/** * Compute bearing between current position and POI */ float VtolFlyController::updatePOIBearing() { PoiLocationData poi; PoiLocationGet(&poi); PositionStateData positionState; PositionStateGet(&positionState); const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f; float dLoc[3]; float yaw = 0; /*float elevation = 0;*/ dLoc[0] = positionState.North - poi.North; dLoc[1] = positionState.East - poi.East; dLoc[2] = positionState.Down - poi.Down; if (dLoc[1] < 0) { yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f; } else { yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f; } ManualControlCommandData manualControlData; ManualControlCommandGet(&manualControlData); float pathAngle = 0; if (manualControlData.Roll > DEADBAND_HIGH) { pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f; } else if (manualControlData.Roll < DEADBAND_LOW) { pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f; } return yaw + (pathAngle / 2.0f); }
/** * @brief setup pathplanner/pathfollower for positionhold */ void plan_setup_positionHold() { PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); float startingVelocity; FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity); pathDesired.End.North = positionState.North; pathDesired.End.East = positionState.East; pathDesired.End.Down = positionState.Down; pathDesired.Start.North = positionState.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.StartingVelocity = startingVelocity; pathDesired.EndingVelocity = 0.0f; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; PathDesiredSet(&pathDesired); }
// Set the new state and perform setup for subsequent state run calls // This is called by state run functions on event detection that drive // state transitions. void VtolLandFSM::setState(PathFollowerFSM_LandState_T newState, StatusVtolLandStateExitReasonOptions reason) { mLandData->fsmLandStatus.StateExitReason[mLandData->currentState] = reason; if (mLandData->currentState == newState) { return; } mLandData->currentState = newState; if (newState != LAND_STATE_INACTIVE) { PositionStateData positionState; PositionStateGet(&positionState); float takeOffDown = 0.0f; if (mLandData->takeOffLocation.Status == TAKEOFFLOCATION_STATUS_VALID) { takeOffDown = mLandData->takeOffLocation.Down; } mLandData->fsmLandStatus.AltitudeAtState[newState] = positionState.Down - takeOffDown; assessAltitude(); } // Restart state timer counter mLandData->stateRunCount = 0; // Reset state timeout to disabled/zero mLandData->stateTimeoutCount = 0; if (sLandStateTable[mLandData->currentState].setup) { (this->*sLandStateTable[mLandData->currentState].setup)(); } updateVtolLandFSMStatus(); }
void plan_setup_assistedcontrol() { PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; FlightStatusAssistedControlStateOptions assistedControlFlightMode; VelocityStateData velocityState; VelocityStateGet(&velocityState); float brakeRate; VtolPathFollowerSettingsBrakeRateGet(&brakeRate); if (brakeRate < ASSISTEDCONTROL_BRAKERATE_MINIMUM) { brakeRate = ASSISTEDCONTROL_BRAKERATE_MINIMUM; // set a minimum to avoid a divide by zero potential below } // Calculate the velocity float velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down; velocity = sqrtf(velocity); // Calculate the desired time to zero velocity. float time_to_stopped = ASSISTEDCONTROL_DELAY_TO_BRAKE; // we allow at least 0.5 seconds to rotate to a brake angle. time_to_stopped += velocity / brakeRate; // Sanity check the brake rate by ensuring that the time to stop is within a range. if (time_to_stopped < ASSISTEDCONTROL_TIMETOSTOP_MINIMUM) { time_to_stopped = ASSISTEDCONTROL_TIMETOSTOP_MINIMUM; } else if (time_to_stopped > ASSISTEDCONTROL_TIMETOSTOP_MAXIMUM) { time_to_stopped = ASSISTEDCONTROL_TIMETOSTOP_MAXIMUM; } // calculate the distance we will travel float north_delta = velocityState.North * ASSISTEDCONTROL_DELAY_TO_BRAKE; // we allow at least 0.5s to rotate to brake angle north_delta += (time_to_stopped - ASSISTEDCONTROL_DELAY_TO_BRAKE) * 0.5f * velocityState.North; // area under the linear deceleration plot float east_delta = velocityState.East * ASSISTEDCONTROL_DELAY_TO_BRAKE; // we allow at least 0.5s to rotate to brake angle east_delta += (time_to_stopped - ASSISTEDCONTROL_DELAY_TO_BRAKE) * 0.5f * velocityState.East; // area under the linear deceleration plot float down_delta = velocityState.Down * ASSISTEDCONTROL_DELAY_TO_BRAKE; down_delta += (time_to_stopped - ASSISTEDCONTROL_DELAY_TO_BRAKE) * 0.5f * velocityState.Down; // area under the linear deceleration plot float net_delta = east_delta * east_delta + north_delta * north_delta + down_delta * down_delta; net_delta = sqrtf(net_delta); pathDesired.Start.North = positionState.North; pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_NORTH] = velocityState.North; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_EAST] = velocityState.East; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_DOWN] = velocityState.Down; pathDesired.End.North = positionState.North + north_delta; pathDesired.End.East = positionState.East + east_delta; pathDesired.End.Down = positionState.Down + down_delta; pathDesired.StartingVelocity = velocity; pathDesired.EndingVelocity = 0.0f; pathDesired.Mode = PATHDESIRED_MODE_BRAKE; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] = time_to_stopped * ASSISTEDCONTROL_TIMEOUT_MULTIPLIER; assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_BRAKE; FlightStatusAssistedControlStateSet(&assistedControlFlightMode); PathDesiredSet(&pathDesired); }
static void plan_setup_land_helper(PathDesiredData *pathDesired) { PositionStateData positionState; PositionStateGet(&positionState); float velocity_down; FlightModeSettingsLandingVelocityGet(&velocity_down); pathDesired->Start.North = positionState.North; pathDesired->Start.East = positionState.East; pathDesired->Start.Down = positionState.Down; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_NORTH] = 0.0f; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_EAST] = 0.0f; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN] = velocity_down; pathDesired->End.North = positionState.North; pathDesired->End.East = positionState.East; pathDesired->End.Down = positionState.Down; pathDesired->StartingVelocity = 0.0f; pathDesired->EndingVelocity = 0.0f; pathDesired->Mode = PATHDESIRED_MODE_LAND; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS] = (float)PATHDESIRED_MODEPARAMETER_LAND_OPTION_HORIZONTAL_PH; }
static void plan_setup_AutoTakeoff_helper(PathDesiredData *pathDesired) { PositionStateData positionState; PositionStateGet(&positionState); float velocity_down; float autotakeoff_height; FlightModeSettingsAutoTakeOffVelocityGet(&velocity_down); FlightModeSettingsAutoTakeOffHeightGet(&autotakeoff_height); autotakeoff_height = fabsf(autotakeoff_height); if (autotakeoff_height < AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN) { autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN; } else if (autotakeoff_height > AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX) { autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX; } pathDesired->Start.North = positionState.North; pathDesired->Start.East = positionState.East; pathDesired->Start.Down = positionState.Down; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_NORTH] = 0.0f; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_EAST] = 0.0f; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_DOWN] = -velocity_down; pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_CONTROLSTATE] = (float)autotakeoffState; pathDesired->End.North = positionState.North; pathDesired->End.East = positionState.East; pathDesired->End.Down = positionState.Down - autotakeoff_height; pathDesired->StartingVelocity = 0.0f; pathDesired->EndingVelocity = 0.0f; pathDesired->Mode = PATHDESIRED_MODE_AUTOTAKEOFF; }
static void getVector(float controlVector[4], vario_type type) { FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); // scale controlVector[3] (thrust) by vertical/horizontal to have vertical plane less sensitive controlVector[3] *= offset.Vertical / offset.Horizontal; float length = sqrtf(controlVector[0] * controlVector[0] + controlVector[1] * controlVector[1] + controlVector[3] * controlVector[3]); if (length <= 1e-9f) { length = 1.0f; // should never happen as getVector is not called if control within deadband } { float direction[3] = { controlVector[1] / length, // pitch is north controlVector[0] / length, // roll is east controlVector[3] / length // thrust is down }; controlVector[0] = direction[0]; controlVector[1] = direction[1]; controlVector[2] = direction[2]; } controlVector[3] = length * offset.Horizontal; // rotate north and east - rotation angle based on type float angle; switch (type) { case NSEW: angle = 0.0f; // NSEW no rotation takes place break; case FPV: // local rotation, using current yaw AttitudeStateYawGet(&angle); break; case LOS: // determine location based on vector from takeoff to current location { PositionStateData positionState; PositionStateGet(&positionState); TakeOffLocationData takeoffLocation; TakeOffLocationGet(&takeoffLocation); angle = RAD2DEG(atan2f(positionState.East - takeoffLocation.East, positionState.North - takeoffLocation.North)); } break; } // rotate horizontally by angle { float rotated[2] = { controlVector[0] * cos_lookup_deg(angle) - controlVector[1] * sin_lookup_deg(angle), controlVector[0] * sin_lookup_deg(angle) + controlVector[1] * cos_lookup_deg(angle) }; controlVector[0] = rotated[0]; controlVector[1] = rotated[1]; } }
/** * Compute bearing of current takeoff location */ float VtolFlyController::updateTailInBearing() { PositionStateData p; PositionStateGet(&p); TakeOffLocationData t; TakeOffLocationGet(&t); // atan2f always returns in between + and - 180 degrees return RAD2DEG(atan2f(p.East - t.East, p.North - t.North)); }
/** * Compute bearing of current path direction */ float VtolFlyController::updatePathBearing() { PositionStateData positionState; PositionStateGet(&positionState); float cur[3] = { positionState.North, positionState.East, positionState.Down }; struct path_status progress; path_progress(pathDesired, cur, &progress, true); // atan2f always returns in between + and - 180 degrees return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0])); }
/** * Compute desired velocity from the current position and path */ void VtolFlyController::UpdateVelocityDesired() { PositionStateData positionState; PositionStateGet(&positionState); VelocityStateData velocityState; VelocityStateGet(&velocityState); VelocityDesiredData velocityDesired; // look ahead kFF seconds float cur[3] = { positionState.North + (velocityState.North * vtolPathFollowerSettings->CourseFeedForward), positionState.East + (velocityState.East * vtolPathFollowerSettings->CourseFeedForward), positionState.Down + (velocityState.Down * vtolPathFollowerSettings->CourseFeedForward) }; struct path_status progress; path_progress(pathDesired, cur, &progress, true); controlNE.ControlPositionWithPath(&progress); if (!mManualThrust) { controlDown.ControlPositionWithPath(&progress); } controlNE.UpdateVelocityState(velocityState.North, velocityState.East); controlDown.UpdateVelocityState(velocityState.Down); float north, east; controlNE.GetVelocityDesired(&north, &east); velocityDesired.North = north; velocityDesired.East = east; if (!mManualThrust) { velocityDesired.Down = controlDown.GetVelocityDesired(); } else { velocityDesired.Down = 0.0f; } // update pathstatus pathStatus->error = progress.error; pathStatus->fractional_progress = progress.fractional_progress; pathStatus->path_direction_north = progress.path_vector[0]; pathStatus->path_direction_east = progress.path_vector[1]; pathStatus->path_direction_down = progress.path_vector[2]; pathStatus->correction_direction_north = progress.correction_vector[0]; pathStatus->correction_direction_east = progress.correction_vector[1]; pathStatus->correction_direction_down = progress.correction_vector[2]; VelocityDesiredSet(&velocityDesired); }
void plan_setup_AutoCruise() { PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); float startingVelocity; FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity); // initialization is flight in direction of the nose. // the velocity is not relevant, as it will be reset by the run function even during first call float angle; AttitudeStateYawGet(&angle); float vector[2] = { cos_lookup_deg(angle), sin_lookup_deg(angle) }; hold_position[0] = positionState.North; hold_position[1] = positionState.East; hold_position[2] = positionState.Down; pathDesired.End.North = hold_position[0] + vector[0]; pathDesired.End.East = hold_position[1] + vector[1]; pathDesired.End.Down = hold_position[2]; // start position has the same offset as in position hold pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = pathDesired.End.East; pathDesired.Start.Down = pathDesired.End.Down; pathDesired.StartingVelocity = startingVelocity; pathDesired.EndingVelocity = 0.0f; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; PathDesiredSet(&pathDesired); // re-iniztializing deltatime is valid and also good practice here since // getAverageSeconds() has not been called/updated in a long time if we were in a different flightmode. PIOS_DELTATIME_Init(&actimeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA); }
/** * @brief setup pathplanner/pathfollower for positionhold */ void plan_setup_positionHold() { PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; // re-initialise in setup stage memset(&pathDesired, 0, sizeof(PathDesiredData)); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); pathDesired.End.North = positionState.North; pathDesired.End.East = positionState.East; pathDesired.End.Down = positionState.Down; pathDesired.Start.North = positionState.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.StartingVelocity = 0.0f; pathDesired.EndingVelocity = 0.0f; pathDesired.Mode = PATHDESIRED_MODE_GOTOENDPOINT; PathDesiredSet(&pathDesired); }
/** * @brief execute autocruise */ void plan_run_AutoCruise() { PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); float controlVector[4]; ManualControlCommandRollGet(&controlVector[0]); ManualControlCommandPitchGet(&controlVector[1]); ManualControlCommandYawGet(&controlVector[2]); controlVector[3] = 0.5f; // dummy, thrust is normalized separately normalizeDeadband(controlVector); // return value ignored ManualControlCommandThrustGet(&controlVector[3]); // no deadband as we are using thrust for velocity controlVector[3] = boundf(controlVector[3], 1e-6f, 1.0f); // bound to above zero, to prevent loss of vector direction // normalize old desired movement vector float vector[3] = { pathDesired.End.North - hold_position[0], pathDesired.End.East - hold_position[1], pathDesired.End.Down - hold_position[2] }; float length = sqrtf(vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2]); if (length < 1e-9f) { length = 1.0f; // should not happen since initialized properly in setup() } vector[0] /= length; vector[1] /= length; vector[2] /= length; // start position is advanced according to actual movement - in the direction of desired vector only // projection using scalar product float kp = (positionState.North - hold_position[0]) * vector[0] + (positionState.East - hold_position[1]) * vector[1] + (positionState.Down - hold_position[2]) * vector[2]; if (kp > 0.0f) { hold_position[0] += kp * vector[0]; hold_position[1] += kp * vector[1]; hold_position[2] += kp * vector[2]; } // new angle is equal to old angle plus offset depending on yaw input and time // (controlVector is normalized with a deadband, change is zero within deadband) float angle = RAD2DEG(atan2f(vector[1], vector[0])); float dT = PIOS_DELTATIME_GetAverageSeconds(&actimeval); angle += 10.0f * controlVector[2] * dT; // TODO magic value could eventually end up in a to be created settings // resulting movement vector is scaled by velocity demand in controlvector[3] [0.0-1.0] vector[0] = cosf(DEG2RAD(angle)) * offset.Horizontal * controlVector[3]; vector[1] = sinf(DEG2RAD(angle)) * offset.Horizontal * controlVector[3]; vector[2] = -controlVector[1] * offset.Vertical * controlVector[3]; pathDesired.End.North = hold_position[0] + vector[0]; pathDesired.End.East = hold_position[1] + vector[1]; pathDesired.End.Down = hold_position[2] + vector[2]; // start position has the same offset as in position hold pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = pathDesired.End.East; pathDesired.Start.Down = pathDesired.End.Down; PathDesiredSet(&pathDesired); }
static void plan_run_PositionVario(vario_type type) { float controlVector[4]; float alpha; PathDesiredData pathDesired; PathDesiredGet(&pathDesired); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); ManualControlCommandRollGet(&controlVector[0]); ManualControlCommandPitchGet(&controlVector[1]); ManualControlCommandYawGet(&controlVector[2]); ManualControlCommandThrustGet(&controlVector[3]); FlightModeSettingsVarioControlLowPassAlphaGet(&alpha); vario_control_lowpass[0] = alpha * vario_control_lowpass[0] + (1.0f - alpha) * controlVector[0]; vario_control_lowpass[1] = alpha * vario_control_lowpass[1] + (1.0f - alpha) * controlVector[1]; vario_control_lowpass[2] = alpha * vario_control_lowpass[2] + (1.0f - alpha) * controlVector[2]; controlVector[0] = vario_control_lowpass[0]; controlVector[1] = vario_control_lowpass[1]; controlVector[2] = vario_control_lowpass[2]; // check if movement is desired if (normalizeDeadband(controlVector) == false) { // no movement desired, re-enter positionHold at current start-position if (!vario_hold) { vario_hold = true; // new hold position is the position that was previously the start position pathDesired.End.North = hold_position[0]; pathDesired.End.East = hold_position[1]; pathDesired.End.Down = hold_position[2]; // while the new start position has the same offset as in position hold pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = pathDesired.End.East; pathDesired.Start.Down = pathDesired.End.Down; PathDesiredSet(&pathDesired); } } else { PositionStateData positionState; PositionStateGet(&positionState); // flip pitch to have pitch down (away) point north controlVector[1] = -controlVector[1]; getVector(controlVector, type); // layout of control Vector : unitVector in movement direction {0,1,2} vector length {3} velocity {4} if (vario_hold) { // start position is the position that was previously the hold position vario_hold = false; hold_position[0] = pathDesired.End.North; hold_position[1] = pathDesired.End.East; hold_position[2] = pathDesired.End.Down; } else { // start position is advanced according to movement - in the direction of ControlVector only // projection using scalar product float kp = (positionState.North - hold_position[0]) * controlVector[0] + (positionState.East - hold_position[1]) * controlVector[1] + (positionState.Down - hold_position[2]) * -controlVector[2]; if (kp > 0.0f) { hold_position[0] += kp * controlVector[0]; hold_position[1] += kp * controlVector[1]; hold_position[2] += kp * -controlVector[2]; } } // new destination position is advanced based on controlVector pathDesired.End.North = hold_position[0] + controlVector[0] * controlVector[3]; pathDesired.End.East = hold_position[1] + controlVector[1] * controlVector[3]; pathDesired.End.Down = hold_position[2] - controlVector[2] * controlVector[3]; // the new start position has the same offset as in position hold pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter pathDesired.Start.East = pathDesired.End.East; pathDesired.Start.Down = pathDesired.End.Down; PathDesiredSet(&pathDesired); } }
/** * Compute desired velocity from the current position and path */ void FixedWingFlyController::updatePathVelocity(float kFF, bool limited) { PositionStateData positionState; PositionStateGet(&positionState); VelocityStateData velocityState; VelocityStateGet(&velocityState); VelocityDesiredData velocityDesired; const float dT = fixedWingSettings->UpdatePeriod / 1000.0f; // look ahead kFF seconds float cur[3] = { positionState.North + (velocityState.North * kFF), positionState.East + (velocityState.East * kFF), positionState.Down + (velocityState.Down * kFF) }; struct path_status progress; path_progress(pathDesired, cur, &progress, true); // calculate velocity - can be zero if waypoints are too close velocityDesired.North = progress.path_vector[0]; velocityDesired.East = progress.path_vector[1]; velocityDesired.Down = progress.path_vector[2]; if (limited && // if a plane is crossing its desired flightpath facing the wrong way (away from flight direction) // it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector // once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading) // leading to an S-shape snake course the wrong way // this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't // turn steep unless there is enough space complete the turn before crossing the flightpath // in this case the plane effectively needs to be turned around // indicators: // difference between correction_direction and velocitystate >90 degrees and // difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything ) // fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore) // calculating angles < 90 degrees through dot products (vector_lengthf(progress.path_vector, 2) > 1e-6f) && ((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) && ((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) { ; } else { // calculate correction velocityDesired.North += pid_apply(&PIDposH[0], progress.correction_vector[0], dT); velocityDesired.East += pid_apply(&PIDposH[1], progress.correction_vector[1], dT); } velocityDesired.Down += pid_apply(&PIDposV, progress.correction_vector[2], dT); // update pathstatus pathStatus->error = progress.error; pathStatus->fractional_progress = progress.fractional_progress; pathStatus->path_direction_north = progress.path_vector[0]; pathStatus->path_direction_east = progress.path_vector[1]; pathStatus->path_direction_down = progress.path_vector[2]; pathStatus->correction_direction_north = progress.correction_vector[0]; pathStatus->correction_direction_east = progress.correction_vector[1]; pathStatus->correction_direction_down = progress.correction_vector[2]; VelocityDesiredSet(&velocityDesired); }
void plan_run_VelocityRoam() { // float alpha; PathDesiredData pathDesired; FlightStatusAssistedControlStateOptions assistedControlFlightMode; FlightStatusFlightModeOptions flightMode; PathDesiredGet(&pathDesired); FlightModeSettingsPositionHoldOffsetData offset; FlightModeSettingsPositionHoldOffsetGet(&offset); FlightStatusAssistedControlStateGet(&assistedControlFlightMode); FlightStatusFlightModeGet(&flightMode); StabilizationBankData stabSettings; StabilizationBankGet(&stabSettings); ManualControlCommandData cmd; ManualControlCommandGet(&cmd); cmd.Roll = applyExpo(cmd.Roll, stabSettings.StickExpo.Roll); cmd.Pitch = applyExpo(cmd.Pitch, stabSettings.StickExpo.Pitch); cmd.Yaw = applyExpo(cmd.Yaw, stabSettings.StickExpo.Yaw); bool flagRollPitchHasInput = (fabsf(cmd.Roll) > 0.0f || fabsf(cmd.Pitch) > 0.0f); if (!flagRollPitchHasInput) { // no movement desired, re-enter positionHold at current start-position if (assistedControlFlightMode == FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY) { // initiate braking and change assisted control flight mode to braking if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) { // avoid brake then hold sequence to continue descent. plan_setup_land_from_velocityroam(); } else { plan_setup_assistedcontrol(); } } // otherwise nothing to do in braking/hold modes } else { PositionStateData positionState; PositionStateGet(&positionState); // Revert assist control state to primary, which in this case implies // we are in roaming state (a GPS vector assisted velocity roam) assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY; // Calculate desired velocity in each direction float angle; AttitudeStateYawGet(&angle); angle = DEG2RAD(angle); float cos_angle = cosf(angle); float sine_angle = sinf(angle); float rotated[2] = { -cmd.Pitch * cos_angle - cmd.Roll * sine_angle, -cmd.Pitch * sine_angle + cmd.Roll * cos_angle }; // flip pitch to have pitch down (away) point north float horizontalVelMax; float verticalVelMax; VtolPathFollowerSettingsHorizontalVelMaxGet(&horizontalVelMax); VtolPathFollowerSettingsVerticalVelMaxGet(&verticalVelMax); float velocity_north = rotated[0] * horizontalVelMax; float velocity_east = rotated[1] * horizontalVelMax; float velocity_down = 0.0f; if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) { FlightModeSettingsLandingVelocityGet(&velocity_down); } float velocity = velocity_north * velocity_north + velocity_east * velocity_east; velocity = sqrtf(velocity); // if one stick input (pitch or roll) should we use fly by vector? set arbitrary distance of say 20m after which we // expect new stick input // if two stick input pilot is fighting wind manually and we use fly by velocity // in reality setting velocity desired to zero will fight wind anyway. pathDesired.Start.North = positionState.North; pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_NORTH] = velocity_north; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_EAST] = velocity_east; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_DOWN] = velocity_down; pathDesired.End.North = positionState.North; pathDesired.End.East = positionState.East; pathDesired.End.Down = positionState.Down; pathDesired.StartingVelocity = velocity; pathDesired.EndingVelocity = velocity; pathDesired.Mode = PATHDESIRED_MODE_VELOCITY; if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) { pathDesired.Mode = PATHDESIRED_MODE_LAND; pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS] = (float)PATHDESIRED_MODEPARAMETER_LAND_OPTION_NONE; } else { pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_UNUSED] = 0.0f; } PathDesiredSet(&pathDesired); FlightStatusAssistedControlStateSet(&assistedControlFlightMode); } }