Пример #1
0
/*FUNCTION**********************************************************************
 *
 * Function Name : GPIO_DRV_InputPinInit
 * Description   : Initialize one GPIO input pin used by board.
 *
 *END**************************************************************************/
void GPIO_DRV_InputPinInit(const gpio_input_pin_user_config_t *inputPin)
{
    /* Get actual port and pin number.*/
    uint32_t port = GPIO_EXTRACT_PORT(inputPin->pinName);
    uint32_t pin = GPIO_EXTRACT_PIN(inputPin->pinName);
    uint32_t gpioBaseAddr = g_gpioBaseAddr[port];
    uint32_t portBaseAddr = g_portBaseAddr[port];

    /* Un-gate port clock*/
    CLOCK_SYS_EnablePortClock(port);

    /* Set current pin as digital input.*/
    GPIO_HAL_SetPinDir(gpioBaseAddr, pin, kGpioDigitalInput);

    /* Configure GPIO input features. */
    PORT_HAL_SetPullCmd(portBaseAddr, pin, inputPin->config.isPullEnable);
    PORT_HAL_SetPullMode(portBaseAddr, pin, inputPin->config.pullSelect);
    PORT_HAL_SetPassiveFilterCmd(portBaseAddr, pin,
            inputPin->config.isPassiveFilterEnabled);
    #if FSL_FEATURE_PORT_HAS_DIGITAL_FILTER
    PORT_HAL_SetDigitalFilterCmd(portBaseAddr, pin, 
            inputPin->config.isDigitalFilterEnabled); 
    #endif
    PORT_HAL_SetPinIntMode(portBaseAddr, pin, inputPin->config.interrupt);

    /* Configure NVIC */
    if ((inputPin->config.interrupt) && (g_portIrqId[port]))
    {
        /* Enable GPIO interrupt.*/
        INT_SYS_EnableIRQ(g_portIrqId[port]);
    }
}
Пример #2
0
void gpioEnableWakeUp(void)
{
    // enables falling edge interrupt for switch SWx
    PORT_HAL_SetPinIntMode(BOARD_SW_LLWU_BASE, BOARD_SW_LLWU_PIN, kPortIntFallingEdge);
    INT_SYS_EnableIRQ(BOARD_SW_LLWU_IRQ_NUM);

    LLWU_HAL_ClearExternalPinWakeupFlag(LLWU_BASE_PTR, (llwu_wakeup_pin_t)BOARD_SW_LLWU_EXT_PIN);
    LLWU_HAL_SetExternalInputPinMode(LLWU_BASE_PTR,kLlwuExternalPinFallingEdge, (llwu_wakeup_pin_t)BOARD_SW_LLWU_EXT_PIN);
}
Пример #3
0
void gpioDisableWakeUp(void)
{
    // disables interrupt
    PORT_HAL_SetPinIntMode(BOARD_SW_LLWU_BASE, BOARD_SW_LLWU_PIN, kPortIntDisabled);
    INT_SYS_DisableIRQ(BOARD_SW_LLWU_IRQ_NUM);

    LLWU_HAL_ClearExternalPinWakeupFlag(LLWU_BASE_PTR, (llwu_wakeup_pin_t)BOARD_SW_LLWU_EXT_PIN);
    LLWU_HAL_SetExternalInputPinMode(LLWU_BASE_PTR,kLlwuExternalPinDisabled, (llwu_wakeup_pin_t)BOARD_SW_LLWU_EXT_PIN);
}
/*FUNCTION**********************************************************************
 *
 * Function Name : GPIO_DRV_InputPinInit
 * Description   : Initialize one GPIO input pin used by board.
 *
 *END**************************************************************************/
void GPIO_DRV_InputPinInit(const gpio_input_pin_user_config_t *inputPin)
{
    /* Get actual port and pin number.*/
    uint32_t port = GPIO_EXTRACT_PORT(inputPin->pinName);
    uint32_t pin = GPIO_EXTRACT_PIN(inputPin->pinName);
    GPIO_Type * gpioBase = g_gpioBase[port];
    PORT_Type * portBase = g_portBase[port];

    /* Un-gate port clock*/
    CLOCK_SYS_EnablePortClock(port);

    /* Set current pin as gpio.*/
    PORT_HAL_SetMuxMode(portBase, pin, kPortMuxAsGpio);

    /* Set current pin as digital input.*/
    GPIO_HAL_SetPinDir(gpioBase, pin, kGpioDigitalInput);

    /* Configure GPIO input features. */
    #if FSL_FEATURE_PORT_HAS_PULL_ENABLE
    PORT_HAL_SetPullCmd(portBase, pin, inputPin->config.isPullEnable);
    #endif
    #if FSL_FEATURE_PORT_HAS_PULL_SELECTION
    PORT_HAL_SetPullMode(portBase, pin, inputPin->config.pullSelect);
    #endif
    #if FSL_FEATURE_PORT_HAS_PASSIVE_FILTER
    PORT_HAL_SetPassiveFilterCmd(portBase, pin,
            inputPin->config.isPassiveFilterEnabled);
    #endif
    #if FSL_FEATURE_PORT_HAS_DIGITAL_FILTER
    PORT_HAL_SetDigitalFilterCmd(portBase, pin,
            inputPin->config.isDigitalFilterEnabled);
    #endif
    #if FSL_FEATURE_GPIO_HAS_INTERRUPT_VECTOR
    PORT_HAL_SetPinIntMode(portBase, pin, inputPin->config.interrupt);

    /* Configure NVIC */
    if ((inputPin->config.interrupt) && (g_portIrqId[port]))
    {
        /* Enable GPIO interrupt.*/
        INT_SYS_EnableIRQ(g_portIrqId[port]);
    }
    #endif
}
__LINK_C error_t hw_gpio_configure_interrupt(pin_id_t pin_id, gpio_inthandler_t callback, uint8_t event_mask)
{
    assert(PORT_BASE(pin_id.port) == PORTB); // TODO multiple ports not supported yet
    assert(callback != NULL);

    portb_interrupt_config[pin_id.pin].callback = callback;

    port_interrupt_config_t interrupt_config;
    if(event_mask == 0)
        interrupt_config = kPortIntDisabled;
    else if(event_mask & GPIO_FALLING_EDGE && event_mask & GPIO_RISING_EDGE)
        interrupt_config = kPortIntEitherEdge;
    else if(event_mask & GPIO_FALLING_EDGE)
        interrupt_config = kPortIntFallingEdge;
    else if(event_mask & GPIO_RISING_EDGE)
        interrupt_config = kPortIntRisingEdge;

    portb_interrupt_config[pin_id.pin].interrupt_config = interrupt_config;
    portb_interrupts &= 1 << pin_id.port;
    PORT_HAL_SetPinIntMode(PORT_BASE(pin_id.port), pin_id.pin, kPortIntDisabled);
    return SUCCESS;
}
__LINK_C error_t hw_gpio_disable_interrupt(pin_id_t pin_id)
{
    PORT_HAL_SetPinIntMode(PORT_BASE(pin_id.port), pin_id.pin, kPortIntDisabled);
    return SUCCESS;
}
__LINK_C error_t hw_gpio_enable_interrupt(pin_id_t pin_id)
{
    assert(portb_interrupt_config[pin_id.pin].callback != NULL);
    PORT_HAL_SetPinIntMode(PORT_BASE(pin_id.port), pin_id.pin, portb_interrupt_config[pin_id.pin].interrupt_config);
    return SUCCESS;
}
Пример #8
0
/*******************************************************************************
 * Main function for application.
 ******************************************************************************/
void lab2_power(void)
{
    demo_power_modes_t testVal = kDemoRun;
    volatile uint8_t powerMode;
    uint8_t clockManagerMode = CLOCK_RUN;
    uint32_t freq = 0;

    //*******************************************************
	//* Step 1: Initialize the Clock Manager  configurations.
	//*******************************************************

    // Create list of supported clock configurations.  These are taken from the
    // board.c file and will be passed into CLOCK_SYS_Init().
    clock_manager_user_config_t const *clockConfigs[] =
    {
        NULL,
        &g_defaultClockConfigVlpr,
        &g_defaultClockConfigRun,
        &g_defaultClockConfigHsrun,
    };

    //*****************************************************
	//* Step 2: Configure Clock Manager callback function.
	//*****************************************************

    // Clock Manager callback function.
    clock_manager_callback_user_config_t clockManagerCallbackCfg =
    {
        .callback     = clockManagerCallback,
        .callbackType = kClockManagerCallbackBeforeAfter,
        .callbackData = NULL
    };

    clock_manager_callback_user_config_t *clockCallbacks[] =
    {
        &clockManagerCallbackCfg
    };

    //*****************************************************
	//* Step 3: Initialize the Clock Manager.
	//*****************************************************

    // Pass in configuration and callback data to Clock Manager.
	CLOCK_SYS_Init(clockConfigs,
				   CLOCK_NUMBER_OF_CONFIGURATIONS,
				   clockCallbacks,
				   ARRAY_SIZE(clockCallbacks));

	// Set to RUN mode.
	CLOCK_SYS_UpdateConfiguration(CLOCK_RUN, kClockManagerPolicyForcible);

    //*****************************************************
    //* Step 4: Set up supported power mode structures.
    //*****************************************************

    const power_manager_user_config_t runConfig =
    {
        .mode = kPowerManagerRun,
        .sleepOnExitValue = false,
    };

    power_manager_user_config_t hsrunConfig = runConfig;
    hsrunConfig.mode = kPowerManagerHsrun;

    power_manager_user_config_t waitConfig  = runConfig;
    waitConfig.mode = kPowerManagerWait;

    power_manager_user_config_t stopConfig  = runConfig;
    stopConfig.mode = kPowerManagerStop;

    power_manager_user_config_t vlprConfig   = runConfig;
    vlprConfig.mode = kPowerManagerVlpr;

    power_manager_user_config_t vlpwConfig	= runConfig;
    vlpwConfig.mode = kPowerManagerVlpw;

    power_manager_user_config_t vlpsConfig  = runConfig;
    vlpsConfig.mode = kPowerManagerVlps;

    power_manager_user_config_t lls3Config   = runConfig;
    lls3Config.mode = kPowerManagerLls3;

    power_manager_user_config_t vlls0Config   = runConfig;
    vlls0Config.mode = kPowerManagerVlls0;

    //***********************************************************
    //* Step 5: Configure managed power configurations structure.
    //***********************************************************

    // Create the list of supported modes to pass into the Power Manager.
    power_manager_user_config_t const *powerConfigs[] =
    {
    	&runConfig,
		&hsrunConfig,
		&waitConfig,
		&stopConfig,
		&vlprConfig,
		&vlpwConfig,
		&vlpsConfig,
		&lls3Config,
		&vlls0Config
    };

    //*****************************************************
	//* Step 6: Configure Power Manager callback function.
	//*****************************************************

    // Initializes callback configuration structure for the Power Manager.
    power_manager_callback_user_config_t powerManagerCallbackCfg =
    {
		.callback  	  = powerManagerCallback,
		.callbackType = kPowerManagerCallbackBeforeAfter,
		.callbackData = NULL
    };

    // Initializes array of pointers to power manager callbacks.
    power_manager_callback_user_config_t *powerCallbacks[] =
    {
    	&powerManagerCallbackCfg
    };

    //*****************************************************
    //* Step 7: Initialize the Power Manager.
    //*****************************************************

    // Pass power configurations and callback info to Power Manager.
    POWER_SYS_Init(powerConfigs,
    			   sizeof(powerConfigs) / sizeof(power_manager_user_config_t *),
				   powerCallbacks,
				   ARRAY_SIZE(powerCallbacks));

    // Initialize system to RUN mode.
    powerMode = kDemoRun - kDemoMin - 1;
    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

    //**************************************************************
    //* Step 8: Configure the rest of the chip for this application.
    //**************************************************************

    // Configure pin mux for UART functionality.
    configure_uart_pins(BOARD_DEBUG_UART_INSTANCE);

    // Initializes GPIO driver for LEDs and buttons
    GPIO_DRV_Init(switchPins, ledPins);

    // Initialize the debug UART console.
    DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_LOW_POWER_UART_BAUD,
    				kDebugConsoleUART);

    // Enable PORTC clock for GPIO/LLWU interrupt.
    CLOCK_SYS_EnablePortClock(2);

    // Enables falling edge interrupt for switch SW2.
    PORT_HAL_SetMuxMode(BOARD_SW_LLWU_BASE, BOARD_SW_LLWU_PIN, kPortMuxAsGpio);
    PORT_HAL_SetPinIntMode(BOARD_SW_LLWU_BASE, BOARD_SW_LLWU_PIN, kPortIntFallingEdge);

    // Enable GPIO interrupt.
    INT_SYS_EnableIRQ(PORTC_IRQn);

    // Configure the LLWU.
    LLWU_HAL_ClearExternalPinWakeupFlag(LLWU, BOARD_SW_LLWU_EXT_PIN);
    LLWU_HAL_SetExternalInputPinMode(LLWU, kLlwuExternalPinFallingEdge, BOARD_SW_LLWU_EXT_PIN);

    // Enable LLWU interrupt.
    INT_SYS_EnableIRQ(LLWU_IRQn);

    // Main loop.
    while (1)
    {
    	// Get the system clock frequency and current clock configuration to print out.
        CLOCK_SYS_GetFreq(kCoreClock, &freq);
        clockManagerMode = CLOCK_SYS_GetCurrentConfiguration();

        PRINTF("\n\r####################  Power Manager Demo ####################\n\n\r");
        PRINTF("    Core Clock   = %d MHz \n\r", freq / 1000000);
        PRINTF("    Current Mode = ");

        switch(clockManagerMode)
        {
			case CLOCK_RUN:
				PRINTF("RUN\n\r");
				break;
			case CLOCK_VLPR:
				PRINTF("VLPR\n\r");
				break;
			case CLOCK_HSRUN:
				PRINTF("HSRUN\n\r");
				break;
        }

        PRINTF("\n\rSelect the desired operation \n\n\r");
        PRINTF("Press  %c for enter: RUN   - Normal RUN mode\n\r", kDemoRun);
        PRINTF("Press  %c for enter: HSRUN - High Speed RUN mode\n\r", kDemoHsRun);
        PRINTF("Press  %c for enter: Wait  - Wait mode\n\r", kDemoWait);
        PRINTF("Press  %c for enter: Stop  - Stop mode\n\r", kDemoStop);
        PRINTF("Press  %c for enter: VLPR  - Very Low Power Run mode\n\r", kDemoVlpr);
        PRINTF("Press  %c for enter: VLPW  - Very Low Power Wait mode\n\r", kDemoVlpw);
        PRINTF("Press  %c for enter: VLPS  - Very Low Power Stop mode\n\r", kDemoVlps);
        PRINTF("Press  %c for enter: LLS3  - Low Leakage Stop mode\n\r", kDemoLls3);
        PRINTF("Press  %c for enter: VLLS0 - Very Low Leakage Stop mode 0\n\r", kDemoVlls0);
        //PRINTF("Press  %c for enter: VLLS3 - Very Low Leakage Stop mode 3\n\r", kDemoVlls3);

        PRINTF("\n\rWaiting for key press...\n\r\n\r");

        // Wait for user input.
        testVal = (demo_power_modes_t)GETCHAR();

        if ((testVal >= 'a') && (testVal <= 'z'))
        {
            testVal -= 'a' - 'A';
        }

        if (testVal > kDemoMin && testVal < kDemoMax)
        {
        	// Obtain Power Manager readable version of the value passed in.
        	powerMode = testVal - kDemoMin - 1;

        	// Switch to selected mode.
            switch (testVal)
            {
				case kDemoRun:

					if (POWER_SYS_GetCurrentMode() == kPowerManagerRun)
					{
						PRINTF("Run mode already active.\n\r");
						break;
					}

					// Update the power configuration.
					POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

					// Update the clock configuration.
					CLOCK_SYS_UpdateConfiguration(CLOCK_RUN, kClockManagerPolicyAgreement);

					break;

				case kDemoHsRun:

					if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
					{
						PRINTF("High Speed Run mode already active.\n\r");
						break;
					}

					// Update the power configuration.
					POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

					// Update the clock configuration.
					CLOCK_SYS_UpdateConfiguration(CLOCK_HSRUN, kClockManagerPolicyAgreement);

					break;

                case kDemoWait:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerVlpr)
                    {
                        PRINTF("Cannot go from VLPR to WAIT directly...\n\r");
                        break;
                    }
                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to WAIT directly...\n\r");
                        break;
                    }

                    PRINTF("Entering WAIT mode. Press SW2 to wake...\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    break;

                case kDemoStop:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerVlpr)
                    {
                        PRINTF("Cannot go from VLPR to STOP directly...\n\r");
                        break;
                    }
                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to STOP directly...\n\r");
                        break;
                    }

                    PRINTF("Entering STOP mode. Press SW2 to wake...\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    // Update the clock configuration.
                    CLOCK_SYS_UpdateConfiguration(clockManagerMode, kClockManagerPolicyAgreement);

                    break;

                case kDemoVlpr:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to VLPR directly...\n\r");
                        break;
                    }

                    if(POWER_SYS_GetCurrentMode() != kPowerManagerVlpr)
                    {
                    	// Update the clock configuration PRIOR to entering VLPR.
                    	CLOCK_SYS_UpdateConfiguration(CLOCK_VLPR, kClockManagerPolicyAgreement);

                    	// Update the power configuration.
                        POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);
                    }
                    else
                    {
                        PRINTF("Very Low Power Run mode already active.\n\r");
                    }

                    break;

                case kDemoVlpw:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerRun)
                    {
                        PRINTF("Cannot go from RUN to VLPW directly...\n\r");
                        break;
                    }

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to VLPW directly...\n\r");
                        break;
                    }

                    PRINTF("Entering VLPW mode. Press SW2 to wake...\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    break;

                case kDemoVlps:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to VLPS directly...\n\r");
                        break;
                    }

                    PRINTF("Entering VLPS mode. Press SW2 to wake...\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    // If we entered via RUN mode, restore clock settings.
                    if (POWER_SYS_GetCurrentMode() == kPowerManagerRun)
					{
                    	CLOCK_SYS_UpdateConfiguration(clockManagerMode, kClockManagerPolicyAgreement);
					}

                    break;

                case kDemoLls3:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to LLSx directly...\n\r");
                        break;
                    }

                    PRINTF("Entering LLS3 mode. Press SW2 to wake...\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    // Check the mode active mode prior to LLS3 entry.
                    if(POWER_SYS_GetCurrentMode() != kPowerManagerVlpr)
                    {
                        CLOCK_SYS_UpdateConfiguration(clockManagerMode, kClockManagerPolicyAgreement);
                    }

                    break;

                case kDemoVlls0:

                    if (POWER_SYS_GetCurrentMode() == kPowerManagerHsrun)
                    {
                        PRINTF("Cannot go from HSRUN to VLLSx directly...\n\r");
                        break;
                    }

                    PRINTF("Press SW2 to wake. VLLSx wake goes through RESET sequence.\n\r");

                    // Update the power configuration.
                    POWER_SYS_SetMode(powerMode, kPowerManagerPolicyAgreement);

                    break;

                default:
                    PRINTF("Bad value.");
                    break;
            }

            PRINTF("\n\rNext loop\n\r");
        }
    }
}
Пример #9
0
void HEXIWEAR_startup( task_param_t param )
{
    uint8_t
    status = 0;

    /** output GPIO config */

    GPIO_DRV_Init( NULL, OLED_cfg );
    GPIO_DRV_Init( NULL, FLASH_cfg );
    GPIO_DRV_Init( NULL, PWR_cfg );
    GPIO_DRV_Init( NULL, VIBRO_cfg );
    GPIO_DRV_Init( NULL, RGB_cfg );
    GPIO_DRV_Init( NULL, KW40_GPIO_cfg );
    GPIO_DRV_Init( NULL, REL_GPIO_cfg );


    /** input GPIO config */

    GPIO_DRV_Init( BAT_CHG_cfg, NULL );
    GPIO_DRV_Init( TAP_cfg, NULL );

    // lajkatest
    // GPIO_DRV_Init( GPIO_TEST_CFG, NULL );

#if defined( HEXIWEAR_DEBUG )
    GPIO_DRV_Init( NULL, DEBUG_cfg );
#endif

    power_ResetKW40();
    timer_Init( HEXIWEAR_TIMER_SENSOR );

    status |= RTC_Init();
    status |= FLASH_Init( &flashModule, &flashSettings );

    // intern flash initialization
    INTFLASH_Init();

    // enable power save by default
    // power_EnablePowerSave();
    power_DisablePowerSave();

    // set to deep sleep by default
    // power_SetSleepMode( POWER_SLEEP_TYPE_DEEP );

    // RGB off
    FLASH_SetOFF();

    // visual indication for testing HR sensor
//  MAXIM_Test();

    /** create basic tasks */
    status |= Notification_Init();
    status |= HostInterface_Init();
    status |= sensor_Init();
    status |= power_Init();
    status |= GuiDriver_Init();

    haptic_MutexCreate();

    sensor_InitAcc();

    /** set GPIO interrupt for the tap function */
    PORT_HAL_SetPinIntMode( PORTC, 1, kPortIntFallingEdge );

    /** set charging battery interrupt */
    PORT_HAL_SetPinIntMode( PORTC, 12, kPortIntEitherEdge );
    NVIC_SetPriority( PORTC_IRQn, HEXIWEAR_CHG_IRQ_PRIO );
    INT_SYS_EnableIRQ( PORTC_IRQn );

    // status |= Run_USB_Task();

    if ( HEXIWEAR_STATUS_SUCCESS != status )
    {
        catch( CATCH_INIT );
    }

    /** check for settings in flash at startup */
    gui_sensorTag_CheckAtStartup();
    haptic_CheckAtStartup();

    CLOCK_SYS_Init( g_clockManConfigsArr, FSL_CLOCK_MANAGER_CONFIG_CNT, g_clockManCallbacksArr, FSL_CLOCK_MANAGER_CALLBACK_CNT );
    POWER_SYS_Init( powerConfigsArr, 2U, powerStaticCallbacksConfigsArr , 2U );

    // make battery readings regular
    sensor_SetPacketTargets( PACKET_BAT, sensor_GetPacketTargets( PACKET_BAT) | PACKET_PUSH_POWER_MGMT, true );

    volatile uint32_t
    foo = CLOCK_SYS_GetSystemClockFreq();

    while (1)
    {
        OSA_TaskDestroy( NULL );
    }
}
Пример #10
0
void HEXIWEAR_startup( task_param_t param )
{
  uint8_t
    status = 0;

  /** output GPIO configuration */

  GPIO_DRV_Init( NULL, OLED_cfg );
  GPIO_DRV_Init( NULL, FLASH_cfg );
  GPIO_DRV_Init( NULL, PWR_cfg );
  GPIO_DRV_Init( NULL, VIBRO_cfg );
  GPIO_DRV_Init( NULL, RGB_cfg );
  GPIO_DRV_Init( NULL, KW40_GPIO_cfg );


  /** input GPIO configuration */

  GPIO_DRV_Init( BAT_CHG_cfg, NULL );
  GPIO_DRV_Init( TAP_cfg, NULL );

#if defined( HEXIWEAR_DEBUG )
  GPIO_DRV_Init( NULL, DEBUG_cfg );
#endif

  power_ResetKW40();
  timer_Init( HEXIWEAR_TIMER_SENSOR );

  status |= RTC_Init();
  status |= FLASH_Init( &flashModule, &flashSettings );

  // intern flash initialization
  INTFLASH_Init();

  // RGB off
  FLASH_SetOFF();

  /** create basic tasks */
  status |= Notification_Init();
  status |= HostInterface_Init();
  status |= sensor_Init();
  status |= GuiDriver_Init();

  haptic_MutexCreate();

  sensor_InitAcc();

  /** set GPIO interrupt for the tap function */
  PORT_HAL_SetPinIntMode( PORTC, 1, kPortIntFallingEdge );

  /** set charging battery interrupt */
  PORT_HAL_SetPinIntMode( PORTC, 12, kPortIntEitherEdge );
  NVIC_SetPriority( PORTC_IRQn, HEXIWEAR_CHG_IRQ_PRIO );
  INT_SYS_EnableIRQ( PORTC_IRQn );

  if ( HEXIWEAR_STATUS_SUCCESS != status )
  {
    catch( CATCH_INIT );
  }

  /** check for settings in flash at startup */
  gui_sensorTag_CheckAtStartup();
  haptic_CheckAtStartup();

  CLOCK_SYS_Init( g_clockManConfigsArr, FSL_CLOCK_MANAGER_CONFIG_CNT, g_clockManCallbacksArr, FSL_CLOCK_MANAGER_CALLBACK_CNT );
  POWER_SYS_Init( powerConfigsArr, 2U, powerStaticCallbacksConfigsArr , 2U );

  // turn on regular battery readings
  sensor_SetPacketTargets( PACKET_BAT, sensor_GetPacketTargets( PACKET_BAT) | PACKET_PUSH_POWER_MGMT, true );

  while (1)
  {
    power_Init();
    OSA_TaskDestroy( NULL );
  }
}