Пример #1
0
/******************************************************************************
 * Function:        void UserInit(void)
 *
 * PreCondition:    None
 *
 * Input:           None
 *
 * Output:          None
 *
 * Side Effects:    None
 *
 * Overview:        This routine should take care of all of the demo code
 *                  initialization that is required.
 *
 * Note:            
 *
 *****************************************************************************/
void UserInit(void)
{
	// Real time clock start
	RtccInitClock();
	RtccWrOn();                             
	
	{
		rtccTimeDate initd;
		initd.f.year=0x10;
		initd.f.mon=0x01;
		initd.f.mday=0x01;
		initd.f.wday=5;   // 2010.01.01 is friday
		initd.f.hour=0;
		initd.f.min=0;
		initd.f.sec=0;
		RtccWriteTimeDate(&initd,FALSE);
		RtccWriteAlrmTimeDate(&initd);
	}
	mRtccOn();
        mRtccAlrmEnable();
	RtccSetAlarmRpt(RTCC_RPT_MIN,TRUE);
	// Mtouch init
	mTouchInit();
	mTouchCalibrate();
	
	cmdstr[0]=0;
	screen=0;
	screenvalid=0;
	position=0;
	buttonstate.Val=0;
	buttonpressed.Val=0;
    devicereset=0;  
    clockss=0;
	resetcounter=0;
	alarmcnt=0;

        TRISBbits.TRISB1=0;

        PPSUnLock();
        iPPSOutput(OUT_PIN_PPS_RP4,OUT_FN_PPS_CCP1P1A);            //Configre RP24 as C1OUT pin
        PPSLock();

//----Configure pwm ----
    period = 0xFF;
    OpenPWM1( period);            //Configure PWM module and initialize PWM period

//-----set duty cycle----
        duty_cycle = 256;
        SetDCPWM1(duty_cycle);        //set the duty cycle

//----set pwm output----
    outputconfig = HALF_OUT ;
    outputmode = PWM_MODE_1;
    SetOutputPWM1( outputconfig, outputmode);    //output PWM in respective modes
	ADCON0bits.CHS=4;
	/* Make sure A/D interrupt is not set */
	PIR1bits.ADIF = 0;
	/* Begin A/D conversion */
}//end UserInit
Пример #2
0
void remapAllPins() {
    PPSUnLock();

    /* pins used by mimac to comunicate radio */
    iPPSInput(IN_FN_PPS_INT1, IN_PIN_PPS_RP17);

    /* pins used by usart loging */
    iPPSOutput(OUT_PIN_PPS_RP21, OUT_FN_PPS_TX2CK2); // Mapping USART2 TX
    iPPSInput(IN_FN_PPS_RX2DT2, IN_PIN_PPS_RP22); // Mapping USART2 RX
    iPPSInput(IN_FN_PPS_INT2, IN_PIN_PPS_RP4);
    iPPSOutput(OUT_PIN_PPS_RP23, OUT_FN_PPS_CCP1P1A); // LEDs mapped to PWM
    iPPSOutput(OUT_PIN_PPS_RP24, OUT_FN_PPS_P1B);

    // Lock System
    PPSLock();
}
Пример #3
0
int main(void)
#endif
{   
    BYTE i, j;
    BYTE TxSynCount = 0;
    BOOL bReceivedMessage = FALSE;
    _U16  m;

    
     #define BAUDRG 77
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/

    ANCON0 = 0XFF;     /*desactiva entradas analogicas*/
    ANCON1 = 0XFF;     /*desactiva entradas analogicas*/

    PPSUnLock();
    PPSOutput(PPS_RP10, PPS_TX2CK2);    // TX2 RP17/RC6
    PPSInput(PPS_RX2DT2, PPS_RP9);     // RX2 RP18/RC7

    PPSOutput(PPS_RP23, PPS_SDO2);    // SDO2 RP23/RD6
    PPSInput(PPS_SDI2, PPS_RP24);     // SDI2 RP24/RD7
    PPSOutput(PPS_RP22, PPS_SCK2);    // SCK2 RP22/RD5

    PPSLock();

     System_PeripheralPinSelect( ExternalInterrupt3, 19);  /*external interrupt 3 B3*/

     BoardInit();
     ConsoleInit();

     Open2USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud2USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);

     Gpios_PinDirection(GPIOS_PORTD, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTD, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     Gpios_PinDirection(GPIOS_PORTD, 5, GPIOS_OUTPUT); /*pin C2 como salida para SCK*/

     Spi_Init(SPI_PORT1, SPI_64DIV); /*Inicializamos SPI2*/
     Spi_Init(SPI_PORT2, SPI_64DIV); /*Inicializamos SPI2*/
     //Spi_SetMode(SPI_PORT1, 1);
     //Spi_SetMode(SPI_PORT1, 1);


    LED_1 = 1;
    LED_2 = 1;

    Read_MAC_Address();

    LED_1 = 0;
    LED_2 = 0;

                    ConsolePutROMString((ROM char *)"\r\n<MAC Addr:");
                 
                    PrintChar(myLongAddress[3]);
                    PrintChar(myLongAddress[2]);
                    PrintChar(myLongAddress[1]);
                    PrintChar(myLongAddress[0]);

                    ConsolePutROMString((ROM char *)"\r>");

        
    Printf("\r\nStarting Testing Interface for MiWi(TM) PRO Stack ...");
    #if defined(MRF24J40)
    Printf("\r\n     RF Transceiver: MRF24J40");
    #elif defined(MRF49XA)
    Printf("\r\n     RF Transceiver: MRF49XA");
    #elif defined(MRF89XA)
    Printf("\r\n     RF Transceiver: MRF89XA");
    #endif
    Printf("\r\n   Demo Instruction:");
    Printf("\r\n                     Press Enter to bring up the menu.");
    Printf("\r\n                     Type in hyper terminal to choose");
    Printf("\r\n                     menu item. ");
    Printf("\r\n\r\n");
   
    /*******************************************************************/
    // Following block display demo information on LCD of Explore 16 or 
    // PIC18 Explorer demo board.
    /*******************************************************************/
    #if defined(MRF49XA)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF49XA", 0, TRUE); 
    #elif defined(MRF24J40)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF24J40", 0, TRUE);
    #elif defined(MRF89XA)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF89XA", 0, TRUE); 
    #endif
    
    //if( (PUSH_BUTTON_1 == 0) || ( MiApp_ProtocolInit(TRUE) == FALSE ) )
    if (PUSH_BUTTON_1 == 1)
    {  

        MiApp_ProtocolInit(FALSE);


        LED_1 = 0;
        LED_2 = 0;

        #ifdef ENABLE_ACTIVE_SCAN
        
            myChannel = 0xFF;
            ConsolePutROMString((ROM char *)"\r\nStarting Active Scan...");
            
            LCDDisplay((char *)"Active Scanning", 0, FALSE);
    
            /*******************************************************************/
            // Function MiApp_SearchConnection will return the number of 
            // existing connections in all channels. It will help to decide 
            // which channel to operate on and which connection to add.
            // The return value is the number of connections. The connection 
            //     data are stored in global variable ActiveScanResults. 
            //     Maximum active scan result is defined as 
            //     ACTIVE_SCAN_RESULT_SIZE
            // The first parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
            //     half second and 11 is 2 seconds. Maximum scan duration is 14, 
            //     or roughly 16 seconds.
            // The second parameter is the channel map. Bit 0 of the 
            //     double word parameter represents channel 0. For the 2.4GHz 
            //     frequency band, all possible channels are channel 11 to 
            //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
            //     will filter out all invalid channels, so the application 
            //     only needs to pay attention to the channels that are not 
            //     preferred.
            /*******************************************************************/
            i = MiApp_SearchConnection(10, 0x02000000);
            
            if( i > 0 )
            {
                // now print out the scan result.
                Printf("\r\nActive Scan Results: \r\n");
                for(j = 0; j < i; j++)
                {
                    Printf("Channel: ");
                    PrintDec(ActiveScanResults[j].Channel );
                    Printf("   RSSI: ");
                    PrintChar(ActiveScanResults[j].RSSIValue);
                    Printf("\r\n");
                    myChannel = ActiveScanResults[j].Channel;
                    Printf("PeerInfo: ");
                    PrintChar( ActiveScanResults[j].PeerInfo[0]);
                }
            }
        #endif

    

        /*******************************************************************/
        // Function MiApp_ConnectionMode sets the connection mode for the 
        // protocol stack. Possible connection modes are:
        //  - ENABLE_ALL_CONN       accept all connection request
        //  - ENABLE_PREV_CONN      accept only known device to connect
        //  - ENABL_ACTIVE_SCAN_RSP do not accept connection request, but 
        //                          allow response to active scan
        //  - DISABLE_ALL_CONN      disable all connection request, including
        //                          active scan request
        /*******************************************************************/
        MiApp_ConnectionMode(ENABLE_ALL_CONN);
    
    
        if( i > 0 )
        {
            /*******************************************************************/
            // Function MiApp_EstablishConnection try to establish a new 
            // connection with peer device. 
            // The first parameter is the index to the active scan result, which 
            //      is acquired by discovery process (active scan). If the value
            //      of the index is 0xFF, try to establish a connection with any 
            //      peer.
            // The second parameter is the mode to establish connection, either 
            //      direct or indirect. Direct mode means connection within the 
            //      radio range; Indirect mode means connection may or may not 
            //      in the radio range. 
            /*******************************************************************/
            if( MiApp_EstablishConnection(0, CONN_MODE_DIRECT) == 0xFF )
            {
                Printf("\r\nJoin Fail");
            }
        }    
        else
        {
            /*******************************************************************/
            // Function MiApp_StartConnection tries to start a new network 
            //
            // The first parameter is the mode of start connection. There are 
            // two valid connection modes:
            //   - START_CONN_DIRECT        start the connection on current 
            //                              channel
            //   - START_CONN_ENERGY_SCN    perform an energy scan first, 
            //                              before starting the connection on 
            //                              the channel with least noise
            //   - START_CONN_CS_SCN        perform a carrier sense scan 
            //                              first, before starting the 
            //                              connection on the channel with 
            //                              least carrier sense noise. Not 
            //                              supported on currrent radios
            //
            // The second parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
            //     half second and 11 is 2 seconds. Maximum scan duration is 
            //     14, or roughly 16 seconds.
            //
            // The third parameter is the channel map. Bit 0 of the 
            //     double word parameter represents channel 0. For the 2.4GHz 
            //     frequency band, all possible channels are channel 11 to 
            //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
            //     will filter out all invalid channels, so the application 
            //     only needs to pay attention to the channels that are not 
            //     preferred.
            /*******************************************************************/
            #ifdef ENABLE_ED_SCAN
                //LCDDisplay((char *)"Active Scanning Energy Scanning", 0, FALSE);
                ConsolePutROMString((ROM char *)"\r\nActive Scanning Energy Scanning");
                MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0x02000000);
            #endif
        }
        
        // Turn on LED 1 to indicate ready to accept new connections
        LED_1 = 1;
    }
    else
    {
        //LCDDisplay((char *)" Network Freezer    ENABLED", 0, TRUE);
        Printf("\r\nNetwork Freezer Feature is enabled. There will be no hand-shake process.\r\n");
        LED_1 = 1;
        DumpConnection(0xFF);
    }
                   
    LCDDisplay((char *)"Start Connection on Channel %d", currentChannel, TRUE);
    LCDDisplay((char *)"Testing Menu on  Hyper Terminal", 0, FALSE);

    while(1)
    {
        /*******************************************************************/
        // Function MiApp_MessageAvailable will return a boolean to indicate 
        // if a message for application layer has been received by the 
        // transceiver. If a message has been received, all information will 
        // be stored in the rxMessage, structure of RECEIVED_MESSAGE.
        /*******************************************************************/
        if( MiApp_MessageAvailable() )
        {
            /*******************************************************************/
            // If a packet has been received, following code prints out some of
            // the information available in rxFrame.
            /*******************************************************************/
            if( rxMessage.flags.bits.secEn )
            {
                ConsolePutROMString((ROM char *)"Secured ");
            }

            if( rxMessage.flags.bits.broadcast )
            {
                ConsolePutROMString((ROM char *)"Broadcast Packet with RSSI ");
            }
            else
            {
                ConsolePutROMString((ROM char *)"Unicast Packet with RSSI ");
            }
            PrintChar(rxMessage.PacketRSSI);
            if( rxMessage.flags.bits.srcPrsnt )
            {
                ConsolePutROMString((ROM char *)" from ");
                if( rxMessage.flags.bits.altSrcAddr )
                {
                    PrintChar(rxMessage.SourceAddress[1]);
                    PrintChar(rxMessage.SourceAddress[0]);
                }
                else
                {    
                    for(i = 0; i < MY_ADDRESS_LENGTH; i++)
                    {
                        PrintChar(rxMessage.SourceAddress[MY_ADDRESS_LENGTH-1-i]);
                    }
                }    
            }

            ConsolePutROMString((ROM char *)": ");
            
            
            for(i = 0; i < rxMessage.PayloadSize; i++)
            {
                ConsolePut(rxMessage.Payload[i]);
            }
            
            // Toggle LED2 to indicate receiving a packet.
            LED_2 ^= 1;
            
            /*******************************************************************/
            // Function MiApp_DiscardMessage is used to release the current 
            // received message. After calling this function, the stack can 
            // start to process the next received message.
            /*******************************************************************/          
            MiApp_DiscardMessage();
            
            bReceivedMessage = TRUE;
            
            /*******************************************************************/
            // Following block update the total received and transmitted messages
            // on the LCD of the demo board. 
            /*******************************************************************/
            LCDTRXCount(TxNum, ++RxNum);
        }
        else
        {
         ++m;

         if(m > 8000)
         {
             m=0;
             //LED_1 ^= 1;
             
                MiApp_FlushTx();
    	        MiApp_WriteData('H');
    	        MiApp_WriteData('o');
    	        MiApp_WriteData('l');
    	        MiApp_WriteData('a');
                MiApp_WriteData('a');
                MiApp_WriteData('a');
    	        MiApp_WriteData(0x0D);
    	        MiApp_WriteData(0x0A);
               MiApp_BroadcastPacket(FALSE);

         }



            if ( ConsoleIsGetReady() )
            {
                //ProcessMenu();
            } 
        }
    }
}
Пример #4
0
void main(void)
{
     #define BAUDRG 77

    BYTE SecNum = 0;

   BOOL Tx_Success = FALSE;
   BYTE Tx_Trials = 0, scanresult = 0;
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/

    ANCON0 = 0XFF;     /*desactiva entradas analogicas*/
    ANCON1 = 0XFF;     /*desactiva entradas analogicas*/



    PPSUnLock();

    PPSOutput(PPS_RP10, PPS_TX2CK2);    // TX2 RP17/RC6     icsp
    PPSInput(PPS_RX2DT2, PPS_RP9);     // RX2 RP18/RC7

    PPSOutput(PPS_RP23, PPS_SDO2);    // SDO2 RP23/RD6
    PPSInput(PPS_SDI2, PPS_RP24);     // SDI2 RP24/RD7
    PPSOutput(PPS_RP22, PPS_SCK2);    // SCK2 RP22/RD5

    PPSLock();

     System_PeripheralPinSelect( ExternalInterrupt3, 19);  /*external interrupt 3 B3*/

     BoardInit();
     ConsoleInit();

     Gpios_PinDirection(GPIOS_PORTC, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTC, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     
     //Gpios_PinDirection(GPIOS_PORTD, 4, GPIOS_OUTPUT);  /*pin D4 como salida */

     Open1USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud1USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);


     Open2USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud2USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);


     OpenTimer1( TIMER_INT_OFF &T1_16BIT_RW &T1_SOURCE_FOSC_4 & T1_PS_1_8 &T1_OSC1EN_OFF &T1_SYNC_EXT_OFF, TIMER_GATE_OFF  & TIMER_GATE_INT_OFF);



     Gpios_PinDirection(GPIOS_PORTD, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTD, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     Gpios_PinDirection(GPIOS_PORTD, 5, GPIOS_OUTPUT); /*pin C2 como salida para SCK*/

     Spi_Init(SPI_PORT1, SPI_64DIV); /*Inicializamos SPI2*/
     Spi_Init(SPI_PORT2, SPI_64DIV); /*Inicializamos SPI2*/

     //Adc_Init(ADC_10BITS);

     LED_1 = 1;
     LED_2 = 0;
     //RLY_1 = 0;
     RLY_2 = 0;

     ON_RADIO = 1;
     ON_MAC = 1;
     ON_TEMP = 1;
     
     StartWirelessConnection();
     
     
     
     //myDevicesRequiredStatus[0] = 0x55;
     
     
     EEPROMRead(&myDevicesRequiredStatus, 0, 1);
     
     if(myDevicesRequiredStatus[0] == 0x55)
     {
         RLY_1 = 1;
         EEPROMCHG = 1;
         ConsolePutROMString((ROM char *)"RELAY ON ");
     }
     
     if(myDevicesRequiredStatus[0] == 0xAA)
     {
         RLY_1 = 0;
         EEPROMCHG = 0;
         ConsolePutROMString((ROM char *)"RELAY OFF ");
     }
     
     
     
     
     

     for(j=0;j<10;j++)
     {
         DelayMs(50);

         LED_1 ^= 1;
         LED_2 ^= 1;
     }
     
     

     LED_1 = 0;
     LED_2 = 0;
     //RLY_1 = 0;
     RLY_2 = 0;
     
    
     
     TickScaler = 4;
     EndDevStateMachine =0;



/*
                                

                                while(!Tx_Success)
                                {
                                    if(myChannel < 8)
                                        scanresult = MiApp_SearchConnection(10, (0x00000001 << myChannel));
                                    else if(myChannel < 16)
                    				    scanresult = MiApp_SearchConnection(10, (0x00000100 << (myChannel-8)));
                                    else if(myChannel < 24)
                    				    scanresult = MiApp_SearchConnection(10, (0x00010000 << (myChannel-16)));
                                    else
                    				    scanresult = MiApp_SearchConnection(10, (0x01000000 << (myChannel-24)));
                                    if(scanresult == 0)
                                    {
                                        Tx_Trials++;
                                        if(Tx_Trials > 2) break;

                                    }
                                    else Tx_Success = TRUE;

                                }
                                if(Tx_Success)
                                {
                                    ConsolePutROMString((ROM char *)"RADIO OK ");
                                }
                                else
                                {
                                    ConsolePutROMString((ROM char *)"RADIO FAIL ");
                                }

*/


     //.VBGOE = 0;
     //ANCON1bits.VBGEN = 1;		// Enable Band gap reference voltage
     //DelayMs(10);
     //VBGResult = Adc_u16Read(15);
     //ANCON1bits.VBGEN = 0;	    // Disable Bandgap

      //Adc_Init(ADC_10BITS);
     
     
     ANCON0 = 0xFF;
     ANCON1 = 0x9F;
     ANCON1bits.VBGEN = 1;		// Enable Band gap reference voltage
     
     
     ADCON0bits.VCFG = 0;    // vreff VDD-VSS
     ADCON0bits.CHS = 0x0F;  // VBG channel select
     
     ADCON1 = 0xBE;
     ADCON0bits.ADON = 1;
     
     //for(j=0;j<16;j++)
     //{
        //myDevicesOutputStatus[j] = j;
     //}
    
     
     //EEPROMWRITE(myDevicesOutputStatus,0,16);
     
     
     //for(j=0;j<16;j++)
     //{
        //myDevicesOutputStatus[j] = 0;
     //}
     
     //DelayMs(500);
     
     EEPROMRead(&myDevicesOutputStatus, 0, 16);
     ConsolePutROMString((ROM char *)"EEPROM READ: ");
     //PrintChar(TemperatureCalibrationValue);
     
     
     for(j=0;j<1;j++)
     {
         PrintChar(myDevicesOutputStatus[j]);
     }
	

     SwTimer3 = 0;
     SwTimer4 = 0;
     
     TRISB&=0xEF;   //JL: Configuro el pin B4 como salida si modificar el estado de los demas pines
     
     while(1)
     {
     /*
         WirelessTxRx();
         WirelesStatus();
         Bypass();
         */
         
         
         //No se utilizaron
         //Menu();
         //Timer1Tick();
         //WirelessTxRxPANCOORD();
         //TaskScheduler();
         
         //JLEstas funciones deben habilitarse para trabajar como repetidora
         
         Timer1Tick();
         Repeater();
        
     }

}