Пример #1
0
/*
 * dimension/stride cache, uses a different allocator and is always a multiple
 * of npy_intp
 */
NPY_NO_EXPORT void *
npy_alloc_cache_dim(npy_uintp sz)
{
    /* dims + strides */
    if (NPY_UNLIKELY(sz < 2)) {
        sz = 2;
    }
    return _npy_alloc_cache(sz, sizeof(npy_intp), NBUCKETS_DIM, dimcache,
                            &PyArray_malloc);
}
Пример #2
0
NPY_NO_EXPORT void
npy_free_cache_dim(void * p, npy_uintp sz)
{
    /* dims + strides */
    if (NPY_UNLIKELY(sz < 2)) {
        sz = 2;
    }
    _npy_free_cache(p, sz, NBUCKETS_DIM, dimcache,
                    &PyArray_free);
}
Пример #3
0
static int
check_callers(int * cannot)
{
    /*
     * get base addresses of multiarray and python, check if
     * backtrace is in these libraries only calling dladdr if a new max address
     * is found.
     * When after the initial multiarray stack everything is inside python we
     * can elide as no C-API user could have messed up the reference counts.
     * Only check until the python frame evaluation function is found
     * approx 10us overhead for stack size of 10
     *
     * TODO some calls go over scalarmath in umath but we cannot get the base
     * address of it from multiarraymodule as it is not linked against it
     */
    static int init = 0;
    /*
     * measured DSO object memory start and end, if an address is located
     * inside these bounds it is part of that library so we don't need to call
     * dladdr on it (assuming linear memory)
     */
    static void * pos_python_start;
    static void * pos_python_end;
    static void * pos_ma_start;
    static void * pos_ma_end;

    /* known address storage to save dladdr calls */
    static void * py_addr[64];
    static void * pyeval_addr[64];
    static npy_intp n_py_addr = 0;
    static npy_intp n_pyeval = 0;

    void *buffer[NPY_MAX_STACKSIZE];
    int i, nptrs;
    int ok = 0;
    /* cannot determine callers */
    if (init == -1) {
        *cannot = 1;
        return 0;
    }

    nptrs = backtrace(buffer, NPY_MAX_STACKSIZE);
    if (nptrs == 0) {
        /* complete failure, disable elision */
        init = -1;
        *cannot = 1;
        return 0;
    }

    /* setup DSO base addresses, ends updated later */
    if (NPY_UNLIKELY(init == 0)) {
        Dl_info info;
        /* get python base address */
        if (dladdr(&PyNumber_Or, &info)) {
            pos_python_start = info.dli_fbase;
            pos_python_end = info.dli_fbase;
        }
        else {
            init = -1;
            return 0;
        }
        /* get multiarray base address */
        if (dladdr(&PyArray_SetNumericOps, &info)) {
            pos_ma_start = info.dli_fbase;
            pos_ma_end = info.dli_fbase;
        }
        else {
            init = -1;
            return 0;
        }
        init = 1;
    }

    /* loop over callstack addresses to check if they leave numpy or cpython */
    for (i = 0; i < nptrs; i++) {
        Dl_info info;
        int in_python = 0;
        int in_multiarray = 0;
#if NPY_ELIDE_DEBUG >= 2
        dladdr(buffer[i], &info);
        printf("%s(%p) %s(%p)\n", info.dli_fname, info.dli_fbase,
               info.dli_sname, info.dli_saddr);
#endif

        /* check stored DSO boundaries first */
        if (buffer[i] >= pos_python_start && buffer[i] <= pos_python_end) {
            in_python = 1;
        }
        else if (buffer[i] >= pos_ma_start && buffer[i] <= pos_ma_end) {
            in_multiarray = 1;
        }

        /* update DSO boundaries via dladdr if necessary */
        if (!in_python && !in_multiarray) {
            if (dladdr(buffer[i], &info) == 0) {
                init = -1;
                ok = 0;
                break;
            }
            /* update DSO end */
            if (info.dli_fbase == pos_python_start) {
                pos_python_end = NPY_NUMBER_MAX(buffer[i], pos_python_end);
                in_python = 1;
            }
            else if (info.dli_fbase == pos_ma_start) {
                pos_ma_end = NPY_NUMBER_MAX(buffer[i], pos_ma_end);
                in_multiarray = 1;
            }
        }

        /* no longer in ok libraries and not reached PyEval -> no elide */
        if (!in_python && !in_multiarray) {
            ok = 0;
            break;
        }

        /* in python check if the frame eval function was reached */
        if (in_python) {
            /* if reached eval we are done */
            if (find_addr(pyeval_addr, n_pyeval, buffer[i])) {
                ok = 1;
                break;
            }
            /*
             * check if its some other function, use pointer lookup table to
             * save expensive dladdr calls
             */
            if (find_addr(py_addr, n_py_addr, buffer[i])) {
                continue;
            }

            /* new python address, check for PyEvalFrame */
            if (dladdr(buffer[i], &info) == 0) {
                init = -1;
                ok = 0;
                break;
            }
            if (info.dli_sname &&
                    strcmp(info.dli_sname, PYFRAMEEVAL_FUNC) == 0) {
                if (n_pyeval < sizeof(pyeval_addr) / sizeof(pyeval_addr[0])) {
                    /* store address to not have to dladdr it again */
                    pyeval_addr[n_pyeval++] = buffer[i];
                }
                ok = 1;
                break;
            }
            else if (n_py_addr < sizeof(py_addr) / sizeof(py_addr[0])) {
                /* store other py function to not have to dladdr it again */
                py_addr[n_py_addr++] = buffer[i];
            }
        }
    }

    /* all stacks after numpy are from python, we can elide */
    if (ok) {
        *cannot = 0;
        return 1;
    }
    else {
#if NPY_ELIDE_DEBUG != 0
        puts("cannot elide due to c-api usage");
#endif
        *cannot = 1;
        return 0;
    }
}
Пример #4
0
int NI_ZoomShift(PyArrayObject *input, PyArrayObject* zoom_ar,
                                 PyArrayObject* shift_ar, PyArrayObject *output,
                                 int order, int mode, double cval)
{
    char *po, *pi;
    npy_intp **zeros = NULL, **offsets = NULL, ***edge_offsets = NULL;
    npy_intp ftmp[NPY_MAXDIMS], *fcoordinates = NULL, *foffsets = NULL;
    npy_intp jj, hh, kk, filter_size, odimensions[NPY_MAXDIMS];
    npy_intp idimensions[NPY_MAXDIMS], istrides[NPY_MAXDIMS];
    npy_intp size;
    double ***splvals = NULL;
    NI_Iterator io;
    npy_double *zooms = zoom_ar ? (npy_double*)PyArray_DATA(zoom_ar) : NULL;
    npy_double *shifts = shift_ar ? (npy_double*)PyArray_DATA(shift_ar) : NULL;
    int rank = 0;
    NPY_BEGIN_THREADS_DEF;

    NPY_BEGIN_THREADS;

    for (kk = 0; kk < PyArray_NDIM(input); kk++) {
        idimensions[kk] = PyArray_DIM(input, kk);
        istrides[kk] = PyArray_STRIDE(input, kk);
        odimensions[kk] = PyArray_DIM(output, kk);
    }
    rank = PyArray_NDIM(input);

    /* if the mode is 'constant' we need some temps later: */
    if (mode == NI_EXTEND_CONSTANT) {
        zeros = malloc(rank * sizeof(npy_intp*));
        if (NPY_UNLIKELY(!zeros)) {
            NPY_END_THREADS;
            PyErr_NoMemory();
            goto exit;
        }
        for(jj = 0; jj < rank; jj++)
            zeros[jj] = NULL;
        for(jj = 0; jj < rank; jj++) {
            zeros[jj] = malloc(odimensions[jj] * sizeof(npy_intp));
            if (NPY_UNLIKELY(!zeros[jj])) {
                NPY_END_THREADS;
                PyErr_NoMemory();
                goto exit;
            }
        }
    }

    /* store offsets, along each axis: */
    offsets = malloc(rank * sizeof(npy_intp*));
    /* store spline coefficients, along each axis: */
    splvals = malloc(rank * sizeof(double**));
    /* store offsets at all edges: */
    edge_offsets = malloc(rank * sizeof(npy_intp**));
    if (NPY_UNLIKELY(!offsets || !splvals || !edge_offsets)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    for(jj = 0; jj < rank; jj++) {
        offsets[jj] = NULL;
        splvals[jj] = NULL;
        edge_offsets[jj] = NULL;
    }
    for(jj = 0; jj < rank; jj++) {
        offsets[jj] = malloc(odimensions[jj] * sizeof(npy_intp));
        splvals[jj] = malloc(odimensions[jj] * sizeof(double*));
        edge_offsets[jj] = malloc(odimensions[jj] * sizeof(npy_intp*));
        if (NPY_UNLIKELY(!offsets[jj] || !splvals[jj] || !edge_offsets[jj])) {
            NPY_END_THREADS;
            PyErr_NoMemory();
            goto exit;
        }
        for(hh = 0; hh < odimensions[jj]; hh++) {
            splvals[jj][hh] = NULL;
            edge_offsets[jj][hh] = NULL;
        }
    }

    /* precalculate offsets, and offsets at the edge: */
    for(jj = 0; jj < rank; jj++) {
        double shift = 0.0, zoom = 0.0;
        if (shifts)
            shift = shifts[jj];
        if (zooms)
            zoom = zooms[jj];
        for(kk = 0; kk < odimensions[jj]; kk++) {
            double cc = (double)kk;
            if (shifts)
                cc += shift;
            if (zooms)
                cc *= zoom;
            cc = map_coordinate(cc, idimensions[jj], mode);
            if (cc > -1.0) {
                npy_intp start;
                if (zeros && zeros[jj])
                    zeros[jj][kk] = 0;
                if (order & 1) {
                    start = (npy_intp)floor(cc) - order / 2;
                } else {
                    start = (npy_intp)floor(cc + 0.5) - order / 2;
                }
                offsets[jj][kk] = istrides[jj] * start;
                if (start < 0 || start + order >= idimensions[jj]) {
                    edge_offsets[jj][kk] = malloc((order + 1) * sizeof(npy_intp));
                    if (NPY_UNLIKELY(!edge_offsets[jj][kk])) {
                        NPY_END_THREADS;
                        PyErr_NoMemory();
                        goto exit;
                    }
                    for(hh = 0; hh <= order; hh++) {
                        npy_intp idx = start + hh;
                        npy_intp len = idimensions[jj];
                        if (len <= 1) {
                            idx = 0;
                        } else {
                            npy_intp s2 = 2 * len - 2;
                            if (idx < 0) {
                                idx = s2 * (npy_intp)(-idx / s2) + idx;
                                idx = idx <= 1 - len ? idx + s2 : -idx;
                            } else if (idx >= len) {
                                idx -= s2 * (npy_intp)(idx / s2);
                                if (idx >= len)
                                    idx = s2 - idx;
                            }
                        }
                        edge_offsets[jj][kk][hh] = istrides[jj] * (idx - start);
                    }
                }
                if (order > 0) {
                    splvals[jj][kk] = malloc((order + 1) * sizeof(double));
                    if (NPY_UNLIKELY(!splvals[jj][kk])) {
                        NPY_END_THREADS;
                        PyErr_NoMemory();
                        goto exit;
                    }
                    spline_coefficients(cc, order, splvals[jj][kk]);
                }
            } else {
                zeros[jj][kk] = 1;
            }
        }
    }

    filter_size = 1;
    for(jj = 0; jj < rank; jj++)
        filter_size *= order + 1;

    if (!NI_InitPointIterator(output, &io))
        goto exit;

    pi = (void *)PyArray_DATA(input);
    po = (void *)PyArray_DATA(output);

    /* store all coordinates and offsets with filter: */
    fcoordinates = malloc(rank * filter_size * sizeof(npy_intp));
    foffsets = malloc(filter_size * sizeof(npy_intp));
    if (NPY_UNLIKELY(!fcoordinates || !foffsets)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }

    for(jj = 0; jj < rank; jj++)
        ftmp[jj] = 0;
    kk = 0;
    for(hh = 0; hh < filter_size; hh++) {
        for(jj = 0; jj < rank; jj++)
            fcoordinates[jj + hh * rank] = ftmp[jj];
        foffsets[hh] = kk;
        for(jj = rank - 1; jj >= 0; jj--) {
            if (ftmp[jj] < order) {
                ftmp[jj]++;
                kk += istrides[jj];
                break;
            } else {
                ftmp[jj] = 0;
                kk -= istrides[jj] * order;
            }
        }
    }
    size = PyArray_SIZE(output);
    for(kk = 0; kk < size; kk++) {
        double t = 0.0;
        npy_intp edge = 0, oo = 0, zero = 0;

        for(hh = 0; hh < rank; hh++) {
            if (zeros && zeros[hh][io.coordinates[hh]]) {
                /* we use constant border condition */
                zero = 1;
                break;
            }
            oo += offsets[hh][io.coordinates[hh]];
            if (edge_offsets[hh][io.coordinates[hh]])
                edge = 1;
        }

        if (!zero) {
            npy_intp *ff = fcoordinates;
            const int type_num = PyArray_TYPE(input);
            t = 0.0;
            for(hh = 0; hh < filter_size; hh++) {
                npy_intp idx = 0;
                double coeff = 0.0;

                if (NPY_UNLIKELY(edge)) {
                    /* use precalculated edge offsets: */
                    for(jj = 0; jj < rank; jj++) {
                        if (edge_offsets[jj][io.coordinates[jj]])
                            idx += edge_offsets[jj][io.coordinates[jj]][ff[jj]];
                        else
                            idx += ff[jj] * istrides[jj];
                    }
                    idx += oo;
                } else {
                    /* use normal offsets: */
                    idx += oo + foffsets[hh];
                }
                switch (type_num) {
                    CASE_INTERP_COEFF(NPY_BOOL, npy_bool,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_UBYTE, npy_ubyte,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_USHORT, npy_ushort,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_UINT, npy_uint,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_ULONG, npy_ulong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_ULONGLONG, npy_ulonglong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_BYTE, npy_byte,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_SHORT, npy_short,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_INT, npy_int,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_LONG, npy_long,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_LONGLONG, npy_longlong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_FLOAT, npy_float,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_DOUBLE, npy_double,
                                      coeff, pi, idx);
                default:
                    NPY_END_THREADS;
                    PyErr_SetString(PyExc_RuntimeError,
                                    "data type not supported");
                    goto exit;
                }
                /* calculate interpolated value: */
                for(jj = 0; jj < rank; jj++)
                    if (order > 0)
                        coeff *= splvals[jj][io.coordinates[jj]][ff[jj]];
                t += coeff;
                ff += rank;
            }
        } else {
            t = cval;
        }
        /* store output: */
        switch (PyArray_TYPE(output)) {
            CASE_INTERP_OUT(NPY_BOOL, npy_bool, po, t);
            CASE_INTERP_OUT_UINT(UBYTE, npy_ubyte, po, t);
            CASE_INTERP_OUT_UINT(USHORT, npy_ushort, po, t);
            CASE_INTERP_OUT_UINT(UINT, npy_uint, po, t);
            CASE_INTERP_OUT_UINT(ULONG, npy_ulong, po, t);
            CASE_INTERP_OUT_UINT(ULONGLONG, npy_ulonglong, po, t);
            CASE_INTERP_OUT_INT(BYTE, npy_byte, po, t);
            CASE_INTERP_OUT_INT(SHORT, npy_short, po, t);
            CASE_INTERP_OUT_INT(INT, npy_int, po, t);
            CASE_INTERP_OUT_INT(LONG, npy_long, po, t);
            CASE_INTERP_OUT_INT(LONGLONG, npy_longlong, po, t);
            CASE_INTERP_OUT(NPY_FLOAT, npy_float, po, t);
            CASE_INTERP_OUT(NPY_DOUBLE, npy_double, po, t);
        default:
            NPY_END_THREADS;
            PyErr_SetString(PyExc_RuntimeError, "data type not supported");
            goto exit;
        }
        NI_ITERATOR_NEXT(io, po);
    }

 exit:
    NPY_END_THREADS;
    if (zeros) {
        for(jj = 0; jj < rank; jj++)
            free(zeros[jj]);
        free(zeros);
    }
    if (offsets) {
        for(jj = 0; jj < rank; jj++)
            free(offsets[jj]);
        free(offsets);
    }
    if (splvals) {
        for(jj = 0; jj < rank; jj++) {
            if (splvals[jj]) {
                for(hh = 0; hh < odimensions[jj]; hh++)
                    free(splvals[jj][hh]);
                free(splvals[jj]);
            }
        }
        free(splvals);
    }
    if (edge_offsets) {
        for(jj = 0; jj < rank; jj++) {
            if (edge_offsets[jj]) {
                for(hh = 0; hh < odimensions[jj]; hh++)
                    free(edge_offsets[jj][hh]);
                free(edge_offsets[jj]);
            }
        }
        free(edge_offsets);
    }
    free(foffsets);
    free(fcoordinates);
    return PyErr_Occurred() ? 0 : 1;
}
Пример #5
0
int
NI_GeometricTransform(PyArrayObject *input, int (*map)(npy_intp*, double*,
                int, int, void*), void* map_data, PyArrayObject* matrix_ar,
                PyArrayObject* shift_ar, PyArrayObject *coordinates,
                PyArrayObject *output, int order, int mode, double cval)
{
    char *po, *pi, *pc = NULL;
    npy_intp **edge_offsets = NULL, **data_offsets = NULL, filter_size;
    npy_intp ftmp[NPY_MAXDIMS], *fcoordinates = NULL, *foffsets = NULL;
    npy_intp cstride = 0, kk, hh, ll, jj;
    npy_intp size;
    double **splvals = NULL, icoor[NPY_MAXDIMS];
    npy_intp idimensions[NPY_MAXDIMS], istrides[NPY_MAXDIMS];
    NI_Iterator io, ic;
    npy_double *matrix = matrix_ar ? (npy_double*)PyArray_DATA(matrix_ar) : NULL;
    npy_double *shift = shift_ar ? (npy_double*)PyArray_DATA(shift_ar) : NULL;
    int irank = 0, orank;
    NPY_BEGIN_THREADS_DEF;

    NPY_BEGIN_THREADS;

    for(kk = 0; kk < PyArray_NDIM(input); kk++) {
        idimensions[kk] = PyArray_DIM(input, kk);
        istrides[kk] = PyArray_STRIDE(input, kk);
    }
    irank = PyArray_NDIM(input);
    orank = PyArray_NDIM(output);

    /* if the mapping is from array coordinates: */
    if (coordinates) {
        /* initialize a line iterator along the first axis: */
        if (!NI_InitPointIterator(coordinates, &ic))
            goto exit;
        cstride = ic.strides[0];
        if (!NI_LineIterator(&ic, 0))
            goto exit;
        pc = (void *)(PyArray_DATA(coordinates));
    }

    /* offsets used at the borders: */
    edge_offsets = malloc(irank * sizeof(npy_intp*));
    data_offsets = malloc(irank * sizeof(npy_intp*));
    if (NPY_UNLIKELY(!edge_offsets || !data_offsets)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    for(jj = 0; jj < irank; jj++)
        data_offsets[jj] = NULL;
    for(jj = 0; jj < irank; jj++) {
        data_offsets[jj] = malloc((order + 1) * sizeof(npy_intp));
        if (NPY_UNLIKELY(!data_offsets[jj])) {
            NPY_END_THREADS;
            PyErr_NoMemory();
            goto exit;
        }
    }
    /* will hold the spline coefficients: */
    splvals = malloc(irank * sizeof(double*));
    if (NPY_UNLIKELY(!splvals)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    for(jj = 0; jj < irank; jj++)
        splvals[jj] = NULL;
    for(jj = 0; jj < irank; jj++) {
        splvals[jj] = malloc((order + 1) * sizeof(double));
        if (NPY_UNLIKELY(!splvals[jj])) {
            NPY_END_THREADS;
            PyErr_NoMemory();
            goto exit;
        }
    }

    filter_size = 1;
    for(jj = 0; jj < irank; jj++)
        filter_size *= order + 1;

    /* initialize output iterator: */
    if (!NI_InitPointIterator(output, &io))
        goto exit;

    /* get data pointers: */
    pi = (void *)PyArray_DATA(input);
    po = (void *)PyArray_DATA(output);

    /* make a table of all possible coordinates within the spline filter: */
    fcoordinates = malloc(irank * filter_size * sizeof(npy_intp));
    /* make a table of all offsets within the spline filter: */
    foffsets = malloc(filter_size * sizeof(npy_intp));
    if (NPY_UNLIKELY(!fcoordinates || !foffsets)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    for(jj = 0; jj < irank; jj++)
        ftmp[jj] = 0;
    kk = 0;
    for(hh = 0; hh < filter_size; hh++) {
        for(jj = 0; jj < irank; jj++)
            fcoordinates[jj + hh * irank] = ftmp[jj];
        foffsets[hh] = kk;
        for(jj = irank - 1; jj >= 0; jj--) {
            if (ftmp[jj] < order) {
                ftmp[jj]++;
                kk += istrides[jj];
                break;
            } else {
                ftmp[jj] = 0;
                kk -= istrides[jj] * order;
            }
        }
    }

    size = PyArray_SIZE(output);
    for(kk = 0; kk < size; kk++) {
        double t = 0.0;
        int constant = 0, edge = 0;
        npy_intp offset = 0;
        if (map) {
            NPY_END_THREADS;
            /* call mappint functions: */
            if (!map(io.coordinates, icoor, orank, irank, map_data)) {
                if (!PyErr_Occurred())
                    PyErr_SetString(PyExc_RuntimeError,
                                                    "unknown error in mapping function");
                goto exit;
            }
            NPY_BEGIN_THREADS;
        } else if (matrix) {
            /* do an affine transformation: */
            npy_double *p = matrix;
            for(hh = 0; hh < irank; hh++) {
                icoor[hh] = 0.0;
                for(ll = 0; ll < orank; ll++)
                    icoor[hh] += io.coordinates[ll] * *p++;
                icoor[hh] += shift[hh];
            }
        } else if (coordinates) {
            /* mapping is from an coordinates array: */
            char *p = pc;
            switch (PyArray_TYPE(coordinates)) {
                CASE_MAP_COORDINATES(NPY_BOOL, npy_bool,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_UBYTE, npy_ubyte,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_USHORT, npy_ushort,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_UINT, npy_uint,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_ULONG, npy_ulong,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_ULONGLONG, npy_ulonglong,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_BYTE, npy_byte,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_SHORT, npy_short,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_INT, npy_int,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_LONG, npy_long,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_LONGLONG, npy_longlong,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_FLOAT, npy_float,
                                     p, icoor, irank, cstride);
                CASE_MAP_COORDINATES(NPY_DOUBLE, npy_double,
                                     p, icoor, irank, cstride);
            default:
                NPY_END_THREADS;
                PyErr_SetString(PyExc_RuntimeError,
                                "coordinate array data type not supported");
                goto exit;
            }
        }
        /* iterate over axes: */
        for(hh = 0; hh < irank; hh++) {
            /* if the input coordinate is outside the borders, map it: */
            double cc = map_coordinate(icoor[hh], idimensions[hh], mode);
            if (cc > -1.0) {
                /* find the filter location along this axis: */
                npy_intp start;
                if (order & 1) {
                    start = (npy_intp)floor(cc) - order / 2;
                } else {
                    start = (npy_intp)floor(cc + 0.5) - order / 2;
                }
                /* get the offset to the start of the filter: */
                offset += istrides[hh] * start;
                if (start < 0 || start + order >= idimensions[hh]) {
                    /* implement border mapping, if outside border: */
                    edge = 1;
                    edge_offsets[hh] = data_offsets[hh];
                    for(ll = 0; ll <= order; ll++) {
                        npy_intp idx = start + ll;
                        npy_intp len = idimensions[hh];
                        if (len <= 1) {
                            idx = 0;
                        } else {
                            npy_intp s2 = 2 * len - 2;
                            if (idx < 0) {
                                idx = s2 * (int)(-idx / s2) + idx;
                                idx = idx <= 1 - len ? idx + s2 : -idx;
                            } else if (idx >= len) {
                                idx -= s2 * (int)(idx / s2);
                                if (idx >= len)
                                    idx = s2 - idx;
                            }
                        }
                        /* calculate and store the offests at this edge: */
                        edge_offsets[hh][ll] = istrides[hh] * (idx - start);
                    }
                } else {
                    /* we are not at the border, use precalculated offsets: */
                    edge_offsets[hh] = NULL;
                }
                spline_coefficients(cc, order, splvals[hh]);
            } else {
                /* we use the constant border condition: */
                constant = 1;
                break;
            }
        }

        if (!constant) {
            npy_intp *ff = fcoordinates;
            const int type_num = PyArray_TYPE(input);
            t = 0.0;
            for(hh = 0; hh < filter_size; hh++) {
                double coeff = 0.0;
                npy_intp idx = 0;

                if (NPY_UNLIKELY(edge)) {
                    for(ll = 0; ll < irank; ll++) {
                        if (edge_offsets[ll])
                            idx += edge_offsets[ll][ff[ll]];
                        else
                            idx += ff[ll] * istrides[ll];
                    }
                } else {
                    idx = foffsets[hh];
                }
                idx += offset;
                switch (type_num) {
                    CASE_INTERP_COEFF(NPY_BOOL, npy_bool,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_UBYTE, npy_ubyte,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_USHORT, npy_ushort,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_UINT, npy_uint,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_ULONG, npy_ulong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_ULONGLONG, npy_ulonglong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_BYTE, npy_byte,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_SHORT, npy_short,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_INT, npy_int,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_LONG, npy_long,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_LONGLONG, npy_longlong,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_FLOAT, npy_float,
                                      coeff, pi, idx);
                    CASE_INTERP_COEFF(NPY_DOUBLE, npy_double,
                                      coeff, pi, idx);
                default:
                    NPY_END_THREADS;
                    PyErr_SetString(PyExc_RuntimeError,
                                    "data type not supported");
                    goto exit;
                }
                /* calculate the interpolated value: */
                for(ll = 0; ll < irank; ll++)
                    if (order > 0)
                        coeff *= splvals[ll][ff[ll]];
                t += coeff;
                ff += irank;
            }
        } else {
            t = cval;
        }
        /* store output value: */
        switch (PyArray_TYPE(output)) {
            CASE_INTERP_OUT(NPY_BOOL, npy_bool, po, t);
            CASE_INTERP_OUT_UINT(UBYTE, npy_ubyte, po, t);
            CASE_INTERP_OUT_UINT(USHORT, npy_ushort, po, t);
            CASE_INTERP_OUT_UINT(UINT, npy_uint, po, t);
            CASE_INTERP_OUT_UINT(ULONG, npy_ulong, po, t);
            CASE_INTERP_OUT_UINT(ULONGLONG, npy_ulonglong, po, t);
            CASE_INTERP_OUT_INT(BYTE, npy_byte, po, t);
            CASE_INTERP_OUT_INT(SHORT, npy_short, po, t);
            CASE_INTERP_OUT_INT(INT, npy_int, po, t);
            CASE_INTERP_OUT_INT(LONG, npy_long, po, t);
            CASE_INTERP_OUT_INT(LONGLONG, npy_longlong, po, t);
            CASE_INTERP_OUT(NPY_FLOAT, npy_float, po, t);
            CASE_INTERP_OUT(NPY_DOUBLE, npy_double, po, t);
        default:
            NPY_END_THREADS;
            PyErr_SetString(PyExc_RuntimeError, "data type not supported");
            goto exit;
        }
        if (coordinates) {
            NI_ITERATOR_NEXT2(io, ic, po, pc);
        } else {
            NI_ITERATOR_NEXT(io, po);
        }
    }

 exit:
    NPY_END_THREADS;
    free(edge_offsets);
    if (data_offsets) {
        for(jj = 0; jj < irank; jj++)
            free(data_offsets[jj]);
        free(data_offsets);
    }
    if (splvals) {
        for(jj = 0; jj < irank; jj++)
            free(splvals[jj]);
        free(splvals);
    }
    free(foffsets);
    free(fcoordinates);
    return PyErr_Occurred() ? 0 : 1;
}
Пример #6
0
int NI_WatershedIFT(PyArrayObject* input, PyArrayObject* markers,
                                        PyArrayObject* strct, PyArrayObject* output)
{
    char *pl, *pm, *pi;
    int ll;
    npy_intp size, jj, hh, kk, maxval;
    npy_intp strides[WS_MAXDIM], coordinates[WS_MAXDIM];
    npy_intp *nstrides = NULL, nneigh, ssize;
    int i_contiguous, o_contiguous;
    NI_WatershedElement *temp = NULL, **first = NULL, **last = NULL;
    npy_bool *ps = NULL;
    NI_Iterator mi, ii, li;
    NPY_BEGIN_THREADS_DEF;

    i_contiguous = PyArray_ISCONTIGUOUS(input);
    o_contiguous = PyArray_ISCONTIGUOUS(output);
    ssize = PyArray_SIZE(strct);
    if (PyArray_NDIM(input) > WS_MAXDIM) {
        PyErr_SetString(PyExc_RuntimeError, "too many dimensions");
        goto exit;
    }
    size = PyArray_SIZE(input);
    /* Storage for the temporary queue data. */
    temp = malloc(size * sizeof(NI_WatershedElement));
    if (!temp) {
        PyErr_NoMemory();
        goto exit;
    }

    NPY_BEGIN_THREADS;

    pi = (void *)PyArray_DATA(input);
    if (!NI_InitPointIterator(input, &ii))
        goto exit;
    /* Initialization and find the maximum of the input. */
    maxval = 0;
    for(jj = 0; jj < size; jj++) {
        npy_intp ival = 0;
        switch (PyArray_TYPE(input)) {
            CASE_GET_INPUT(NPY_UINT8, npy_uint8, ival, pi);
            CASE_GET_INPUT(NPY_UINT16, npy_uint16, ival, pi);
        default:
            NPY_END_THREADS;
            PyErr_SetString(PyExc_RuntimeError, "data type not supported");
            goto exit;
        }
        temp[jj].index = jj;
        temp[jj].done = 0;
        if (ival > maxval)
            maxval = ival;
        NI_ITERATOR_NEXT(ii, pi);
    }
    pi = (void *)PyArray_DATA(input);
    /* Allocate and initialize the storage for the queue. */
    first = malloc((maxval + 1) * sizeof(NI_WatershedElement*));
    last = malloc((maxval + 1) * sizeof(NI_WatershedElement*));
    if (NPY_UNLIKELY(!first || !last)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    for(hh = 0; hh <= maxval; hh++) {
        first[hh] = NULL;
        last[hh] = NULL;
    }
    if (!NI_InitPointIterator(markers, &mi))
        goto exit;
    if (!NI_InitPointIterator(output, &li))
        goto exit;
    pm = (void *)PyArray_DATA(markers);
    pl = (void *)PyArray_DATA(output);
    /* initialize all nodes */
    for (ll = 0; ll < PyArray_NDIM(input); ll++) {
        coordinates[ll] = 0;
    }
    for(jj = 0; jj < size; jj++) {
        /* get marker */
        int label = 0;
        switch (PyArray_TYPE(markers)) {
            CASE_GET_LABEL(NPY_UBYTE, npy_ubyte, label, pm);
            CASE_GET_LABEL(NPY_USHORT, npy_ushort, label, pm);
            CASE_GET_LABEL(NPY_UINT, npy_uint, label, pm);
            CASE_GET_LABEL(NPY_ULONG, npy_ulong, label, pm);
            CASE_GET_LABEL(NPY_ULONGLONG, npy_ulonglong, label, pm);
            CASE_GET_LABEL(NPY_BYTE, npy_byte, label, pm);
            CASE_GET_LABEL(NPY_SHORT, npy_short, label, pm);
            CASE_GET_LABEL(NPY_INT, npy_int, label, pm);
            CASE_GET_LABEL(NPY_LONG, npy_long, label, pm);
            CASE_GET_LABEL(NPY_LONGLONG, npy_longlong, label, pm);
        default:
            NPY_END_THREADS;
            PyErr_SetString(PyExc_RuntimeError, "data type not supported");
            goto exit;
        }
        switch (PyArray_TYPE(output)) {
            CASE_PUT_LABEL(NPY_UBYTE, npy_ubyte, label, pl);
            CASE_PUT_LABEL(NPY_USHORT, npy_ushort, label, pl);
            CASE_PUT_LABEL(NPY_UINT, npy_uint, label, pl);
            CASE_PUT_LABEL(NPY_ULONG, npy_ulong, label, pl);
            CASE_PUT_LABEL(NPY_ULONGLONG, npy_ulonglong, label, pl);
            CASE_PUT_LABEL(NPY_BYTE, npy_byte, label, pl);
            CASE_PUT_LABEL(NPY_SHORT, npy_short, label, pl);
            CASE_PUT_LABEL(NPY_INT, npy_int, label, pl);
            CASE_PUT_LABEL(NPY_LONG, npy_long, label, pl);
            CASE_PUT_LABEL(NPY_LONGLONG, npy_longlong, label, pl);
        default:
            NPY_END_THREADS;
            PyErr_SetString(PyExc_RuntimeError, "data type not supported");
            goto exit;
        }
        NI_ITERATOR_NEXT2(mi, li, pm, pl);
        if (label != 0) {
            /* This node is a marker */
            temp[jj].cost = 0;
            if (!first[0]) {
                first[0] = &(temp[jj]);
                first[0]->next = NULL;
                first[0]->prev = NULL;
                last[0] = first[0];
            } else {
                if (label > 0) {
                    /* object markers are enqueued at the beginning, so they
                       are processed first. */
                    temp[jj].next = first[0];
                    temp[jj].prev = NULL;
                    first[0]->prev = &(temp[jj]);
                    first[0] = &(temp[jj]);
                } else {
                    /* background markers are enqueued at the end, so they are
                         processed after the object markers. */
                    temp[jj].next = NULL;
                    temp[jj].prev = last[0];
                    last[0]->next = &(temp[jj]);
                    last[0] = &(temp[jj]);
                }
            }
        } else {
            /* This node is not a marker */
            temp[jj].cost = maxval + 1;
            temp[jj].next = NULL;
            temp[jj].prev = NULL;
        }
        for (ll = PyArray_NDIM(input) - 1; ll >= 0; ll--) {
            if (coordinates[ll] < PyArray_DIMS(input)[ll] - 1) {
                coordinates[ll]++;
                break;
            } else {
                coordinates[ll] = 0;
            }
        }
    }

    pl = (void *)PyArray_DATA(output);
    ps = (npy_bool*)PyArray_DATA(strct);
    nneigh = 0;
    for (kk = 0; kk < ssize; kk++)
        if (ps[kk] && kk != (ssize / 2))
            ++nneigh;
    nstrides = malloc(nneigh * sizeof(npy_intp));
    if (NPY_UNLIKELY(!nstrides)) {
        NPY_END_THREADS;
        PyErr_NoMemory();
        goto exit;
    }
    strides[PyArray_NDIM(input) - 1] = 1;
    for (ll = PyArray_NDIM(input) - 2; ll >= 0; ll--) {
        strides[ll] = PyArray_DIM(input, ll + 1) * strides[ll + 1];
    }
    for (ll = 0; ll < PyArray_NDIM(input); ll++) {
        coordinates[ll] = -1;
    }
    for(kk = 0; kk < nneigh; kk++)
        nstrides[kk] = 0;
    jj = 0;
    for(kk = 0; kk < ssize; kk++) {
        if (ps[kk]) {
            int offset = 0;
            for (ll = 0; ll < PyArray_NDIM(input); ll++) {
                offset += coordinates[ll] * strides[ll];
            }
            if (offset != 0)
                nstrides[jj++] += offset;
        }
        for (ll = PyArray_NDIM(input) - 1; ll >= 0; ll--) {
            if (coordinates[ll] < 1) {
                coordinates[ll]++;
                break;
            } else {
                coordinates[ll] = -1;
            }
        }
    }
    /* Propagation phase: */
    for(jj = 0; jj <= maxval; jj++) {
        while (first[jj]) {
            /* dequeue first element: */
            NI_WatershedElement *v = first[jj];
            first[jj] = first[jj]->next;
            if (first[jj])
                first[jj]->prev = NULL;
            v->prev = NULL;
            v->next = NULL;
            /* Mark element as done: */
            v->done = 1;
            /* Iterate over the neighbors of the element: */
            for(hh = 0; hh < nneigh; hh++) {
                npy_intp v_index = v->index, p_index = v->index, idx, cc;
                int qq, outside = 0;
                p_index += nstrides[hh];
                /* check if the neighbor is within the extent of the array: */
                idx = p_index;
                for (qq = 0; qq < PyArray_NDIM(input); qq++) {
                    cc = idx / strides[qq];
                    if (cc < 0 || cc >= PyArray_DIM(input, qq)) {
                        outside = 1;
                        break;
                    }
                    idx -= cc * strides[qq];
                }
                if (!outside) {
                    NI_WatershedElement *p = &(temp[p_index]);
                    if (!(p->done)) {
                        /* If the neighbor was not processed yet: */
                        int max, pval, vval, wvp, pcost, label, p_idx, v_idx;
                        switch (PyArray_TYPE(input)) {
                            CASE_WINDEX1(NPY_UBYTE, npy_ubyte,
                                v_index, p_index, strides,
                                PyArray_STRIDES(input), PyArray_NDIM(input),
                                i_contiguous, p_idx, v_idx, pi, vval, pval);
                            CASE_WINDEX1(NPY_USHORT, npy_ushort,
                                v_index, p_index, strides,
                                PyArray_STRIDES(input), PyArray_NDIM(input),
                                i_contiguous, p_idx, v_idx, pi, vval, pval);
                        default:
                            NPY_END_THREADS;
                            PyErr_SetString(PyExc_RuntimeError,
                                            "data type not supported");
                            goto exit;
                        }
                        /* Calculate cost: */
                        wvp = pval - vval;
                        if (wvp < 0)
                            wvp = -wvp;
                        /* Find the maximum of this cost and the current
                             element cost: */
                        pcost = p->cost;
                        max = v->cost > wvp ? v->cost : wvp;
                        if (max < pcost) {
                            /* If this maximum is less than the neighbors cost,
                                 adapt the cost and the label of the neighbor: */
                            int idx;
                            p->cost = max;
                            switch (PyArray_TYPE(output)) {
                                CASE_WINDEX2(NPY_UBYTE, npy_ubyte,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_USHORT, npy_ushort,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_UINT, npy_uint,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_ULONG, npy_ulong,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_ULONGLONG, npy_ulonglong,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_BYTE, npy_byte,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_SHORT, npy_short,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_INT, npy_int,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_LONG, npy_long,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX2(NPY_LONGLONG, npy_longlong,
                                             v_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                            default:
                                NPY_END_THREADS;
                                PyErr_SetString(PyExc_RuntimeError,
                                                "data type not supported");
                                goto exit;
                            }
                            switch (PyArray_TYPE(output)) {
                                CASE_WINDEX3(NPY_UBYTE, npy_ubyte,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_USHORT, npy_ushort,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_UINT, npy_uint,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_ULONG, npy_ulong,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_ULONGLONG, npy_ulonglong,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_BYTE, npy_byte,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_SHORT, npy_short,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_INT, npy_int,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_LONG, npy_long,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                                CASE_WINDEX3(NPY_LONGLONG, npy_longlong,
                                             p_index, strides,
                                             PyArray_STRIDES(output),
                                             PyArray_NDIM(input),
                                             idx, o_contiguous, label, pl);
                            default:
                                NPY_END_THREADS;
                                PyErr_SetString(PyExc_RuntimeError,
                                                "data type not supported");
                                goto exit;
                            }
                            /* If the neighbor is in a queue, remove it: */
                            if (p->next || p->prev) {
                                NI_WatershedElement *prev = p->prev, *next = p->next;
                                if (first[pcost] == p)
                                    first[pcost] = next;
                                if (last[pcost] == p)
                                    last[pcost] = prev;
                                if (prev)
                                    prev->next = next;
                                if (next)
                                    next->prev = prev;
                            }
                            /* Insert the neighbor in the appropriate queue: */
                            if (label < 0) {
                                p->prev = last[max];
                                p->next = NULL;
                                if (last[max])
                                    last[max]->next = p;
                                last[max] = p;
                                if (!first[max])
                                    first[max] = p;
                            } else {
                                p->next = first[max];
                                p->prev = NULL;
                                if (first[max])
                                    first[max]->prev = p;
                                first[max] = p;
                                if (!last[max])
                                    last[max] = p;
                            }
                        }
                    }
                }
            }
        }
    }
 exit:
    NPY_END_THREADS;
    free(temp);
    free(first);
    free(last);
    free(nstrides);
    return PyErr_Occurred() ? 0 : 1;
}