/* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_GETPAGES. */ int vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) { vm_object_t object; struct bufobj *bo; struct buf *bp; off_t foff; #ifdef INVARIANTS off_t blkno0; #endif int bsize, pagesperblock, *freecnt; int error, before, after, rbehind, rahead, poff, i; int bytecount, secmask; KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, ("%s does not support devices", __func__)); if (vp->v_iflag & VI_DOOMED) return (VM_PAGER_BAD); object = vp->v_object; foff = IDX_TO_OFF(m[0]->pindex); bsize = vp->v_mount->mnt_stat.f_iosize; pagesperblock = bsize / PAGE_SIZE; KASSERT(foff < object->un_pager.vnp.vnp_size, ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); KASSERT(count <= sizeof(bp->b_pages), ("%s: requested %d pages", __func__, count)); /* * The last page has valid blocks. Invalid part can only * exist at the end of file, and the page is made fully valid * by zeroing in vm_pager_get_pages(). */ if (m[count - 1]->valid != 0 && --count == 0) { if (iodone != NULL) iodone(arg, m, 1, 0); return (VM_PAGER_OK); } /* * Synchronous and asynchronous paging operations use different * free pbuf counters. This is done to avoid asynchronous requests * to consume all pbufs. * Allocate the pbuf at the very beginning of the function, so that * if we are low on certain kind of pbufs don't even proceed to BMAP, * but sleep. */ freecnt = iodone != NULL ? &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt; bp = getpbuf(freecnt); /* * Get the underlying device blocks for the file with VOP_BMAP(). * If the file system doesn't support VOP_BMAP, use old way of * getting pages via VOP_READ. */ error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); if (error == EOPNOTSUPP) { relpbuf(bp, freecnt); VM_OBJECT_WLOCK(object); for (i = 0; i < count; i++) { PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); error = vnode_pager_input_old(object, m[i]); if (error) break; } VM_OBJECT_WUNLOCK(object); return (error); } else if (error != 0) { relpbuf(bp, freecnt); return (VM_PAGER_ERROR); } /* * If the file system supports BMAP, but blocksize is smaller * than a page size, then use special small filesystem code. */ if (pagesperblock == 0) { relpbuf(bp, freecnt); for (i = 0; i < count; i++) { PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); error = vnode_pager_input_smlfs(object, m[i]); if (error) break; } return (error); } /* * A sparse file can be encountered only for a single page request, * which may not be preceded by call to vm_pager_haspage(). */ if (bp->b_blkno == -1) { KASSERT(count == 1, ("%s: array[%d] request to a sparse file %p", __func__, count, vp)); relpbuf(bp, freecnt); pmap_zero_page(m[0]); KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", __func__, m[0])); VM_OBJECT_WLOCK(object); m[0]->valid = VM_PAGE_BITS_ALL; VM_OBJECT_WUNLOCK(object); return (VM_PAGER_OK); } #ifdef INVARIANTS blkno0 = bp->b_blkno; #endif bp->b_blkno += (foff % bsize) / DEV_BSIZE; /* Recalculate blocks available after/before to pages. */ poff = (foff % bsize) / PAGE_SIZE; before *= pagesperblock; before += poff; after *= pagesperblock; after += pagesperblock - (poff + 1); if (m[0]->pindex + after >= object->size) after = object->size - 1 - m[0]->pindex; KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", __func__, count, after + 1)); after -= count - 1; /* Trim requested rbehind/rahead to possible values. */ rbehind = a_rbehind ? *a_rbehind : 0; rahead = a_rahead ? *a_rahead : 0; rbehind = min(rbehind, before); rbehind = min(rbehind, m[0]->pindex); rahead = min(rahead, after); rahead = min(rahead, object->size - m[count - 1]->pindex); /* * Check that total amount of pages fit into buf. Trim rbehind and * rahead evenly if not. */ if (rbehind + rahead + count > nitems(bp->b_pages)) { int trim, sum; trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; sum = rbehind + rahead; if (rbehind == before) { /* Roundup rbehind trim to block size. */ rbehind -= roundup(trim * rbehind / sum, pagesperblock); if (rbehind < 0) rbehind = 0; } else rbehind -= trim * rbehind / sum; rahead -= trim * rahead / sum; } KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), ("%s: behind %d ahead %d count %d", __func__, rbehind, rahead, count)); /* * Fill in the bp->b_pages[] array with requested and optional * read behind or read ahead pages. Read behind pages are looked * up in a backward direction, down to a first cached page. Same * for read ahead pages, but there is no need to shift the array * in case of encountering a cached page. */ i = bp->b_npages = 0; if (rbehind) { vm_pindex_t startpindex, tpindex; vm_page_t p; VM_OBJECT_WLOCK(object); startpindex = m[0]->pindex - rbehind; if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && p->pindex >= startpindex) startpindex = p->pindex + 1; /* tpindex is unsigned; beware of numeric underflow. */ for (tpindex = m[0]->pindex - 1; tpindex >= startpindex && tpindex < m[0]->pindex; tpindex--, i++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) { /* Shift the array. */ for (int j = 0; j < i; j++) bp->b_pages[j] = bp->b_pages[j + tpindex + 1 - startpindex]; break; } bp->b_pages[tpindex - startpindex] = p; } bp->b_pgbefore = i; bp->b_npages += i; bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; } else bp->b_pgbefore = 0; /* Requested pages. */ for (int j = 0; j < count; j++, i++) bp->b_pages[i] = m[j]; bp->b_npages += count; if (rahead) { vm_pindex_t endpindex, tpindex; vm_page_t p; if (!VM_OBJECT_WOWNED(object)) VM_OBJECT_WLOCK(object); endpindex = m[count - 1]->pindex + rahead + 1; if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && p->pindex < endpindex) endpindex = p->pindex; if (endpindex > object->size) endpindex = object->size; for (tpindex = m[count - 1]->pindex + 1; tpindex < endpindex; i++, tpindex++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) break; bp->b_pages[i] = p; } bp->b_pgafter = i - bp->b_npages; bp->b_npages = i; } else bp->b_pgafter = 0; if (VM_OBJECT_WOWNED(object)) VM_OBJECT_WUNLOCK(object); /* Report back actual behind/ahead read. */ if (a_rbehind) *a_rbehind = bp->b_pgbefore; if (a_rahead) *a_rahead = bp->b_pgafter; #ifdef INVARIANTS KASSERT(bp->b_npages <= nitems(bp->b_pages), ("%s: buf %p overflowed", __func__, bp)); for (int j = 1; j < bp->b_npages; j++) KASSERT(bp->b_pages[j]->pindex - 1 == bp->b_pages[j - 1]->pindex, ("%s: pages array not consecutive, bp %p", __func__, bp)); #endif /* * Recalculate first offset and bytecount with regards to read behind. * Truncate bytecount to vnode real size and round up physical size * for real devices. */ foff = IDX_TO_OFF(bp->b_pages[0]->pindex); bytecount = bp->b_npages << PAGE_SHIFT; if ((foff + bytecount) > object->un_pager.vnp.vnp_size) bytecount = object->un_pager.vnp.vnp_size - foff; secmask = bo->bo_bsize - 1; KASSERT(secmask < PAGE_SIZE && secmask > 0, ("%s: sector size %d too large", __func__, secmask + 1)); bytecount = (bytecount + secmask) & ~secmask; /* * And map the pages to be read into the kva, if the filesystem * requires mapped buffers. */ if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && unmapped_buf_allowed) { bp->b_data = unmapped_buf; bp->b_offset = 0; } else { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); } /* Build a minimal buffer header. */ bp->b_iocmd = BIO_READ; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; bp->b_iooffset = dbtob(bp->b_blkno); KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == (blkno0 - bp->b_blkno) * DEV_BSIZE + IDX_TO_OFF(m[0]->pindex) % bsize, ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " "blkno0 %ju b_blkno %ju", bsize, (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); atomic_add_long(&runningbufspace, bp->b_runningbufspace); PCPU_INC(cnt.v_vnodein); PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages); if (iodone != NULL) { /* async */ bp->b_pgiodone = iodone; bp->b_caller1 = arg; bp->b_iodone = vnode_pager_generic_getpages_done_async; bp->b_flags |= B_ASYNC; BUF_KERNPROC(bp); bstrategy(bp); return (VM_PAGER_OK); } else { bp->b_iodone = bdone; bstrategy(bp); bwait(bp, PVM, "vnread"); error = vnode_pager_generic_getpages_done(bp); for (i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); relpbuf(bp, &vnode_pbuf_freecnt); return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); } }
/* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_PUTPAGES. * * This is typically called indirectly via the pageout daemon and * clustering has already typically occurred, so in general we ask the * underlying filesystem to write the data out asynchronously rather * then delayed. */ int vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, int flags, int *rtvals) { int i; vm_object_t object; vm_page_t m; int count; int maxsize, ncount; vm_ooffset_t poffset; struct uio auio; struct iovec aiov; int error; int ioflags; int ppscheck = 0; static struct timeval lastfail; static int curfail; object = vp->v_object; count = bytecount / PAGE_SIZE; for (i = 0; i < count; i++) rtvals[i] = VM_PAGER_ERROR; if ((int64_t)ma[0]->pindex < 0) { printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", (long)ma[0]->pindex, (u_long)ma[0]->dirty); rtvals[0] = VM_PAGER_BAD; return VM_PAGER_BAD; } maxsize = count * PAGE_SIZE; ncount = count; poffset = IDX_TO_OFF(ma[0]->pindex); /* * If the page-aligned write is larger then the actual file we * have to invalidate pages occurring beyond the file EOF. However, * there is an edge case where a file may not be page-aligned where * the last page is partially invalid. In this case the filesystem * may not properly clear the dirty bits for the entire page (which * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). * With the page locked we are free to fix-up the dirty bits here. * * We do not under any circumstances truncate the valid bits, as * this will screw up bogus page replacement. */ VM_OBJECT_WLOCK(object); if (maxsize + poffset > object->un_pager.vnp.vnp_size) { if (object->un_pager.vnp.vnp_size > poffset) { int pgoff; maxsize = object->un_pager.vnp.vnp_size - poffset; ncount = btoc(maxsize); if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { /* * If the object is locked and the following * conditions hold, then the page's dirty * field cannot be concurrently changed by a * pmap operation. */ m = ma[ncount - 1]; vm_page_assert_sbusied(m); KASSERT(!pmap_page_is_write_mapped(m), ("vnode_pager_generic_putpages: page %p is not read-only", m)); vm_page_clear_dirty(m, pgoff, PAGE_SIZE - pgoff); } } else { maxsize = 0; ncount = 0; } if (ncount < count) { for (i = ncount; i < count; i++) { rtvals[i] = VM_PAGER_BAD; } } } VM_OBJECT_WUNLOCK(object); /* * pageouts are already clustered, use IO_ASYNC to force a bawrite() * rather then a bdwrite() to prevent paging I/O from saturating * the buffer cache. Dummy-up the sequential heuristic to cause * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, * the system decides how to cluster. */ ioflags = IO_VMIO; if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) ioflags |= IO_SYNC; else if ((flags & VM_PAGER_CLUSTER_OK) == 0) ioflags |= IO_ASYNC; ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; ioflags |= (flags & VM_PAGER_PUT_NOREUSE) ? IO_NOREUSE : 0; ioflags |= IO_SEQMAX << IO_SEQSHIFT; aiov.iov_base = (caddr_t) 0; aiov.iov_len = maxsize; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = poffset; auio.uio_segflg = UIO_NOCOPY; auio.uio_rw = UIO_WRITE; auio.uio_resid = maxsize; auio.uio_td = (struct thread *) 0; error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); PCPU_INC(cnt.v_vnodeout); PCPU_ADD(cnt.v_vnodepgsout, ncount); if (error) { if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) printf("vnode_pager_putpages: I/O error %d\n", error); } if (auio.uio_resid) { if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) printf("vnode_pager_putpages: residual I/O %zd at %lu\n", auio.uio_resid, (u_long)ma[0]->pindex); } for (i = 0; i < ncount; i++) { rtvals[i] = VM_PAGER_OK; } return rtvals[0]; }
static void do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, struct vmspace *vm2, struct file *fp_procdesc) { struct proc *p1, *pptr; int trypid; struct filedesc *fd; struct filedesc_to_leader *fdtol; struct sigacts *newsigacts; sx_assert(&proctree_lock, SX_SLOCKED); sx_assert(&allproc_lock, SX_XLOCKED); p1 = td->td_proc; trypid = fork_findpid(fr->fr_flags); sx_sunlock(&proctree_lock); p2->p_state = PRS_NEW; /* protect against others */ p2->p_pid = trypid; AUDIT_ARG_PID(p2->p_pid); LIST_INSERT_HEAD(&allproc, p2, p_list); allproc_gen++; LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); tidhash_add(td2); PROC_LOCK(p2); PROC_LOCK(p1); sx_xunlock(&allproc_lock); bcopy(&p1->p_startcopy, &p2->p_startcopy, __rangeof(struct proc, p_startcopy, p_endcopy)); pargs_hold(p2->p_args); PROC_UNLOCK(p1); bzero(&p2->p_startzero, __rangeof(struct proc, p_startzero, p_endzero)); /* Tell the prison that we exist. */ prison_proc_hold(p2->p_ucred->cr_prison); PROC_UNLOCK(p2); /* * Malloc things while we don't hold any locks. */ if (fr->fr_flags & RFSIGSHARE) newsigacts = NULL; else newsigacts = sigacts_alloc(); /* * Copy filedesc. */ if (fr->fr_flags & RFCFDG) { fd = fdinit(p1->p_fd, false); fdtol = NULL; } else if (fr->fr_flags & RFFDG) { fd = fdcopy(p1->p_fd); fdtol = NULL; } else { fd = fdshare(p1->p_fd); if (p1->p_fdtol == NULL) p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, p1->p_leader); if ((fr->fr_flags & RFTHREAD) != 0) { /* * Shared file descriptor table, and shared * process leaders. */ fdtol = p1->p_fdtol; FILEDESC_XLOCK(p1->p_fd); fdtol->fdl_refcount++; FILEDESC_XUNLOCK(p1->p_fd); } else { /* * Shared file descriptor table, and different * process leaders. */ fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p1->p_fd, p2); } } /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ PROC_LOCK(p2); PROC_LOCK(p1); bzero(&td2->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &td2->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); td2->td_sigstk = td->td_sigstk; td2->td_flags = TDF_INMEM; td2->td_lend_user_pri = PRI_MAX; #ifdef VIMAGE td2->td_vnet = NULL; td2->td_vnet_lpush = NULL; #endif /* * Allow the scheduler to initialize the child. */ thread_lock(td); sched_fork(td, td2); thread_unlock(td); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. */ p2->p_flag = P_INMEM; p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); p2->p_swtick = ticks; if (p1->p_flag & P_PROFIL) startprofclock(p2); /* * Whilst the proc lock is held, copy the VM domain data out * using the VM domain method. */ vm_domain_policy_init(&p2->p_vm_dom_policy); vm_domain_policy_localcopy(&p2->p_vm_dom_policy, &p1->p_vm_dom_policy); if (fr->fr_flags & RFSIGSHARE) { p2->p_sigacts = sigacts_hold(p1->p_sigacts); } else { sigacts_copy(newsigacts, p1->p_sigacts); p2->p_sigacts = newsigacts; } if (fr->fr_flags & RFTSIGZMB) p2->p_sigparent = RFTSIGNUM(fr->fr_flags); else if (fr->fr_flags & RFLINUXTHPN) p2->p_sigparent = SIGUSR1; else p2->p_sigparent = SIGCHLD; p2->p_textvp = p1->p_textvp; p2->p_fd = fd; p2->p_fdtol = fdtol; if (p1->p_flag2 & P2_INHERIT_PROTECTED) { p2->p_flag |= P_PROTECTED; p2->p_flag2 |= P2_INHERIT_PROTECTED; } /* * p_limit is copy-on-write. Bump its refcount. */ lim_fork(p1, p2); thread_cow_get_proc(td2, p2); pstats_fork(p1->p_stats, p2->p_stats); PROC_UNLOCK(p1); PROC_UNLOCK(p2); /* Bump references to the text vnode (for procfs). */ if (p2->p_textvp) vref(p2->p_textvp); /* * Set up linkage for kernel based threading. */ if ((fr->fr_flags & RFTHREAD) != 0) { mtx_lock(&ppeers_lock); p2->p_peers = p1->p_peers; p1->p_peers = p2; p2->p_leader = p1->p_leader; mtx_unlock(&ppeers_lock); PROC_LOCK(p1->p_leader); if ((p1->p_leader->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(p1->p_leader); /* * The task leader is exiting, so process p1 is * going to be killed shortly. Since p1 obviously * isn't dead yet, we know that the leader is either * sending SIGKILL's to all the processes in this * task or is sleeping waiting for all the peers to * exit. We let p1 complete the fork, but we need * to go ahead and kill the new process p2 since * the task leader may not get a chance to send * SIGKILL to it. We leave it on the list so that * the task leader will wait for this new process * to commit suicide. */ PROC_LOCK(p2); kern_psignal(p2, SIGKILL); PROC_UNLOCK(p2); } else PROC_UNLOCK(p1->p_leader); } else { p2->p_peers = NULL; p2->p_leader = p2; } sx_xlock(&proctree_lock); PGRP_LOCK(p1->p_pgrp); PROC_LOCK(p2); PROC_LOCK(p1); /* * Preserve some more flags in subprocess. P_PROFIL has already * been preserved. */ p2->p_flag |= p1->p_flag & P_SUGID; td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; SESS_LOCK(p1->p_session); if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; SESS_UNLOCK(p1->p_session); if (fr->fr_flags & RFPPWAIT) p2->p_flag |= P_PPWAIT; p2->p_pgrp = p1->p_pgrp; LIST_INSERT_AFTER(p1, p2, p_pglist); PGRP_UNLOCK(p1->p_pgrp); LIST_INIT(&p2->p_children); LIST_INIT(&p2->p_orphans); callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); /* * If PF_FORK is set, the child process inherits the * procfs ioctl flags from its parent. */ if (p1->p_pfsflags & PF_FORK) { p2->p_stops = p1->p_stops; p2->p_pfsflags = p1->p_pfsflags; } /* * This begins the section where we must prevent the parent * from being swapped. */ _PHOLD(p1); PROC_UNLOCK(p1); /* * Attach the new process to its parent. * * If RFNOWAIT is set, the newly created process becomes a child * of init. This effectively disassociates the child from the * parent. */ if ((fr->fr_flags & RFNOWAIT) != 0) { pptr = p1->p_reaper; p2->p_reaper = pptr; } else { p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? p1 : p1->p_reaper; pptr = p1; } p2->p_pptr = pptr; LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); LIST_INIT(&p2->p_reaplist); LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); if (p2->p_reaper == p1) p2->p_reapsubtree = p2->p_pid; sx_xunlock(&proctree_lock); /* Inform accounting that we have forked. */ p2->p_acflag = AFORK; PROC_UNLOCK(p2); #ifdef KTRACE ktrprocfork(p1, p2); #endif /* * Finish creating the child process. It will return via a different * execution path later. (ie: directly into user mode) */ vm_forkproc(td, p2, td2, vm2, fr->fr_flags); if (fr->fr_flags == (RFFDG | RFPROC)) { PCPU_INC(cnt.v_forks); PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { PCPU_INC(cnt.v_vforks); PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (p1 == &proc0) { PCPU_INC(cnt.v_kthreads); PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else { PCPU_INC(cnt.v_rforks); PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } /* * Associate the process descriptor with the process before anything * can happen that might cause that process to need the descriptor. * However, don't do this until after fork(2) can no longer fail. */ if (fr->fr_flags & RFPROCDESC) procdesc_new(p2, fr->fr_pd_flags); /* * Both processes are set up, now check if any loadable modules want * to adjust anything. */ EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags); /* * Set the child start time and mark the process as being complete. */ PROC_LOCK(p2); PROC_LOCK(p1); microuptime(&p2->p_stats->p_start); PROC_SLOCK(p2); p2->p_state = PRS_NORMAL; PROC_SUNLOCK(p2); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the new process so that any * tracepoints inherited from the parent can be removed. We have to do * this only after p_state is PRS_NORMAL since the fasttrap module will * use pfind() later on. */ if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) dtrace_fasttrap_fork(p1, p2); #endif /* * Hold the process so that it cannot exit after we make it runnable, * but before we wait for the debugger. */ _PHOLD(p2); if (p1->p_ptevents & PTRACE_FORK) { /* * Arrange for debugger to receive the fork event. * * We can report PL_FLAG_FORKED regardless of * P_FOLLOWFORK settings, but it does not make a sense * for runaway child. */ td->td_dbgflags |= TDB_FORK; td->td_dbg_forked = p2->p_pid; td2->td_dbgflags |= TDB_STOPATFORK; } if (fr->fr_flags & RFPPWAIT) { td->td_pflags |= TDP_RFPPWAIT; td->td_rfppwait_p = p2; td->td_dbgflags |= TDB_VFORK; } PROC_UNLOCK(p2); /* * Now can be swapped. */ _PRELE(p1); PROC_UNLOCK(p1); /* * Tell any interested parties about the new process. */ knote_fork(p1->p_klist, p2->p_pid); SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); if (fr->fr_flags & RFPROCDESC) { procdesc_finit(p2->p_procdesc, fp_procdesc); fdrop(fp_procdesc, td); } if ((fr->fr_flags & RFSTOPPED) == 0) { /* * If RFSTOPPED not requested, make child runnable and * add to run queue. */ thread_lock(td2); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); thread_unlock(td2); if (fr->fr_pidp != NULL) *fr->fr_pidp = p2->p_pid; } else { *fr->fr_procp = p2; } PROC_LOCK(p2); /* * Wait until debugger is attached to child. */ while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) cv_wait(&p2->p_dbgwait, &p2->p_mtx); _PRELE(p2); racct_proc_fork_done(p2); PROC_UNLOCK(p2); }
/* struct vnop_putpages_args { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; vm_ooffset_t a_offset; }; */ static int fuse_vnop_putpages(struct vop_putpages_args *ap) { struct uio uio; struct iovec iov; vm_offset_t kva; struct buf *bp; int i, error, npages, count; off_t offset; int *rtvals; struct vnode *vp; struct thread *td; struct ucred *cred; vm_page_t *pages; vm_ooffset_t fsize; FS_DEBUG2G("heh\n"); vp = ap->a_vp; KASSERT(vp->v_object, ("objectless vp passed to putpages")); fsize = vp->v_object->un_pager.vnp.vnp_size; td = curthread; /* XXX */ cred = curthread->td_ucred; /* XXX */ pages = ap->a_m; count = ap->a_count; rtvals = ap->a_rtvals; npages = btoc(count); offset = IDX_TO_OFF(pages[0]->pindex); if (!fsess_opt_mmap(vnode_mount(vp))) { FS_DEBUG("called on non-cacheable vnode??\n"); } for (i = 0; i < npages; i++) rtvals[i] = VM_PAGER_AGAIN; /* * When putting pages, do not extend file past EOF. */ if (offset + count > fsize) { count = fsize - offset; if (count < 0) count = 0; } /* * We use only the kva address for the buffer, but this is extremely * convienient and fast. */ bp = getpbuf(&fuse_pbuf_freecnt); kva = (vm_offset_t)bp->b_data; pmap_qenter(kva, pages, npages); PCPU_INC(cnt.v_vnodeout); PCPU_ADD(cnt.v_vnodepgsout, count); iov.iov_base = (caddr_t)kva; iov.iov_len = count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = offset; uio.uio_resid = count; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; uio.uio_td = td; error = fuse_io_dispatch(vp, &uio, IO_DIRECT, cred); pmap_qremove(kva, npages); relpbuf(bp, &fuse_pbuf_freecnt); if (!error) { int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; for (i = 0; i < nwritten; i++) { rtvals[i] = VM_PAGER_OK; VM_OBJECT_WLOCK(pages[i]->object); vm_page_undirty(pages[i]); VM_OBJECT_WUNLOCK(pages[i]->object); } } return rtvals[0]; }
/* struct vnop_getpages_args { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_reqpage; vm_ooffset_t a_offset; }; */ static int fuse_vnop_getpages(struct vop_getpages_args *ap) { int i, error, nextoff, size, toff, count, npages; struct uio uio; struct iovec iov; vm_offset_t kva; struct buf *bp; struct vnode *vp; struct thread *td; struct ucred *cred; vm_page_t *pages; FS_DEBUG2G("heh\n"); vp = ap->a_vp; KASSERT(vp->v_object, ("objectless vp passed to getpages")); td = curthread; /* XXX */ cred = curthread->td_ucred; /* XXX */ pages = ap->a_m; count = ap->a_count; if (!fsess_opt_mmap(vnode_mount(vp))) { FS_DEBUG("called on non-cacheable vnode??\n"); return (VM_PAGER_ERROR); } npages = btoc(count); /* * If the requested page is partially valid, just return it and * allow the pager to zero-out the blanks. Partially valid pages * can only occur at the file EOF. */ VM_OBJECT_WLOCK(vp->v_object); fuse_vm_page_lock_queues(); if (pages[ap->a_reqpage]->valid != 0) { for (i = 0; i < npages; ++i) { if (i != ap->a_reqpage) { fuse_vm_page_lock(pages[i]); vm_page_free(pages[i]); fuse_vm_page_unlock(pages[i]); } } fuse_vm_page_unlock_queues(); VM_OBJECT_WUNLOCK(vp->v_object); return 0; } fuse_vm_page_unlock_queues(); VM_OBJECT_WUNLOCK(vp->v_object); /* * We use only the kva address for the buffer, but this is extremely * convienient and fast. */ bp = getpbuf(&fuse_pbuf_freecnt); kva = (vm_offset_t)bp->b_data; pmap_qenter(kva, pages, npages); PCPU_INC(cnt.v_vnodein); PCPU_ADD(cnt.v_vnodepgsin, npages); iov.iov_base = (caddr_t)kva; iov.iov_len = count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); uio.uio_resid = count; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; error = fuse_io_dispatch(vp, &uio, IO_DIRECT, cred); pmap_qremove(kva, npages); relpbuf(bp, &fuse_pbuf_freecnt); if (error && (uio.uio_resid == count)) { FS_DEBUG("error %d\n", error); VM_OBJECT_WLOCK(vp->v_object); fuse_vm_page_lock_queues(); for (i = 0; i < npages; ++i) { if (i != ap->a_reqpage) { fuse_vm_page_lock(pages[i]); vm_page_free(pages[i]); fuse_vm_page_unlock(pages[i]); } } fuse_vm_page_unlock_queues(); VM_OBJECT_WUNLOCK(vp->v_object); return VM_PAGER_ERROR; } /* * Calculate the number of bytes read and validate only that number * of bytes. Note that due to pending writes, size may be 0. This * does not mean that the remaining data is invalid! */ size = count - uio.uio_resid; VM_OBJECT_WLOCK(vp->v_object); fuse_vm_page_lock_queues(); for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { vm_page_t m; nextoff = toff + PAGE_SIZE; m = pages[i]; if (nextoff <= size) { /* * Read operation filled an entire page */ m->valid = VM_PAGE_BITS_ALL; KASSERT(m->dirty == 0, ("fuse_getpages: page %p is dirty", m)); } else if (size > toff) { /* * Read operation filled a partial page. */ m->valid = 0; vm_page_set_valid_range(m, 0, size - toff); KASSERT(m->dirty == 0, ("fuse_getpages: page %p is dirty", m)); } else { /* * Read operation was short. If no error occured * we may have hit a zero-fill section. We simply * leave valid set to 0. */ ; } if (i != ap->a_reqpage) vm_page_readahead_finish(m); } fuse_vm_page_unlock_queues(); VM_OBJECT_WUNLOCK(vp->v_object); return 0; }
/* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_GETPAGES. */ int vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount, int reqpage, vop_getpages_iodone_t iodone, void *arg) { vm_object_t object; struct bufobj *bo; struct buf *bp; daddr_t firstaddr, reqblock; off_t foff, pib; int pbefore, pafter, i, size, bsize, first, last, *freecnt; int count, error, before, after, secmask; KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, ("vnode_pager_generic_getpages does not support devices")); if (vp->v_iflag & VI_DOOMED) return (VM_PAGER_BAD); object = vp->v_object; count = bytecount / PAGE_SIZE; bsize = vp->v_mount->mnt_stat.f_iosize; /* * Synchronous and asynchronous paging operations use different * free pbuf counters. This is done to avoid asynchronous requests * to consume all pbufs. * Allocate the pbuf at the very beginning of the function, so that * if we are low on certain kind of pbufs don't even proceed to BMAP, * but sleep. */ freecnt = iodone != NULL ? &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt; bp = getpbuf(freecnt); /* * Get the underlying device blocks for the file with VOP_BMAP(). * If the file system doesn't support VOP_BMAP, use old way of * getting pages via VOP_READ. */ error = VOP_BMAP(vp, IDX_TO_OFF(m[reqpage]->pindex) / bsize, &bo, &reqblock, &after, &before); if (error == EOPNOTSUPP) { relpbuf(bp, freecnt); VM_OBJECT_WLOCK(object); for (i = 0; i < count; i++) if (i != reqpage) { vm_page_lock(m[i]); vm_page_free(m[i]); vm_page_unlock(m[i]); } PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); error = vnode_pager_input_old(object, m[reqpage]); VM_OBJECT_WUNLOCK(object); return (error); } else if (error != 0) { relpbuf(bp, freecnt); vm_pager_free_nonreq(object, m, reqpage, count, FALSE); return (VM_PAGER_ERROR); /* * If the blocksize is smaller than a page size, then use * special small filesystem code. */ } else if ((PAGE_SIZE / bsize) > 1) { relpbuf(bp, freecnt); vm_pager_free_nonreq(object, m, reqpage, count, FALSE); PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); return (vnode_pager_input_smlfs(object, m[reqpage])); } /* * Since the caller has busied the requested page, that page's valid * field will not be changed by other threads. */ vm_page_assert_xbusied(m[reqpage]); /* * If we have a completely valid page available to us, we can * clean up and return. Otherwise we have to re-read the * media. */ if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { relpbuf(bp, freecnt); vm_pager_free_nonreq(object, m, reqpage, count, FALSE); return (VM_PAGER_OK); } else if (reqblock == -1) { relpbuf(bp, freecnt); pmap_zero_page(m[reqpage]); KASSERT(m[reqpage]->dirty == 0, ("vnode_pager_generic_getpages: page %p is dirty", m)); VM_OBJECT_WLOCK(object); m[reqpage]->valid = VM_PAGE_BITS_ALL; vm_pager_free_nonreq(object, m, reqpage, count, TRUE); VM_OBJECT_WUNLOCK(object); return (VM_PAGER_OK); } else if (m[reqpage]->valid != 0) { VM_OBJECT_WLOCK(object); m[reqpage]->valid = 0; VM_OBJECT_WUNLOCK(object); } pib = IDX_TO_OFF(m[reqpage]->pindex) % bsize; pbefore = ((daddr_t)before * bsize + pib) / PAGE_SIZE; pafter = ((daddr_t)(after + 1) * bsize - pib) / PAGE_SIZE - 1; first = reqpage < pbefore ? 0 : reqpage - pbefore; last = reqpage + pafter >= count ? count - 1 : reqpage + pafter; if (first > 0 || last + 1 < count) { VM_OBJECT_WLOCK(object); for (i = 0; i < first; i++) { vm_page_lock(m[i]); vm_page_free(m[i]); vm_page_unlock(m[i]); } for (i = last + 1; i < count; i++) { vm_page_lock(m[i]); vm_page_free(m[i]); vm_page_unlock(m[i]); } VM_OBJECT_WUNLOCK(object); } /* * here on direct device I/O */ firstaddr = reqblock; firstaddr += pib / DEV_BSIZE; firstaddr -= IDX_TO_OFF(reqpage - first) / DEV_BSIZE; /* * The first and last page have been calculated now, move * input pages to be zero based, and adjust the count. */ m += first; reqpage -= first; count = last - first + 1; /* * calculate the file virtual address for the transfer */ foff = IDX_TO_OFF(m[0]->pindex); /* * calculate the size of the transfer */ size = count * PAGE_SIZE; KASSERT(count > 0, ("zero count")); if ((foff + size) > object->un_pager.vnp.vnp_size) size = object->un_pager.vnp.vnp_size - foff; KASSERT(size > 0, ("zero size")); /* * round up physical size for real devices. */ secmask = bo->bo_bsize - 1; KASSERT(secmask < PAGE_SIZE && secmask > 0, ("vnode_pager_generic_getpages: sector size %d too large", secmask + 1)); size = (size + secmask) & ~secmask; /* * and map the pages to be read into the kva, if the filesystem * requires mapped buffers. */ if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && unmapped_buf_allowed) { bp->b_data = unmapped_buf; bp->b_offset = 0; } else { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, m, count); } /* build a minimal buffer header */ bp->b_iocmd = BIO_READ; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); bp->b_blkno = firstaddr; pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = size; bp->b_bufsize = size; bp->b_runningbufspace = bp->b_bufsize; for (i = 0; i < count; i++) bp->b_pages[i] = m[i]; bp->b_npages = count; bp->b_pager.pg_reqpage = reqpage; atomic_add_long(&runningbufspace, bp->b_runningbufspace); PCPU_INC(cnt.v_vnodein); PCPU_ADD(cnt.v_vnodepgsin, count); /* do the input */ bp->b_iooffset = dbtob(bp->b_blkno); if (iodone != NULL) { /* async */ bp->b_pager.pg_iodone = iodone; bp->b_caller1 = arg; bp->b_iodone = vnode_pager_generic_getpages_done_async; bp->b_flags |= B_ASYNC; BUF_KERNPROC(bp); bstrategy(bp); /* Good bye! */ } else { bp->b_iodone = bdone; bstrategy(bp); bwait(bp, PVM, "vnread"); error = vnode_pager_generic_getpages_done(bp); for (i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); relpbuf(bp, &vnode_pbuf_freecnt); } return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); }