Пример #1
0
//--------------------------------------------------------------------------
// Find the 'first' devices on the 1-Wire bus
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : no device present
//
static int OWFirst() {
	// reset the search state
	LastDiscrepancy = 0;
	LastDeviceFlag = false;
	LastFamilyDiscrepancy = 0;
	return OWSearch();
}
Пример #2
0
//--------------------------------------------------------------------------
// Find the 'first' devices on the 1-Wire bus
// Return TRUE  : device found, ROM number in ROM_NO buffer
//        FALSE : no device present
//
int DallasOneWire::OWFirst()
{
	DATA(F("OWFirst - reset the search state"));
	// reset the search state
	LastDiscrepancy = 0;
	LastDeviceFlag = FALSE;
	LastFamilyDiscrepancy = 0;

	return OWSearch();
}
Пример #3
0
//--------------------------------------------------------------------------
// Verify the device with the ROM number in ROM_NO buffer is present.
// Return TRUE  : device verified present
//        FALSE : device not present
//
int DallasOneWire::OWVerify()
{
	DATA(F("OWVerify"));
	unsigned char rom_backup[8];
	int i,rslt,ld_backup,ldf_backup,lfd_backup;

	// keep a backup copy of the current state
	for (i = 0; i < 8; i++)
		rom_backup[i] = ROM_NO[i];
	ld_backup = LastDiscrepancy;
	ldf_backup = LastDeviceFlag;
	lfd_backup = LastFamilyDiscrepancy;

	// set search to find the same device
	LastDiscrepancy = 64;
	LastDeviceFlag = FALSE;

	if (OWSearch())
	{
		// check if same device found
		rslt = TRUE;
		for (i = 0; i < 8; i++)
		{
			if (rom_backup[i] != ROM_NO[i])
			{
				rslt = FALSE;
				break;
			}
		}
	}
	else
	{

		DEBUG(F("Search error when verify"));
		rslt = FALSE;
	}

	// restore the search state
	for (i = 0; i < 8; i++)
		ROM_NO[i] = rom_backup[i];
	LastDiscrepancy = ld_backup;
	LastDeviceFlag = ldf_backup;
	LastFamilyDiscrepancy = lfd_backup;

	// return the result of the verify
	return rslt;
}
//--------------------------------------------------------------------------
//! Find the 'next' devices on the 1-Wire bus
//! @return TRUE  : device found, ROM number in ROM_NO buffer
//!         FALSE : device not found, end of search
//
int OWNext()
{
   // leave the search state alone
   return OWSearch();
}
Пример #5
0
//--------------------------------------------------------------------------
// Find the 'next' devices on the 1-Wire bus
// Return TRUE  : device found, ROM number in ROM_NO buffer
//        FALSE : device not found, end of search
//
int DallasOneWire::OWNext()
{
	DATA(F("OWNext - leave the search state alone"));
	// leave the search state alone
	return OWSearch();
}
Пример #6
0
void DS1820main(void)  
{   
static u8 fistsech=0;
    s16 temp1,temp2;
    //u8 buff[16];  
  //  u8 i,j,num=DS18B20_NUM;  

  
   
		   
		if(fistsech==0)
		{


		Delay_init(72);//72M
		Delay_ms(20);
		Init_DS18B20_IO();

		#if 0
		if(1==OWFirst())	//第一次搜索到ROM数据
		{
		  memcpy(&ID_Buff[0][0],GetRomAddr(),8);//复制ID数据到IDbuff
		  	  
  		 for(temp1=1;temp1<DS18B20_NUM;temp1++)
		  {
		    
			if( OWSearch()==1)
			{

			 memcpy(&ID_Buff[temp1][0],GetRomAddr(),8);//复制ID数据到IDbuff
			 
			}
			else
			{
			break;//没有器件
			} 

		  }
		}
		else{
		
		return;
		}

		 	#endif
		temp[0]= '\t'; 

		temp[1]='T';
		temp[2]='i';
		temp[3]='m';
		temp[4]='e';
		temp[5]=':';
		temp[11]= '\t'; 

		temp[12]='T';
		temp[13]='e';
		temp[14]='m';
		temp[15]='p';
		temp[16]=':';

		temp[23]='\t';
		temp[20]='.' ;

		temp[27]='.' ;
		temp[30]= '\t';

		temp[31]= '\r';
		temp[32]= '\n';
	
		fistsech=1;
		}


		__disable_irq();//  相当于 CPSID I    
	
  		//读取2个指定ID的温度传感器数值
		// tempA是在顶部没有划的,tempB顶部划了一下:-)
        temp1 = DS18B20_ReadDesignateTemper(ID_Buff[0]); 
		
			__enable_irq();//   相当于 CPSIE I  
   	//	temp2 = DS18B20_ReadDesignateTemper(ID_Buff[1]);
	  	
		if(temp1==0) return ;

	    Temp_pid[0]=temp1; //用于PID计算
	
	   
		temp[6]=time_run/10000+0x30;
		temp[7]=time_run%10000/1000+0x30;
		temp[8]=time_run%10000%1000/100+0x30;
		temp[9]=time_run%10000%1000%100/10+0x30;
		temp[10]=time_run%10000%1000%100%10+0x30;
	
		
		
		temp[17]= temp1/10000+0x30;
		temp[18]= temp1%10000/1000+0x30;
		temp[19]= temp1%10000%1000/100+0x30;
	
		temp[21]= temp1%10000%1000%100/10+0x30;
		temp[22]= temp1%10000%1000%100%10+0x30;

		

		temp[24]=temp2/10000+0x30;
		temp[25]= temp2%10000/1000+0x30;
		temp[26]= temp2%10000%1000/100+0x30;
	
		temp[28]= temp2%10000%1000%100/10+0x30;
		temp[29]= temp2%10000%1000%100%10+0x30;
		
		temp[30] =	 temp1;
		temp[31] =	 temp2;
			

}
Пример #7
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
  char test[25];
  unsigned int an1, an2, an3, an4, an5;
  float Ta=0;
  int i;
  long msum[4];
  float fm[4], T1, T2, T3, SP;
  unsigned int DSState = 0;
  unsigned long DSTimer=0, t0, t1, dt, HTimer, TTimer, t_sec, t_min;
  unsigned char data[2];
  unsigned char out=0;
  unsigned int decval;
  volatile float pp, pi, pd, f_error, error_old=0, pid_out, pid_out_i, pid_out_p, pid_out_d, error_i=0;
  u8 Send_Buffer[25];
  u8 tmp[4];
//char no_windup = 0;

  RCC_Configuration();
  NVIC_Configuration();

  /* SysTick end of count event each 1ms with input clock equal to 9MHz (HCLK/8, default) */
  SysTick_SetReload(9000);

  /* Enable SysTick interrupt */
  SysTick_ITConfig(ENABLE);

  /* Enable the SysTick Counter */
  SysTick_CounterCmd(SysTick_Counter_Enable);

  GPIO_Setup();

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);

  /* SPI2 Config -------------------------------------------------------------*/
  SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
  SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
  SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
  SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
  SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;
  SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
  SPI_InitStructure.SPI_CRCPolynomial = 7;
  SPI_Init(SPI2, &SPI_InitStructure);

  /* Enable SPI1 */
  SPI_CalculateCRC(SPI2, DISABLE);
  SPI_Cmd(SPI2, ENABLE);

  InitADC1();      // ADC1 Init

  OWInit(&OneWire, GPIOB, GPIO_Pin_8);

  /* Connect Key Button EXTI Line to Key Button GPIO Pin */
  //GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_Pin_7);

  /* Configure Key Button EXTI Line to generate an interrupt on falling edge */
  //EXTI_InitStructure.EXTI_Line = EXTI_Line7;
  //EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  //EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
  //EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  //EXTI_Init(&EXTI_InitStructure);

    /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 55000;
  TIM_TimeBaseStructure.TIM_Prescaler = 12;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

  /* TIM2 PWM2 Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
  TIM_OCInitStructure.TIM_Channel = TIM_Channel_1;
  TIM_OCInitStructure.TIM_Pulse = 1;//20000;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OCInit(TIM3, &TIM_OCInitStructure);

  /* TIM2 configuration in Input Capture Mode */

  TIM_ICStructInit(&TIM_ICInitStructure);

  TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
  TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
  TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
  TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
  TIM_ICInitStructure.TIM_ICFilter = 0;

  TIM_ICInit(TIM3, &TIM_ICInitStructure);

  /* One Pulse Mode selection */
  TIM_SelectOnePulseMode(TIM3, TIM_OPMode_Single);

  /* Input Trigger selection */
  TIM_SelectInputTrigger(TIM3, TIM_TS_TI2FP2);

  /* Slave Mode selection: Trigger Mode */
  TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Trigger);

  ST7565_st7565_init();
  ST7565_st7565_command(CMD_SET_BIAS_9);
  ST7565_st7565_command(CMD_DISPLAY_ON);
  ST7565_st7565_command(CMD_SET_ALLPTS_NORMAL);
  ST7565_st7565_set_brightness(0x0C);

  OWSearch(&OneWire, addr);
  /*sprintf(test, "%02X %02X %02X %02X %02X %02X %02X %02X",
         addr[7],addr[6],
         addr[5],addr[4],
         addr[3],addr[2],
         addr[1],addr[0]);
  ST7565_drawstring(6, 6, test);
*/

  USB_Init();

  ST7565_display(); // show splashscreen
  t0 = millis();
  HTimer = millis();
  TTimer = millis();
  pp = 10;
  pi = 0;
  pd = 150;
  while(1)
  {
	msum[0] = 0;
	msum[1] = 0;
	msum[2] = 0;
	msum[3] = 0;
	for (i = 0; i < 1000; i++) {
      an1 = GetADC1Channel(ADC_Channel_1);
      an2 = GetADC1Channel(ADC_Channel_2);
      an3 = GetADC1Channel(ADC_Channel_3);
      an4 = GetADC1Channel(ADC_Channel_4);
      an5 = GetADC1Channel(ADC_Channel_5);
      msum[0] += an1;
      msum[1] += an3 - an2;
      msum[2] += an4 - an2;
      msum[3] += an5 - an2;
      //DelayuS(333);
	}
	SP = round((msum[0] / 1000.0) * (60.0 / 4096)) * 5;
	fm[1] = (msum[1] / 1000.0);
	fm[2] = (msum[2] / 1000.0) + 12;
	fm[3] = (msum[3] / 1000.0) - 7;

    T1 = (T1 + Ta + Dac2Dt(fm[1])) / 2;
    T2 = (T2 + Ta + Dac2Dt(fm[2])) / 2;
    T3 = (T3 + Ta + Dac2Dt(fm[3])) / 2;

    t1 = millis();
    dt = t1 - t0;
 	t0 = t1;
    if (millis() - HTimer > 1000) {
      f_error = SP - T2;
      //if (noerror_i += error;
      pid_out_p = pp * f_error;
      pid_out_i = pi * error_i;
      pid_out_d = pd * (f_error - error_old);
      pid_out = pid_out_p + pid_out_i + pid_out_d;
      error_old = f_error;
      //out = pid_out;
      if (pid_out > 99) {
    	out = 99;
      } else if (pid_out < 0) {
        out = 0;
      } else {
        out = round(pid_out);
      }
      TIM_SetCompare1(TIM3, 55000-PowerValues[out]);
	  HTimer += 1000;

    //error_old = 10;
    sprintf(test, "T1 : %5.1f E  %5.1f ", T1, f_error);
    ST7565_drawstring(6, 0, test);
	sprintf(test, "T2 : %5.1f ", T2);
    ST7565_drawstring(6, 1, test);
	sprintf(test, "T3 : %5.1f ", T3);
    ST7565_drawstring(6, 2, test);
	sprintf(test, "SP : %5.1f P %6.1f ", SP, pid_out_p);
    ST7565_drawstring(6, 3, test);
	sprintf(test, "Ta : %5.1f I %6.1f ", Ta, pid_out_i);
    ST7565_drawstring(6, 4, test);
    sprintf(test, "dt : %5lu D %6.1f ", dt, pid_out_d);
    ST7565_drawstring(6, 5, test);
 	sprintf(test, "out: %3u %%   %6.1f ", out, pid_out);
    ST7565_drawstring(6, 6, test);
    t_sec = (millis() - TTimer) / 1000;
    t_min = floor(t_sec / 60);
    t_sec %= 60;
 	Send_Buffer[0] = 0x07;
 	decval = round(T1 * 100);
 	memcpy(&Send_Buffer[1], &decval, 2);
 	decval = round(T2 * 100);
 	memcpy(&Send_Buffer[3], &decval, 2);
 	decval = round(T3 * 100);
 	memcpy(&Send_Buffer[5], &decval, 2);
 	decval = round(SP * 100);
 	memcpy(&Send_Buffer[7], &decval, 2);
 	memcpy(&Send_Buffer[9], &out, 1);

 	//sprintf(test, "%02X %02X %02X %02X ", Send_Buffer[1], Send_Buffer[2], Send_Buffer[3], Send_Buffer[4]);
    //ST7565_drawstring(6, 7, test);

    UserToPMABufferCopy(Send_Buffer, ENDP1_TXADDR, 9);
    SetEPTxCount(ENDP1, 9);
    SetEPTxValid(ENDP1);
    ST7565_display();
 	}
    if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == 0) {
      TTimer = millis();
    }

    //onewire
    switch (DSState){
    case 0:
      OWReset(&OneWire);
      OWWrite(&OneWire, 0xCC);         // skip ROM
      OWWrite(&OneWire, 0x44);         // start conversion
      DSTimer = millis();
      DSState++;
      break;
    case 1:
      if((millis() - DSTimer) >= 1000){
    	OWReset(&OneWire);
        OWSelect(&OneWire, addr);
        OWWrite(&OneWire, 0xBE);             // Read Scratchpad
        data[0] = OWRead(&OneWire);
        data[1] = OWRead(&OneWire);
        Ta = ((data[1] << 8) | data[0]) / 16.0;
        DSState = 0;
      }
      break;
    }
  }
}