float yf[2][PART_LEN1]) { int i; for (i = 0; i < NR_PART; i++) { int j; int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= NR_PART) { xPos -= NR_PART*(PART_LEN1); } for (j = 0; j < PART_LEN1; j++) { yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); } } }
static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) { int i, j; for (i = 0; i < NR_PART; i++) { int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= NR_PART) { xPos -= NR_PART * PART_LEN1; } #ifdef UNCONSTR for (j = 0; j < PART_LEN1; j++) { aec->wfBuf[pos + j][0] += MulRe(aec->xfBuf[xPos + j][0], -aec->xfBuf[xPos + j][1], ef[j][0], ef[j][1]); aec->wfBuf[pos + j][1] += MulIm(aec->xfBuf[xPos + j][0], -aec->xfBuf[xPos + j][1], ef[j][0], ef[j][1]); } #else // Process the whole array... for (j = 0; j < PART_LEN; j+= 4) { // Load xfBuf and ef. const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); const __m128 ef_re = _mm_loadu_ps(&ef[0][j]); const __m128 ef_im = _mm_loadu_ps(&ef[1][j]); // Calculate the product of conjugate(xfBuf) by ef. // re(conjugate(a) * b) = aRe * bRe + aIm * bIm // im(conjugate(a) * b)= aRe * bIm - aIm * bRe const __m128 a = _mm_mul_ps(xfBuf_re, ef_re); const __m128 b = _mm_mul_ps(xfBuf_im, ef_im); const __m128 c = _mm_mul_ps(xfBuf_re, ef_im); const __m128 d = _mm_mul_ps(xfBuf_im, ef_re); const __m128 e = _mm_add_ps(a, b); const __m128 f = _mm_sub_ps(c, d); // Interleave real and imaginary parts. const __m128 g = _mm_unpacklo_ps(e, f); const __m128 h = _mm_unpackhi_ps(e, f); // Store _mm_storeu_ps(&fft[2*j + 0], g); _mm_storeu_ps(&fft[2*j + 4], h); } // ... and fixup the first imaginary entry. fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], -aec->xfBuf[1][xPos + PART_LEN], ef[0][PART_LEN], ef[1][PART_LEN]); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; const __m128 scale_ps = _mm_load_ps1(&scale); for (j = 0; j < PART_LEN; j+=4) { const __m128 fft_ps = _mm_loadu_ps(&fft[j]); const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); _mm_storeu_ps(&fft[j], fft_scale); } } aec_rdft_forward_128(fft); { float wt1 = aec->wfBuf[1][pos]; aec->wfBuf[0][pos + PART_LEN] += fft[1]; for (j = 0; j < PART_LEN; j+= 4) { __m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); __m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0)); const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1)); wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); _mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re); _mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im); } aec->wfBuf[1][pos] = wt1; } #endif // UNCONSTR } }
static void FilterAdaptationSSE2( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float e_fft[2][PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { float fft[PART_LEN2]; int i, j; for (i = 0; i < num_partitions; i++) { int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); int pos = i * PART_LEN1; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } // Process the whole array... for (j = 0; j < PART_LEN; j += 4) { // Load x_fft_buf and e_fft. const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]); const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]); // Calculate the product of conjugate(x_fft_buf) by e_fft. // re(conjugate(a) * b) = aRe * bRe + aIm * bIm // im(conjugate(a) * b)= aRe * bIm - aIm * bRe const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re); const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im); const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im); const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re); const __m128 e = _mm_add_ps(a, b); const __m128 f = _mm_sub_ps(c, d); // Interleave real and imaginary parts. const __m128 g = _mm_unpacklo_ps(e, f); const __m128 h = _mm_unpackhi_ps(e, f); // Store _mm_storeu_ps(&fft[2 * j + 0], g); _mm_storeu_ps(&fft[2 * j + 4], h); } // ... and fixup the first imaginary entry. fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], e_fft[0][PART_LEN], e_fft[1][PART_LEN]); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; const __m128 scale_ps = _mm_load_ps1(&scale); for (j = 0; j < PART_LEN; j += 4) { const __m128 fft_ps = _mm_loadu_ps(&fft[j]); const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); _mm_storeu_ps(&fft[j], fft_scale); } } aec_rdft_forward_128(fft); { float wt1 = h_fft_buf[1][pos]; h_fft_buf[0][pos + PART_LEN] += fft[1]; for (j = 0; j < PART_LEN; j += 4) { __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0)); const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1)); wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re); _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im); } h_fft_buf[1][pos] = wt1; } } }
static void FilterAdaptationNEON( int num_partitions, int x_fft_buf_block_pos, float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], float e_fft[2][PART_LEN1], float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { float fft[PART_LEN2]; int i; for (i = 0; i < num_partitions; i++) { int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; int pos = i * PART_LEN1; int j; // Check for wrap if (i + x_fft_buf_block_pos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } // Process the whole array... for (j = 0; j < PART_LEN; j += 4) { // Load x_fft_buf and e_fft. const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]); const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]); const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]); const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]); // Calculate the product of conjugate(x_fft_buf) by e_fft. // re(conjugate(a) * b) = aRe * bRe + aIm * bIm // im(conjugate(a) * b)= aRe * bIm - aIm * bRe const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re); const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im); const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im); const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re); // Interleave real and imaginary parts. const float32x4x2_t g_n_h = vzipq_f32(e, f); // Store vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]); vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]); } // ... and fixup the first imaginary entry. fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], e_fft[0][PART_LEN], e_fft[1][PART_LEN]); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { const float scale = 2.0f / PART_LEN2; const float32x4_t scale_ps = vmovq_n_f32(scale); for (j = 0; j < PART_LEN; j += 4) { const float32x4_t fft_ps = vld1q_f32(&fft[j]); const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps); vst1q_f32(&fft[j], fft_scale); } } aec_rdft_forward_128(fft); { const float wt1 = h_fft_buf[1][pos]; h_fft_buf[0][pos + PART_LEN] += fft[1]; for (j = 0; j < PART_LEN; j += 4) { float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]); float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]); const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]); const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]); const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4); wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]); wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]); vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re); vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im); } h_fft_buf[1][pos] = wt1; } } }