Пример #1
0
int main()
{
   /************************
    * PDQ global variables *
    ************************/

   extern JOB_TYPE *job;
   extern double    getjob_pop();
   extern int       getjob_index();
   extern double    PDQ_GetResponse();
   extern double    PDQ_GetThruput();
   extern double    PDQ_GetUtilization();

   /****************************
    * Model specific variables *
    ****************************/

   int              noNodes;
   int              noStreams;
   int              tech;
   int              pop;
   double           think = 0.0;

   /************************
    * Initialize the model *
    ************************/

   /* Give model a name */
   /*PDQ_Init("Test_Exact_Calc");*/

   tech = APPROX;
   printf("**** %s Solution ****:\n\n", tech == EXACT ? "EXACT" : "APPROX");
   printf("  N      R (w1)    R (w2)\n");

   for (pop = 1; pop < 10; pop++) {
      PDQ_Init("Test_Exact_calc");

      /* Define the workload and circuit type */
      noStreams = PDQ_CreateClosed("w1", TERM, 1.0 * pop, think);
      noStreams = PDQ_CreateClosed("w2", TERM, 1.0 * pop, think);

      /* Define the queueing center */
      noNodes = PDQ_CreateNode("node", CEN, FCFS);

      /* Define service demand */
      PDQ_SetDemand("node", "w1", 1.0);
      PDQ_SetDemand("node", "w2", 0.5);

      /*******************
       * Solve the model *
       *******************/
      PDQ_Solve(tech);

/*
      printf("N\tR\n%8.4f  %8.4f\n",
	     getjob_pop(getjob_index("w1")),
	     PDQ_GetResponse(TERM, "w1"));

      printf("N\tR\n%8.4f  %8.4f\n",
	     getjob_pop(getjob_index("w2")),
	     PDQ_GetResponse(TERM, "w2"));
*/
      printf("%3d    %8.4f  %8.4f\n",
	     pop, PDQ_GetResponse(TERM, "w1"),
	     PDQ_GetResponse(TERM, "w2"));
   }

   return(0);
}  // main
Пример #2
0
int main(void)
{
   extern int      nodes, streams;
   extern JOB_TYPE *job;
   extern NODE_TYPE *node;
   extern char     s1[];
   char            transCD[MAXCHARS], transRQ[MAXCHARS], transSU[MAXCHARS];
   char            dummyCD[MAXCHARS], dummyRQ[MAXCHARS], dummySU[MAXCHARS];
   char            nodePC[MAXCHARS], nodeFS[MAXCHARS], nodeGW[MAXCHARS];
   char            nodeMF[MAXCHARS], nodeTR[MAXCHARS];
   double          demand[MAXPROC][MAXDEV], util[MAXDEV], udsk[MAXDEV],
                   udasd[MAXDEV], RTexpect[MAXPROC];
   double          fsd, RTmean, ulan, ufs, uws, ugw, umf;
   int             work, dev, i, j;

   /*
   Disk-array data structures probably should go into PDQ_Build.c one
   day.
   */

   devarray_type  *FDarray;
   devarray_type  *MDarray;

   if ((FDarray = (devarray_type *) calloc(sizeof(devarray_type), 10)) == NULL)
      errmsg("", "FDarray allocation failed!\n");

   if ((MDarray = (devarray_type *) calloc(sizeof(devarray_type), 10)) == NULL)
      errmsg("", "MDarray allocation failed!\n");

   for (i = 0; i < FS_DISKS; i++) {
      FDarray[i].id = FD + i;
      resets(s1);
      sprintf(s1, "FSDK%d", i);
      strcpy(FDarray[i].label, s1);
   }

   for (i = 0; i < MF_DISKS; i++) {
      MDarray[i].id = MD + i;
      resets(s1);
      sprintf(s1, "MFDK%d", i);
      strcpy(MDarray[i].label, s1);
   }

   /*
   CPU service times are calculated from instruction counts tabulated
   in original 1993 CMG paper.
   */

   demand[CD_Req][PC] = 200 * k / PC_MIPS;
   demand[CD_Rpy][PC] = 100 * k / PC_MIPS;
   demand[RQ_Req][PC] = 150 * k / PC_MIPS;
   demand[RQ_Rpy][PC] = 200 * k / PC_MIPS;
   demand[SU_Req][PC] = 300 * k / PC_MIPS;
   demand[SU_Rpy][PC] = 300 * k / PC_MIPS;
   demand[Req_CD][FS] = 50 * k / FS_MIPS;
   demand[Req_RQ][FS] = 70 * k / FS_MIPS;
   demand[Req_SU][FS] = 10 * k / FS_MIPS;
   demand[CD_Msg][FS] = 35 * k / FS_MIPS;
   demand[RQ_Msg][FS] = 35 * k / FS_MIPS;
   demand[SU_Msg][FS] = 35 * k / FS_MIPS;
   demand[GT_Snd][GW] = 50 * k / GW_MIPS;
   demand[GT_Rcv][GW] = 50 * k / GW_MIPS;
   demand[MF_CD][MF] = 50 * k / MF_MIPS;
   demand[MF_RQ][MF] = 150 * k / MF_MIPS;
   demand[MF_SU][MF] = 20 * k / MF_MIPS;

   /*
    Service time on the LAN to send and recv packets from any of the PC
    desktop, the file server or the SNA gateway.
    8 bits per Byte.
    */
   
   demand[LAN_TX][PC] = (double) TR_Bytes * 8 / TR_Mbps;
   demand[LAN_TX][FS] = (double) TR_Bytes * 8 / TR_Mbps;
   demand[LAN_TX][GW] = (double) TR_Bytes * 8 / TR_Mbps;

   /*
    * File server disk IOs = number of accesses x caching / (max IOs / Sec)
    */

   for (i = 0; i < FS_DISKS; i++) {
      demand[Req_CD][FDarray[i].id] = (1.0 * 0.5 / 128.9) / FS_DISKS;
      demand[Req_RQ][FDarray[i].id] = (1.5 * 0.5 / 128.9) / FS_DISKS;
      demand[Req_SU][FDarray[i].id] = (0.2 * 0.5 / 128.9) / FS_DISKS;
      demand[CD_Msg][FDarray[i].id] = (1.0 * 0.5 / 128.9) / FS_DISKS;
      demand[RQ_Msg][FDarray[i].id] = (1.5 * 0.5 / 128.9) / FS_DISKS;
      demand[SU_Msg][FDarray[i].id] = (0.5 * 0.5 / 128.9) / FS_DISKS;
   }


   /* Mainframe DASD IOs = (#accesses / (max IOs/Sec)) / #disks */
   for (i = 0; i < MF_DISKS; i++) {
      demand[MF_CD][MDarray[i].id] = (2.0 / 60.24) / MF_DISKS;
      demand[MF_RQ][MDarray[i].id] = (4.0 / 60.24) / MF_DISKS;
      demand[MF_SU][MDarray[i].id] = (1.0 / 60.24) / MF_DISKS;
   }

   /* Now, start building the PDQ model... */

   PDQ_Init(scenario);

   /* Define physical resources as PDQ queueing nodes. */
   strcpy(nodePC, "PCDESK");
   strcpy(nodeFS, "FSERVR");
   strcpy(nodeGW, "GATWAY");
   strcpy(nodeMF, "MFRAME");
   strcpy(nodeTR, "TRLAN");

   PDQ_CreateNode(nodePC, CEN, FCFS);
   PDQ_CreateNode(nodeFS, CEN, FCFS);
   PDQ_CreateNode(nodeGW, CEN, FCFS);
   PDQ_CreateNode(nodeMF, CEN, FCFS);

   for (i = 0; i < FS_DISKS; i++) {
      PDQ_CreateNode(FDarray[i].label, CEN, FCFS);
   }

   for (i = 0; i < MF_DISKS; i++) {
      PDQ_CreateNode(MDarray[i].label, CEN, FCFS);
   }

   /*
    * NOTE: Although the token ring LAN is a passive computational device, it
    * is treated as a separate node so as to agree with the results presented
    * in the original CMG 1993 paper.
    */

   PDQ_CreateNode(nodeTR, CEN, FCFS);

   /*
    * Because the desktop PCs are all of the same type and emitting the same
    * homogeneous transaction workload, the focus can be placed on the
    * response time performance of a single PC workstation and generalized to
    * the others. Rather than having N * 3 workload streams or classes, we
    * simply model 2 PC desktops: the "real" one of interest and a dummy PC
    * representing the remaining (N-1) * 3 streams.
    */

   strcpy(transCD, "CatDisplay");
   strcpy(transRQ, "RemotQuote");
   strcpy(transSU, "StatUpdate");

   /* Aggregate transactions */
   strcpy(dummyCD, "CatDispAgg");
   strcpy(dummyRQ, "RemQuotAgg");
   strcpy(dummySU, "StatUpdAgg");

   PDQ_CreateOpen(transCD, 1 * 4.0 * TPS);
   PDQ_CreateOpen(transRQ, 1 * 8.0 * TPS);
   PDQ_CreateOpen(transSU, 1 * 1.0 * TPS);
   PDQ_CreateOpen(dummyCD, (USERS - 1) * 4.0 * TPS);
   PDQ_CreateOpen(dummyRQ, (USERS - 1) * 8.0 * TPS);
   PDQ_CreateOpen(dummySU, (USERS - 1) * 1.0 * TPS);

   /*
   Define the service demands on each physical resource.
   CD request + reply chain from workflow diagram
   Note that only the "real" PC demand is defined, and the aggregated (N-1) PCs.
   */

   /******************* RQ request + reply chain ... *******************/
   PDQ_SetDemand(nodePC, transCD, demand[CD_Req][PC] + (5 * demand[CD_Rpy][PC]));
   PDQ_SetDemand(nodeFS, transCD, demand[Req_CD][FS] + (5 * demand[CD_Msg][FS]));
   PDQ_SetDemand(nodeFS, dummyCD, demand[Req_CD][FS] + (5 * demand[CD_Msg][FS]));
   PDQ_SetDemand(nodeGW, transCD, demand[GT_Snd][GW] + (5 * demand[GT_Rcv][GW]));
   PDQ_SetDemand(nodeGW, dummyCD, demand[GT_Snd][GW] + (5 * demand[GT_Rcv][GW]));
   PDQ_SetDemand(nodeMF, transCD, demand[MF_CD][MF]);
   PDQ_SetDemand(nodeMF, dummyCD, demand[MF_CD][MF]);
   
   for (i = 0; i < FS_DISKS; i++) {
      fsd = demand[Req_CD][FDarray[i].id] + (5 * demand[CD_Msg][FDarray[i].id]);
      PDQ_SetDemand(FDarray[i].label, transCD, fsd);
      PDQ_SetDemand(FDarray[i].label, dummyCD, fsd);
   }

   for (i = 0; i < MF_DISKS; i++) {
      PDQ_SetDemand(MDarray[i].label, transCD, demand[MF_CD][MDarray[i].id]);
      PDQ_SetDemand(MDarray[i].label, dummyCD, demand[MF_CD][MDarray[i].id]);
   }


   /*
   NOTE:Synchronous process execution causes data for the CD transaction to
   cross the LAN 12 times as depicted in the following parameterization of
   PDQ_SetDemand.
   */

   PDQ_SetDemand(nodeTR, transCD,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (5 * demand[LAN_TX][GW]) +
		 (5 * demand[LAN_TX][FS]) +
		 (5 * demand[LAN_TX][PC]));

   PDQ_SetDemand(nodeTR, dummyCD,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (5 * demand[LAN_TX][GW]) +
		 (5 * demand[LAN_TX][FS]) +
		 (5 * demand[LAN_TX][PC]));



   /******************* RQ request + reply chain ... *******************/
   PDQ_SetDemand(nodePC, transRQ, demand[RQ_Req][PC] + (3 * demand[RQ_Rpy][PC]));
   PDQ_SetDemand(nodeFS, transRQ, demand[Req_RQ][FS] + (3 * demand[RQ_Msg][FS]));
   PDQ_SetDemand(nodeFS, dummyRQ, demand[Req_RQ][FS] + (3 * demand[RQ_Msg][FS]));

   for (i = 0; i < FS_DISKS; i++) {
      PDQ_SetDemand(FDarray[i].label, transRQ,
		    demand[Req_RQ][FDarray[i].id] +
		    (3 * demand[RQ_Msg][FDarray[i].id]));
      PDQ_SetDemand(FDarray[i].label, dummyRQ,
		    demand[Req_RQ][FDarray[i].id] +
		    (3 * demand[RQ_Msg][FDarray[i].id]));
   }

   PDQ_SetDemand(nodeGW, transRQ, demand[GT_Snd][GW] + (3 * demand[GT_Rcv][GW]));
   PDQ_SetDemand(nodeGW, dummyRQ, demand[GT_Snd][GW] + (3 * demand[GT_Rcv][GW]));
   PDQ_SetDemand(nodeMF, transRQ, demand[MF_RQ][MF]);
   PDQ_SetDemand(nodeMF, dummyRQ, demand[MF_RQ][MF]);

   for (i = 0; i < MF_DISKS; i++) {
      PDQ_SetDemand(MDarray[i].label, transRQ,
		    demand[MF_RQ][MDarray[i].id]);
      PDQ_SetDemand(MDarray[i].label, dummyRQ,
		    demand[MF_RQ][MDarray[i].id]);
   }

   PDQ_SetDemand(nodeTR, transRQ,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (3 * demand[LAN_TX][GW]) +
		 (3 * demand[LAN_TX][FS]) +
		 (3 * demand[LAN_TX][PC]));
   PDQ_SetDemand(nodeTR, dummyRQ,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (3 * demand[LAN_TX][GW]) +
		 (3 * demand[LAN_TX][FS]) +
		 (3 * demand[LAN_TX][PC]));




   /******************* SU request + reply chain *******************/
   PDQ_SetDemand(nodePC, transSU, demand[SU_Req][PC] + demand[SU_Rpy][PC]);
   PDQ_SetDemand(nodeFS, transSU, demand[Req_SU][FS] + demand[SU_Msg][FS]);
   PDQ_SetDemand(nodeFS, dummySU, demand[Req_SU][FS] + demand[SU_Msg][FS]);

   for (i = 0; i < FS_DISKS; i++) {
      PDQ_SetDemand(FDarray[i].label, transSU,
		    demand[Req_SU][FDarray[i].id] +
		    demand[SU_Msg][FDarray[i].id]);
      PDQ_SetDemand(FDarray[i].label, dummySU,
		    demand[Req_SU][FDarray[i].id] +
		    demand[SU_Msg][FDarray[i].id]);
   }

   PDQ_SetDemand(nodeGW, transSU, demand[GT_Snd][GW] + demand[GT_Rcv][GW]);
   PDQ_SetDemand(nodeGW, dummySU, demand[GT_Snd][GW] + demand[GT_Rcv][GW]);
   PDQ_SetDemand(nodeMF, transSU, demand[MF_SU][MF]);
   PDQ_SetDemand(nodeMF, dummySU, demand[MF_SU][MF]);

   for (i = 0; i < MF_DISKS; i++) {
      PDQ_SetDemand(MDarray[i].label, transSU,
		    demand[MF_SU][MDarray[i].id]);
      PDQ_SetDemand(MDarray[i].label, dummySU,
		    demand[MF_SU][MDarray[i].id]);
   }

   PDQ_SetDemand(nodeTR, transSU,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (1 * demand[LAN_TX][GW]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][PC]));
   PDQ_SetDemand(nodeTR, dummySU,
		 (1 * demand[LAN_TX][PC]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][GW]) +
		 (1 * demand[LAN_TX][GW]) +
		 (1 * demand[LAN_TX][FS]) +
		 (1 * demand[LAN_TX][PC]));

   PDQ_SetDebug(FALSE);
   PDQ_SetWUnit("Trans");
   PDQ_Solve(CANON);
   if (PRINT_REPORT) {
      PDQ_Report();
   }
   
   /*
    Break out each tx response time together with resource utilizations.
    The order of print out is the same as the 1993 CMG paper.
    */

   /* Mean response times reported in the CMG93 paper */
   RTexpect[0] = 0.2754;
   RTexpect[1] = 0.2625;
   RTexpect[2] = 0.1252;
   RTexpect[3] = 0.2624;
   RTexpect[4] = 0.2470;
   RTexpect[5] = 0.1120;

   printf("*** Metric breakout for \"%s\" with %d clients ***\n\n",
	  scenario, USERS);
   printf("Transaction\t    R (Sec)\t  CMG paper\n");
   printf("-----------\t    -------\t  ---------\n");

   for (work = 0; work < streams; work++) {
      resets(s1);
      strcpy(s1, job[work].trans->name);
      RTmean = PDQ_GetResponse(TRANS, s1);
      printf("%-15s\t%10.4f\t%10.4f\n", s1, RTmean, RTexpect[work]);
   }

   printf("\n\n");

   /*
    * Get node utilizations. This is a bit of a hack and should be written as
    * a subroutine.
    */
   for (dev = 0; dev < nodes; dev++) {
      util[dev] = 0.0;		/* reset array */
      for (work = 0; work < streams; work++) {
          util[dev] += 100 * PDQ_GetUtilization(node[dev].devname, job[work].trans->name, TRANS);
      }
   }

   for (dev = 0; dev < nodes; dev++) {
       for (i = 0; i < MF_DISKS; i++) {
           if (strcmp(node[dev].devname, MDarray[i].label) == 0) {
               udasd[i] = util[dev];
           }
       }
       for (i = 0; i < FS_DISKS; i++) {
           if (strcmp(node[dev].devname, FDarray[i].label) == 0) {
               udsk[i] = util[dev];
           }
       }       
       if (strcmp(node[dev].devname, nodePC) == 0) {
           uws = util[dev];
       }
       if (strcmp(node[dev].devname, nodeGW) == 0) {
           ugw = util[dev];
       }
       if (strcmp(node[dev].devname, nodeFS) == 0) {
           ufs = util[dev];
       }
       if (strcmp(node[dev].devname, nodeMF) == 0) {
           umf = util[dev];
       }
       if (strcmp(node[dev].devname, nodeTR) == 0) {
           ulan = util[dev];
       }
   }
   
   printf("PDQ Node       \t    %% Busy\t  CMG paper\n");
   printf("--------       \t    -------\t  ---------\n");
   printf("%-15s\t%10.4f\t%10.4f\n", "Token ring", ulan, 49.3333);
   printf("%-15s\t%10.4f\t%10.4f\n", "PC Desktop", uws,  0.5802);
   printf("%-15s\t%10.4f\t%10.4f\n", "File server", ufs, 11.9157);
   printf("%-15s\t%10.4f\t%10.4f\n", "Gateway CPU", ugw, 60.4167);
   printf("%-15s\t%10.4f\t%10.4f\n", "Mainframe", umf,   14.0873);


   for (i = 0; i < FS_DISKS; i++) {
      printf("%s%d\t%10.4f\t%10.4f\n", "FS disks",
	     FDarray[i].id, udsk[i], 59.0028);
   }

   for (i = 0; i < MF_DISKS; i++) {
      printf("%s%d\t%10.4f\t%10.4f\n", "DASD disk",
	     MDarray[i].id, udasd[i], 35.5502);
   }

}				/* main */
Пример #3
0
int main()
{
   extern JOB_TYPE *job;
   extern double    getjob_pop();
   extern int       getjob_index();
   extern double    PDQ_GetResponse();
   extern double    PDQ_GetThruput();
   extern double    PDQ_GetUtilization();

   /****************************
	* Model specific variables *
	****************************/

   int              noNodes;
	int              noStreams;
   int              pop, servers = 2;
   int              s, w;

#define STRESS	0
#define HOMEPG 1

   static char    *work[] = {
	  "stress",
	  "homepg"
   };

   static double   time[] = {
	  0.0044,			/* stress */
	  0.0300			/* homepg */
   };

   static char    *slave[] = {
	  "slave0",
	  "slave1",
	  "slave2",
	  "slave3",
	  "slave4",
	  "slave5",
	  "slave6",
	  "slave7",
	  "slave8",
	  "slave9",
	  "slave10",
	  "slave11",
	  "slave12",
	  "slave13",
	  "slave14",
	  "slave15"
   };

#define	PREFORK 
	w = HOMEPG;

#ifdef PREFORK
	printf("Pre-Fork Model under \"%s\" Load (m = %d)\n",
		w == STRESS ? work[STRESS] : work[HOMEPG], servers);
#else
	printf("Forking  Model under \"%s\" Load \n",
		w == STRESS ? work[STRESS] : work[HOMEPG]);
#endif

	printf("\n  N        X         R\n");

	for (pop = 1; pop <= 10; pop++) {

		PDQ_Init("HTTPd_Server");

		noStreams = PDQ_CreateClosed(work[w], TERM, 1.0 * pop, 0.0);
		noNodes = PDQ_CreateNode("master", CEN, FCFS);

#ifdef PREFORK
		for (s = 0; s < servers; s++) {
			noNodes = PDQ_CreateNode(slave[s], CEN, FCFS);
		}

		PDQ_SetDemand("master", work[w], 0.0109);

		for (s = 0; s < servers; s++) {
			PDQ_SetDemand(slave[s], work[w], time[w] / servers);
		}
#else				/* FORKING */
	noNodes = PDQ_CreateNode("forks", CEN, ISRV);

	PDQ_SetDemand("master", work[w], 0.0165);
	PDQ_SetDemand("forks", work[w], time[w]);
#endif

	PDQ_Solve(EXACT);

	printf("%5.2f   %8.4f  %8.4f\n",
		 getjob_pop(getjob_index(work[w])),
		 PDQ_GetThruput(TERM, work[w]),
		 PDQ_GetResponse(TERM, work[w]));
   }

   return(0);
}  // main
Пример #4
0
main() {
  extern int nodes, streams;

  int  i;
  char name[30];

  int broj_ap_posluzitelja  = BROJ_AP_POSLUZITELJA;
  int broj_bp_posluzitelja  = BROJ_BP_POSLUZITELJA;
  int broj_im_posluzitelja  = BROJ_IM_POSLUZITELJA;

  float L     = 0.5;
  
  float p_im  = 0.0;
  
  float S_ZZ = 0.001;
  float S_PO = 0.001;  

  float S_AP   = 0.3;
  float S_BP   = 4.5;
  float S_IM   = 0.5;

  float Util  = 0.0;
  float Res   = 0.0;

  float p_bp     = 0.0;
  float p_bp_inc = 0.05;
  float p_bp_max = 0.5;

  printf("p");
  
  for( i=0; i<broj_ap_posluzitelja; i++ )
	{
	  sprintf(name, "R_AP%d", i);
	  printf("\t%s", name);
  }  

  for( i=0; i<broj_bp_posluzitelja; i++ )
	{
	  sprintf(name, "R_BP%d", i);
	  printf("\t%s", name);
  }

  for( i=0; i<broj_im_posluzitelja; i++ )
	{
	  sprintf(name, "R_IM%d", i);
	  printf("\t%s", name);
  }

  printf("\tR_ZZ");
  printf("\tR_PO");
  printf("\tAP_R\n");

  p_bp = p_bp_inc;
  while (p_bp < p_bp_max + p_bp_inc) {
		PDQ_Init("Web aplikacija");
	
	  streams = PDQ_CreateOpen("Zahtjevi", L);
	
		nodes = PDQ_CreateNode("ZZ", CEN, FCFS);
		nodes = PDQ_CreateNode("PO", CEN, FCFS);
	
		for( i=0; i<broj_ap_posluzitelja; i++ )
		{
			sprintf(name, "AP%d", i);
			nodes = PDQ_CreateNode(name, CEN, FCFS);
		}
	
	  for( i=0; i<broj_bp_posluzitelja; i++ )
	  {
	    sprintf(name, "BP%d", i);
	    nodes = PDQ_CreateNode(name, CEN, FCFS);
	  }
	  
	  for( i=0; i<broj_im_posluzitelja; i++ )
	  {
	    sprintf(name, "IM%d", i);
	    nodes = PDQ_CreateNode(name, CEN, FCFS);
	  }
	
	
	  PDQ_SetVisits("ZZ", "Zahtjevi", 1.0, S_ZZ);
	  PDQ_SetVisits("PO", "Zahtjevi", 1.0, S_PO);
	
	  for( i=0; i<broj_ap_posluzitelja; i++ )
	  {
	    sprintf(name, "AP%d", i);
	    PDQ_SetVisits(name, "Zahtjevi", ((1 - p_im) / (1 - p_bp)) / BROJ_AP_POSLUZITELJA, S_AP);
	  }
	
	  for( i=0; i<broj_bp_posluzitelja; i++ )
	  {
	    sprintf(name, "BP%d", i);
	    PDQ_SetVisits(name,   "Zahtjevi", (p_bp * (1 - p_im) / (1 - p_bp)) / BROJ_BP_POSLUZITELJA, S_BP);
	  }
	
	  for( i=0; i<broj_im_posluzitelja; i++ )
	  {
	    sprintf(name, "IM%d", i);
	    PDQ_SetVisits(name, "Zahtjevi", p_im / BROJ_IM_POSLUZITELJA, S_IM);
	  }

    PDQ_Solve(CANON);
	  
	  Util = 0.0;
	  
	  for( i=0; i<broj_ap_posluzitelja; i++ )
	  {
	    sprintf(name, "AP%d", i);
			Util += PDQ_GetUtilization(name, "Zahtjevi", TRANS);	
	  }

	  for( i=0; i<broj_bp_posluzitelja; i++ )
	  {
	    sprintf(name, "BP%d", i);
			Util += PDQ_GetUtilization(name, "Zahtjevi", TRANS);
	  }  

	  for( i=0; i<broj_im_posluzitelja; i++ )
	  {
	    sprintf(name, "IM%d", i);
			Util += PDQ_GetUtilization(name, "Zahtjevi", TRANS);
	  }
	  
		Util += PDQ_GetUtilization("ZZ", "Zahtjevi", TRANS);
		Util += PDQ_GetUtilization("PO", "Zahtjevi", TRANS);
	
		Util = (100 * Util)/(broj_ap_posluzitelja + broj_bp_posluzitelja + broj_im_posluzitelja + 2);
		
		printf("%f\t", p_bp);
		
	  for( i=0; i<broj_ap_posluzitelja; i++ )
	  {
	    sprintf(name, "AP%d", i);
		  printf("%f\t", PDQ_GetResidenceTime(name, "Zahtjevi", TRANS));
	  }

	  for( i=0; i<broj_bp_posluzitelja; i++ )
	  {
	    sprintf(name, "BP%d", i);
		  printf("%f\t", PDQ_GetResidenceTime(name, "Zahtjevi", TRANS));
	  }

	  for( i=0; i<broj_im_posluzitelja; i++ )
	  {
	    sprintf(name, "IM%d", i);
		  printf("%f\t", PDQ_GetResidenceTime(name, "Zahtjevi", TRANS));
	  }

		printf("%f\t", PDQ_GetResidenceTime(name, "ZZ", TRANS));

		printf("%f\t", PDQ_GetResidenceTime(name, "PO", TRANS));

		printf("%f\n", PDQ_GetResponse(TRANS, "Zahtjevi"));

		p_bp += p_bp_inc;
	}
}