template<> void PAlgebraModTmpl<zz_pX,vec_zz_pX,zz_pXModulus>::mapToFt(zz_pX& r, const zz_pX& G,unsigned t,const zz_pX* rF1) const { int i = zmStar.indexOfRep(t); if (i < 0) { r=zz_pX::zero(); return; } if (rF1==NULL) { // Compute the representation "from scratch" zz_pE::init(factors[i]); // work with the extension field GF_2[X]/Ft(X) zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G is polynomial over the extension field r=rep(FindRoot(Ga)); // Find a root of G in this field return; } // if rF1 is set, then use it instead, setting r = rF1(X^t) mod Ft(X) zz_pXModulus Ft(factors[i]); // long tInv = InvMod(t,m); zz_pX X2t = PowerXMod(t,Ft); // X2t = X^t mod Ft r = CompMod(*rF1,X2t,Ft); // r = F1(X2t) mod Ft /* Debugging sanity-check: G(r)=0 in the extension field (Z/2Z)[X]/Ft(X) zz_pE::init(factors[i]); zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G as a polynomial over the extension field zz_pE ra =to_zz_pE(r); // r is an element in the extension field eval(ra,Ga,ra); // ra = Ga(ra) if (!IsZero(ra)) {// check that Ga(r)=0 in this extension field cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl; exit(0); }*******************************************************************/ }
void PAlgebraModDerived<type>::mapToFt(RX& w, const RX& G,unsigned long t,const RX* rF1) const { if (isDryRun()) { w = RX::zero(); return; } long i = zMStar.indexOfRep(t); if (i < 0) { clear(w); return; } if (rF1==NULL) { // Compute the representation "from scratch" // special case if (G == factors[i]) { SetX(w); return; } //special case if (deg(G) == 1) { w = -ConstTerm(G); return; } // the general case: currently only works when r == 1 assert(r == 1); REBak bak; bak.save(); RE::init(factors[i]); // work with the extension field GF_p[X]/Ft(X) REX Ga; conv(Ga, G); // G as a polynomial over the extension field vec_RE roots; FindRoots(roots, Ga); // Find roots of G in this field RE* first = &roots[0]; RE* last = first + roots.length(); RE* smallest = min_element(first, last); // make a canonical choice w=rep(*smallest); return; } // if rF1 is set, then use it instead, setting w = rF1(X^t) mod Ft(X) RXModulus Ft(factors[i]); // long tInv = InvMod(t,m); RX X2t = PowerXMod(t,Ft); // X2t = X^t mod Ft w = CompMod(*rF1,X2t,Ft); // w = F1(X2t) mod Ft /* Debugging sanity-check: G(w)=0 in the extension field (Z/2Z)[X]/Ft(X) RE::init(factors[i]); REX Ga; conv(Ga, G); // G as a polynomial over the extension field RE ra; conv(ra, w); // w is an element in the extension field eval(ra,Ga,ra); // ra = Ga(ra) if (!IsZero(ra)) {// check that Ga(w)=0 in this extension field cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl; exit(0); }*******************************************************************/ }
NTL_CLIENT #include <algorithm> // defines count(...), min(...) #include <iostream> #include "NumbTh.h" #include "PAlgebra.h" // Generate the representation of Z[X]/(Phi_m(X),2) for the odd integer m void PAlgebraModTwo::init(unsigned m) { if (m == zmStar.M()) return; // nothign to do ((PAlgebra&)zmStar).init(m); // initialize the structure of (Z/mZ)*, if needed if (zmStar.M()==0 || zmStar.NSlots()==0) return; // error in zmStar unsigned nSlots = zmStar.NSlots(); // Next compute the factors Ft of Phi_m(X) mod 2, for all t \in T // GF2X PhimXmod = to_GF2X(zmStar.PhimX()); // Phi_m(X) mod 2 PhimXmod = to_GF2X(zmStar.PhimX()); // Phi_m(X) mod 2 EDF(factors, PhimXmod, zmStar.OrdTwo()); // equal-degree factorization // It is left to order the factors according to their representatives GF2XModulus F1(factors[0]); // We arbitrarily choose factors[0] as F1 for (unsigned i=1; i<nSlots; i++) { unsigned t = zmStar.ith_rep(i); // Ft is minimal polynomial of x^{1/t} mod F1 unsigned tInv = rep(inv(to_zz_p(t))); // tInv = t^{-1} mod m GF2X X2tInv = PowerXMod(tInv,F1); // X2tInv = X^{1/t} mod F1 IrredPolyMod(factors[i], X2tInv, F1); } /* Debugging sanity-check #1: we should have Ft= GCD(F1(X^t),Phi_m(X)) GF2XModulus Pm2(PhimXmod); for (i=1; i<nSlots; i++) { unsigned t = T[i]; GF2X X2t = PowerXMod(t,PhimXmod); // X2t = X^t mod Phi_m(X) GF2X Ft = GCD(CompMod(F1,X2t,Pm2),Pm2); if (Ft != factors[i]) { cout << "Ft != F1(X^t) mod Phi_m(X), t=" << t << endl; exit(0); } }*******************************************************************/ // Compute the CRT coefficients for the Ft's crtCoeffs.SetLength(nSlots); for (unsigned i=0; i<nSlots; i++) { GF2X te = PhimXmod / factors[i]; // \prod_{j\ne i} Fj te %= factors[i]; // \prod_{j\ne i} Fj mod Fi InvMod(crtCoeffs[i], te, factors[i]);// \prod_{j\ne i} Fj^{-1} mod Fi } }
long DetIrredTest(const ZZ_pX& f) { if (deg(f) <= 0) return 0; if (deg(f) == 1) return 1; ZZ_pXModulus F; build(F, f); ZZ_pX h; PowerXMod(h, ZZ_p::modulus(), F); ZZ_pX s; PowerCompose(s, h, F.n, F); if (!IsX(s)) return 0; FacVec fvec; FactorInt(fvec, F.n); return RecIrredTest(fvec.length()-1, h, F, fvec); }
long ProbIrredTest(const ZZ_pX& f, long iter) { long n = deg(f); if (n <= 0) return 0; if (n == 1) return 1; const ZZ& p = ZZ_p::modulus(); ZZ_pXModulus F; build(F, f); ZZ_pX b, r, s; PowerXMod(b, p, F); long i; for (i = 0; i < iter; i++) { random(r, n); TraceMap(s, r, n, F, b); if (deg(s) > 0) return 0; } if (p >= n) return 1; long pp; conv(pp, p); if (n % pp != 0) return 1; PowerCompose(s, b, n/pp, F); return !IsX(s); }
void PAlgebraModDerived<type>::mapToSlots(MappingData<type>& mappingData, const RX& G) const { assert(deg(G) > 0 && zMStar.getOrdP() % deg(G) == 0); assert(LeadCoeff(G) == 1); mappingData.G = G; mappingData.degG = deg(mappingData.G); long nSlots = zMStar.getNSlots(); long m = zMStar.getM(); mappingData.maps.resize(nSlots); mapToF1(mappingData.maps[0],mappingData.G); // mapping from base-G to base-F1 for (long i=1; i<nSlots; i++) mapToFt(mappingData.maps[i], mappingData.G, zMStar.ith_rep(i), &(mappingData.maps[0])); REBak bak; bak.save(); RE::init(mappingData.G); mappingData.contextForG.save(); if (deg(mappingData.G)==1) return; mappingData.rmaps.resize(nSlots); if (G == factors[0]) { // an important special case for (long i = 0; i < nSlots; i++) { long t = zMStar.ith_rep(i); long tInv = InvMod(t, m); RX ct_rep; PowerXMod(ct_rep, tInv, G); RE ct; conv(ct, ct_rep); REX Qi; SetCoeff(Qi, 1, 1); SetCoeff(Qi, 0, -ct); mappingData.rmaps[i] = Qi; } } else { // the general case: currently only works when r == 1 assert(r == 1); vec_REX FRts; for (long i=0; i<nSlots; i++) { // We need to lift Fi from R[Y] to (R[X]/G(X))[Y] REX Qi; long t, tInv=0; if (i == 0) { conv(Qi,factors[i]); FRts=EDF(Qi, FrobeniusMap(Qi), deg(Qi)/deg(G)); // factor Fi over GF(p)[X]/G(X) } else { t = zMStar.ith_rep(i); tInv = InvMod(t, m); } // need to choose the right factor, the one that gives us back X long j; for (j=0; j<FRts.length(); j++) { // lift maps[i] to (R[X]/G(X))[Y] and reduce mod j'th factor of Fi REX FRtsj; if (i == 0) FRtsj = FRts[j]; else { REX X2tInv = PowerXMod(tInv, FRts[j]); IrredPolyMod(FRtsj, X2tInv, FRts[j]); } // FRtsj is the jth factor of factors[i] over the extension field. // For j > 0, we save some time by computing it from the jth factor // of factors[0] via a minimal polynomial computation. REX GRti; conv(GRti, mappingData.maps[i]); GRti %= FRtsj; if (IsX(rep(ConstTerm(GRti)))) { // is GRti == X? Qi = FRtsj; // If so, we found the right factor break; } // If this does not happen then move to the next factor of Fi } assert(j < FRts.length()); mappingData.rmaps[i] = Qi; } } }
PAlgebraModDerived<type>::PAlgebraModDerived(const PAlgebra& _zMStar, long _r) : zMStar(_zMStar), r(_r) { long p = zMStar.getP(); long m = zMStar.getM(); // For dry-run, use a tiny m value for the PAlgebra tables if (isDryRun()) m = (p==3)? 4 : 3; assert(r > 0); ZZ BigPPowR = power_ZZ(p, r); assert(BigPPowR.SinglePrecision()); pPowR = to_long(BigPPowR); long nSlots = zMStar.getNSlots(); RBak bak; bak.save(); SetModulus(p); // Compute the factors Ft of Phi_m(X) mod p, for all t \in T RX phimxmod; conv(phimxmod, zMStar.getPhimX()); // Phi_m(X) mod p vec_RX localFactors; EDF(localFactors, phimxmod, zMStar.getOrdP()); // equal-degree factorization RX* first = &localFactors[0]; RX* last = first + localFactors.length(); RX* smallest = min_element(first, last); swap(*first, *smallest); // We make the lexicographically smallest factor have index 0. // The remaining factors are ordered according to their representives. RXModulus F1(localFactors[0]); for (long i=1; i<nSlots; i++) { unsigned long t =zMStar.ith_rep(i); // Ft is minimal polynomial of x^{1/t} mod F1 unsigned long tInv = InvMod(t, m); // tInv = t^{-1} mod m RX X2tInv = PowerXMod(tInv,F1); // X2tInv = X^{1/t} mod F1 IrredPolyMod(localFactors[i], X2tInv, F1); } /* Debugging sanity-check #1: we should have Ft= GCD(F1(X^t),Phi_m(X)) for (i=1; i<nSlots; i++) { unsigned long t = T[i]; RX X2t = PowerXMod(t,phimxmod); // X2t = X^t mod Phi_m(X) RX Ft = GCD(CompMod(F1,X2t,phimxmod),phimxmod); if (Ft != localFactors[i]) { cout << "Ft != F1(X^t) mod Phi_m(X), t=" << t << endl; exit(0); } }*******************************************************************/ if (r == 1) { build(PhimXMod, phimxmod); factors = localFactors; pPowRContext.save(); // Compute the CRT coefficients for the Ft's crtCoeffs.SetLength(nSlots); for (long i=0; i<nSlots; i++) { RX te = phimxmod / factors[i]; // \prod_{j\ne i} Fj te %= factors[i]; // \prod_{j\ne i} Fj mod Fi InvMod(crtCoeffs[i], te, factors[i]); // \prod_{j\ne i} Fj^{-1} mod Fi } } else { PAlgebraLift(zMStar.getPhimX(), localFactors, factors, crtCoeffs, r); RX phimxmod1; conv(phimxmod1, zMStar.getPhimX()); build(PhimXMod, phimxmod1); pPowRContext.save(); } // set factorsOverZZ factorsOverZZ.resize(nSlots); for (long i = 0; i < nSlots; i++) conv(factorsOverZZ[i], factors[i]); genCrtTable(); genMaskTable(); }
zz_pEX FrobeniusMap(const zz_pEXModulus& F) { return PowerXMod(zz_pE::cardinality(), F); }
void EDF(vec_zz_pX& v, const zz_pX& f, long d) { EDF(v, f, PowerXMod(zz_p::modulus(), f), d); }
void FrobeniusMap(ZZ_pEX& h, const ZZ_pEXModulus& F) { PowerXMod(h, ZZ_pE::cardinality(), F); }
void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& ff, long verbose) { ZZ_pX f = ff; if (!IsOne(LeadCoeff(f))) Error("SFCanZass: bad args"); if (deg(f) == 0) { factors.SetLength(0); return; } if (deg(f) == 1) { factors.SetLength(1); factors[0] = f; return; } factors.SetLength(0); double t; const ZZ& p = ZZ_p::modulus(); ZZ_pXModulus F; build(F, f); ZZ_pX h; if (verbose) { cerr << "computing X^p..."; t = GetTime(); } PowerXMod(h, p, F); if (verbose) { cerr << (GetTime()-t) << "\n"; } vec_pair_ZZ_pX_long u; if (verbose) { cerr << "computing DDF..."; t = GetTime(); } NewDDF(u, f, h, verbose); if (verbose) { t = GetTime()-t; cerr << "DDF time: " << t << "\n"; } ZZ_pX hh; vec_ZZ_pX v; long i; for (i = 0; i < u.length(); i++) { const ZZ_pX& g = u[i].a; long d = u[i].b; long r = deg(g)/d; if (r == 1) { // g is already irreducible append(factors, g); } else { // must perform EDF if (d == 1) { // root finding RootEDF(v, g, verbose); append(factors, v); } else { // general case rem(hh, h, g); EDF(v, g, hh, d, verbose); append(factors, v); } } } }
void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& ff, long verbose) { ZZ_pX f = ff; if (!IsOne(LeadCoeff(f))) Error("SFBerlekamp: bad args"); if (deg(f) == 0) { factors.SetLength(0); return; } if (deg(f) == 1) { factors.SetLength(1); factors[0] = f; return; } double t; const ZZ& p = ZZ_p::modulus(); long n = deg(f); ZZ_pXModulus F; build(F, f); ZZ_pX g, h; if (verbose) { cerr << "computing X^p..."; t = GetTime(); } PowerXMod(g, p, F); if (verbose) { cerr << (GetTime()-t) << "\n"; } vec_long D; long r; vec_ZZVec M; if (verbose) { cerr << "building matrix..."; t = GetTime(); } BuildMatrix(M, n, g, F, verbose); if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) { cerr << "diagonalizing..."; t = GetTime(); } NullSpace(r, D, M, verbose); if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) cerr << "number of factors = " << r << "\n"; if (r == 1) { factors.SetLength(1); factors[0] = f; return; } if (verbose) { cerr << "factor extraction..."; t = GetTime(); } vec_ZZ_p roots; RandomBasisElt(g, D, M); MinPolyMod(h, g, F, r); if (deg(h) == r) M.kill(); FindRoots(roots, h); FindFactors(factors, f, g, roots); ZZ_pX g1; vec_ZZ_pX S, S1; long i; while (factors.length() < r) { if (verbose) cerr << "+"; RandomBasisElt(g, D, M); S.kill(); for (i = 0; i < factors.length(); i++) { const ZZ_pX& f = factors[i]; if (deg(f) == 1) { append(S, f); continue; } build(F, f); rem(g1, g, F); if (deg(g1) <= 0) { append(S, f); continue; } MinPolyMod(h, g1, F, min(deg(f), r-factors.length()+1)); FindRoots(roots, h); S1.kill(); FindFactors(S1, f, g1, roots); append(S, S1); } swap(factors, S); } if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) { cerr << "degrees:"; long i; for (i = 0; i < factors.length(); i++) cerr << " " << deg(factors[i]); cerr << "\n"; } }
long IterIrredTest(const ZZ_pX& f) { if (deg(f) <= 0) return 0; if (deg(f) == 1) return 1; ZZ_pXModulus F; build(F, f); ZZ_pX h; PowerXMod(h, ZZ_p::modulus(), F); long CompTableSize = 2*SqrRoot(deg(f)); ZZ_pXArgument H; build(H, h, F, CompTableSize); long i, d, limit, limit_sqr; ZZ_pX g, X, t, prod; SetX(X); i = 0; g = h; d = 1; limit = 2; limit_sqr = limit*limit; set(prod); while (2*d <= deg(f)) { sub(t, g, X); MulMod(prod, prod, t, F); i++; if (i == limit_sqr) { GCD(t, f, prod); if (!IsOne(t)) return 0; set(prod); limit++; limit_sqr = limit*limit; i = 0; } d = d + 1; if (2*d <= deg(f)) { CompMod(g, g, H, F); } } if (i > 0) { GCD(t, f, prod); if (!IsOne(t)) return 0; } return 1; }