Пример #1
0
/*
* Mod_AliasBuildMeshesForFrame0
*/
static void Mod_AliasBuildMeshesForFrame0( model_t *mod )
{
	int i, j, k;
	size_t size;
	maliasframe_t *frame;
	maliasmodel_t *aliasmodel = ( maliasmodel_t * )mod->extradata;

	frame = &aliasmodel->frames[0];
	for( k = 0; k < aliasmodel->nummeshes; k++ )
	{
		maliasmesh_t *mesh = &aliasmodel->meshes[k];

		size = sizeof( vec3_t ) + sizeof( vec3_t ); // xyz and normals
		size += sizeof( vec4_t );       // s-vectors
		size *= mesh->numverts;

		mesh->xyzArray = ( vec3_t * )Mod_Malloc( mod, size );
		mesh->normalsArray = ( vec3_t * )( ( qbyte * )mesh->xyzArray + mesh->numverts * sizeof( vec3_t ) );
		mesh->sVectorsArray = ( vec4_t * )( ( qbyte * )mesh->normalsArray + mesh->numverts * sizeof( vec3_t ) );

		for( i = 0; i < mesh->numverts; i++ )
		{
			for( j = 0; j < 3; j++ )
				mesh->xyzArray[i][j] = frame->translate[j] + frame->scale[j] * mesh->vertexes[i].point[j];
			R_LatLongToNorm( mesh->vertexes[i].latlong, mesh->normalsArray[i] );
		}

		R_BuildTangentVectors( mesh->numverts, mesh->xyzArray, mesh->normalsArray, mesh->stArray, mesh->numtris, mesh->elems, mesh->sVectorsArray );

		if( glConfig.ext.vertex_buffer_object ) {
			// build a static vertex buffer object to be used for rendering simple models, such as items
			Mod_AliasBuildStaticVBOForMesh( mesh );
		}
	}
}
Пример #2
0
/*
* R_RenderMeshGLSL_Material
*/
static void R_RenderMeshGLSL_Material( r_glslfeat_t programFeatures )
{
	int i;
	int tcgen, rgbgen;
	int state;
	int program, object;
	image_t *base, *normalmap, *glossmap, *decalmap, *entdecalmap;
	mat4x4_t unused;
	vec3_t lightDir = { 0.0f, 0.0f, 0.0f };
	vec4_t ambient = { 0.0f, 0.0f, 0.0f, 0.0f }, diffuse = { 0.0f, 0.0f, 0.0f, 0.0f };
	float offsetmappingScale, glossExponent;
	const superLightStyle_t *lightStyle = NULL;
	const mfog_t *fog = r_back.colorFog;
	shaderpass_t *pass = r_back.accumPasses[0];
	qboolean applyDecal;

	// handy pointers
	base = pass->anim_frames[0];
	normalmap = pass->anim_frames[1];
	glossmap = pass->anim_frames[2];
	decalmap = pass->anim_frames[3];
	entdecalmap = pass->anim_frames[4];

	tcgen = pass->tcgen;                // store the original tcgen
	rgbgen = pass->rgbgen.type;			// store the original rgbgen

	assert( normalmap );

	if( normalmap->samples == 4 )
		offsetmappingScale = r_offsetmapping_scale->value * r_back.currentShader->offsetmapping_scale;
	else	// no alpha in normalmap, don't bother with offset mapping
		offsetmappingScale = 0;

	if( r_back.currentShader->gloss_exponent )
		glossExponent = r_back.currentShader->gloss_exponent;
	else
		glossExponent = r_lighting_glossexponent->value;

	applyDecal = decalmap != NULL;

	if( ri.params & RP_CLIPPLANE )
		programFeatures |= GLSL_COMMON_APPLY_CLIPPING;
	if( pass->flags & SHADERPASS_GRAYSCALE )
		programFeatures |= GLSL_COMMON_APPLY_GRAYSCALE;

	if( fog )
	{
		programFeatures |= GLSL_COMMON_APPLY_FOG;
		if( fog != ri.fog_eye )
			programFeatures |= GLSL_COMMON_APPLY_FOG2;
		if( GL_IsAlphaBlending( pass->flags & GLSTATE_SRCBLEND_MASK, pass->flags & GLSTATE_DSTBLEND_MASK ) )
			programFeatures |= GLSL_COMMON_APPLY_COLOR_FOG_ALPHA;
	}

	if( r_back.currentMeshBuffer->infokey > 0 && ( rgbgen != RGB_GEN_LIGHTING_DIFFUSE ) )
	{
		if( !( r_offsetmapping->integer & 1 ) ) {
			offsetmappingScale = 0;
		}
		if( ri.params & RP_LIGHTMAP ) {
			programFeatures |= GLSL_MATERIAL_APPLY_BASETEX_ALPHA_ONLY;
		}
		if( ( ri.params & RP_DRAWFLAT ) && !( r_back.currentShader->flags & SHADER_NODRAWFLAT ) ) {
			programFeatures |= GLSL_COMMON_APPLY_DRAWFLAT|GLSL_MATERIAL_APPLY_BASETEX_ALPHA_ONLY;
		}
	}
	else if( ( r_back.currentMeshBuffer->sortkey & 3 ) == MB_POLY )
	{
		// polys
		if( !( r_offsetmapping->integer & 2 ) )
			offsetmappingScale = 0;

		R_BuildTangentVectors( r_backacc.numVerts, vertsArray, normalsArray, coordsArray, r_backacc.numElems/3, elemsArray, inSVectorsArray );
	}
	else
	{
		// models and world lightingDiffuse materials
		if( r_back.currentMeshBuffer->infokey > 0 )
		{
			if( !( r_offsetmapping->integer & 1 ) )
				offsetmappingScale = 0;
			pass->rgbgen.type = RGB_GEN_VERTEX;
		}
		else
		{
			// models
			if( !( r_offsetmapping->integer & 4 ) )
				offsetmappingScale = 0;
#ifdef CELLSHADEDMATERIAL
			programFeatures |= GLSL_MATERIAL_APPLY_CELLSHADING;
#endif
#ifdef HALFLAMBERTLIGHTING
			programFeatures |= GLSL_MATERIAL_APPLY_HALFLAMBERT;
#endif
		}
	}

	// add dynamic lights
	if( r_back.currentDlightBits ) {
		programFeatures |= R_DlightbitsToProgramFeatures();
	}

	pass->tcgen = TC_GEN_BASE;
	R_BindShaderpass( pass, base, 0, &programFeatures );

	// calculate vertex color
	R_ModifyColor( pass, applyDecal, r_back.currentMeshVBO != NULL );

	// since R_ModifyColor has forcefully generated RGBA for the first vertex,
	// set the proper number of color elements here, so GL_COLOR_ARRAY will be enabled
	// before the DrawElements call
	if( !(pass->flags & SHADERPASS_NOCOLORARRAY) )
		r_backacc.numColors = r_backacc.numVerts;

	// convert rgbgen and alphagen to GLSL feature defines
	programFeatures |= R_RGBAlphaGenToProgramFeatures( pass->rgbgen.type, pass->alphagen.type );

	GL_TexEnv( GL_MODULATE );

	// set shaderpass state (blending, depthwrite, etc)
	state = r_back.currentShaderState | ( pass->flags & r_back.currentShaderPassMask ) | GLSTATE_BLEND_MTEX;
	GL_SetState( state );

#if 1
	// don't waste time on processing GLSL programs with zero colormask
	if( ( ri.params & RP_SHADOWMAPVIEW ) & !(programFeatures & GLSL_COMMON_APPLY_BONETRANSFORMS) )
	{
		pass->tcgen = tcgen; // restore original tcgen
		R_FlushArrays();
		return;
	}
#endif

	// we only send S-vectors to GPU and recalc T-vectors as cross product
	// in vertex shader
	pass->tcgen = TC_GEN_SVECTORS;
	GL_Bind( 1, normalmap );         // normalmap
	GL_SetTexCoordArrayMode( GL_TEXTURE_COORD_ARRAY );
	R_VertexTCBase( pass, 1, unused, NULL );

	if( glossmap && r_lighting_glossintensity->value )
	{
		programFeatures |= GLSL_MATERIAL_APPLY_SPECULAR;
		GL_Bind( 2, glossmap ); // gloss
		GL_SetTexCoordArrayMode( 0 );
	}

	if( applyDecal )
	{
		programFeatures |= GLSL_MATERIAL_APPLY_DECAL;

		if( ri.params & RP_LIGHTMAP ) {
			decalmap = r_blacktexture;
			programFeatures |= GLSL_MATERIAL_APPLY_DECAL_ADD;
		}
		else {
			// if no alpha, use additive blending
			if( decalmap->samples == 3 )
				programFeatures |= GLSL_MATERIAL_APPLY_DECAL_ADD;
		}

		GL_Bind( 3, decalmap ); // decal
		GL_SetTexCoordArrayMode( 0 );
	}

	if( entdecalmap )
	{
		programFeatures |= GLSL_MATERIAL_APPLY_ENTITY_DECAL;

		// if no alpha, use additive blending
		if( entdecalmap->samples == 3 )
			programFeatures |= GLSL_MATERIAL_APPLY_ENTITY_DECAL_ADD;

		GL_Bind( 4, entdecalmap ); // decal
		GL_SetTexCoordArrayMode( 0 );
	}

	if( offsetmappingScale > 0 )
		programFeatures |= r_offsetmapping_reliefmapping->integer ? GLSL_MATERIAL_APPLY_RELIEFMAPPING : GLSL_MATERIAL_APPLY_OFFSETMAPPING;

	if( r_back.currentMeshBuffer->infokey > 0 && ( rgbgen != RGB_GEN_LIGHTING_DIFFUSE ) )
	{
		// world surface
		if( r_back.superLightStyle && r_back.superLightStyle->lightmapNum[0] >= 0 )
		{
			lightStyle = r_back.superLightStyle;

			// bind lightmap textures and set program's features for lightstyles
			pass->tcgen = TC_GEN_LIGHTMAP;

			for( i = 0; i < MAX_LIGHTMAPS && lightStyle->lightmapStyles[i] != 255; i++ )
			{
				r_back.lightmapStyleNum[i+4] = i;
				GL_Bind( i+4, r_worldbrushmodel->lightmapImages[lightStyle->lightmapNum[i]] ); // lightmap
				GL_SetTexCoordArrayMode( GL_TEXTURE_COORD_ARRAY );
				R_VertexTCBase( pass, i+4, unused, NULL );
			}

			programFeatures |= ( i * GLSL_MATERIAL_APPLY_LIGHTSTYLE0 );

			if( i == 1 && !mapConfig.lightingIntensity )
			{
				vec_t *rgb = r_lightStyles[lightStyle->lightmapStyles[0]].rgb;

				// GLSL_MATERIAL_APPLY_FB_LIGHTMAP indicates that there's no need to renormalize
				// the lighting vector for specular (saves 3 adds, 3 muls and 1 normalize per pixel)
				if( rgb[0] == 1 && rgb[1] == 1 && rgb[2] == 1 )
					programFeatures |= GLSL_MATERIAL_APPLY_FB_LIGHTMAP;
			}

			if( !VectorCompare( mapConfig.ambient, vec3_origin ) )
			{
				VectorCopy( mapConfig.ambient, ambient );
				programFeatures |= GLSL_MATERIAL_APPLY_AMBIENT_COMPENSATION;
			}
		}
	}
	else
	{
		vec3_t temp;

		programFeatures |= GLSL_MATERIAL_APPLY_DIRECTIONAL_LIGHT;

		if( ( r_back.currentMeshBuffer->sortkey & 3 ) == MB_POLY )
		{
			VectorCopy( r_polys[-r_back.currentMeshBuffer->infokey-1].normal, lightDir );
			Vector4Set( ambient, 0, 0, 0, 0 );
			Vector4Set( diffuse, 1, 1, 1, 1 );
		}
		else if( ri.currententity )
		{
			if( ri.currententity->flags & RF_FULLBRIGHT )
			{
				Vector4Set( ambient, 1, 1, 1, 1 );
				Vector4Set( diffuse, 1, 1, 1, 1 );
			}
			else
			{
				if( r_back.currentMeshBuffer->infokey > 0 )
				{
					programFeatures |= GLSL_MATERIAL_APPLY_DIRECTIONAL_LIGHT_MIX;
					if( r_back.overBrightBits )
						programFeatures |= GLSL_COMMON_APPLY_OVERBRIGHT_SCALING;
				}

				if( ri.currententity->model && ri.currententity != r_worldent )
				{
					// get weighted incoming direction of world and dynamic lights
					R_LightForOrigin( ri.currententity->lightingOrigin, temp, ambient, diffuse, 
						ri.currententity->model->radius * ri.currententity->scale);
				}
				else
				{
					VectorSet( temp, 0.1f, 0.2f, 0.7f );
				}

				if( ri.currententity->flags & RF_MINLIGHT )
				{
					if( ambient[0] <= 0.1f || ambient[1] <= 0.1f || ambient[2] <= 0.1f )
						VectorSet( ambient, 0.1f, 0.1f, 0.1f );
				}

				// rotate direction
				Matrix_TransformVector( ri.currententity->axis, temp, lightDir );
			}
		}
	}

	pass->tcgen = tcgen;    // restore original tcgen
	pass->rgbgen.type = rgbgen;		// restore original rgbgen

	program = R_RegisterGLSLProgram( pass->program_type, pass->program, NULL, 
		r_back.currentShader->name, r_back.currentShader->deforms, r_back.currentShader->numdeforms, programFeatures );
	object = R_GetProgramObject( program );
	if( object )
	{
		qglUseProgramObjectARB( object );

		// update uniforms
		R_UpdateProgramUniforms( program, ri.viewOrigin, vec3_origin, lightDir, ambient, diffuse, lightStyle,
			qtrue, 0, 0, 0, offsetmappingScale, glossExponent, 
			colorArrayCopy[0], r_back.overBrightBits, r_back.currentShaderTime, r_back.entityColor );

		if( programFeatures & GLSL_COMMON_APPLY_FOG )
		{
			cplane_t fogPlane, vpnPlane;

			R_TransformFogPlanes( fog, fogPlane.normal, &fogPlane.dist, vpnPlane.normal, &vpnPlane.dist );

			R_UpdateProgramFogParams( program, fog->shader->fog_color, fog->shader->fog_clearDist,
				fog->shader->fog_dist, &fogPlane, &vpnPlane, ri.fog_dist_to_eye[fog-r_worldbrushmodel->fogs] );
		}

		// submit animation data
		if( programFeatures & GLSL_COMMON_APPLY_BONETRANSFORMS ) {
			R_UpdateProgramBonesParams( program, r_back.currentAnimData->numBones, r_back.currentAnimData->dualQuats );
		}

		// dynamic lights
		if( r_back.currentDlightBits ) {
			R_UpdateProgramLightsParams( program, ri.currententity->origin, ri.currententity->axis, r_back.currentDlightBits );
			r_back.doDynamicLightsPass = qfalse;
		}

		// r_drawflat
		if( programFeatures & GLSL_COMMON_APPLY_DRAWFLAT ) {
			R_UpdateDrawFlatParams( program, r_front.wallColor, r_front.floorColor );
		}

		R_FlushArrays();

		qglUseProgramObjectARB( 0 );
	}
}
Пример #3
0
/*
* Mod_LoadSkeletalModel
*/
void Mod_LoadSkeletalModel( model_t *mod, const model_t *parent, void *buffer, bspFormatDesc_t *unused )
{
	unsigned int i, j, k;
	size_t filesize;
	qbyte *pbase;
	size_t memsize;
	qbyte *pmem;
	iqmheader_t *header;
	char *texts;
	iqmvertexarray_t *va;
	iqmjoint_t *joints;
	bonepose_t *baseposes;
	iqmpose_t *poses;
	unsigned short *framedata;
	const int *inelems;
	elem_t *outelems;
	iqmmesh_t *inmesh;
	iqmbounds_t *inbounds;
	float *vposition, *vtexcoord, *vnormal, *vtangent;
	qbyte *vblendindices_byte, *vblendweights_byte;
	int *vblendindexes_int;
	float *vblendweights_float;
	mskmodel_t *poutmodel;

	baseposes = NULL;
	header = ( iqmheader_t * )buffer;

	// check IQM magic
	if( memcmp( header->magic, "INTERQUAKEMODEL", 16 ) ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s is not an Inter-Quake Model\n", mod->name );
		goto error;
	}

	// check header version
	header->version = LittleLong( header->version );
	if( header->version != IQM_VERSION ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has wrong type number (%i should be %i)\n", mod->name, header->version, IQM_VERSION );
		goto error;
	}

	// byteswap header
#define H_SWAP(s) (header->s = LittleLong( header->s ))
	H_SWAP( filesize );
	H_SWAP( flags );
	H_SWAP( num_text );
	H_SWAP( ofs_text );
	H_SWAP( num_meshes );
	H_SWAP( ofs_meshes );
	H_SWAP( num_vertexarrays );
	H_SWAP( num_vertexes );
	H_SWAP( ofs_vertexarrays );
	H_SWAP( num_triangles );
	H_SWAP( ofs_triangles );
	H_SWAP( ofs_adjacency );
	H_SWAP( num_joints );
	H_SWAP( ofs_joints );
	H_SWAP( num_poses );
	H_SWAP( ofs_poses );
	H_SWAP( num_anims );
	H_SWAP( ofs_anims );
	H_SWAP( num_frames );
	H_SWAP( num_framechannels );
	H_SWAP( ofs_frames );
	H_SWAP( ofs_bounds );
	H_SWAP( num_comment );
	H_SWAP( ofs_comment );
	H_SWAP( num_extensions );
	H_SWAP( ofs_extensions );
#undef H_SWAP

	if( header->num_triangles < 1 || header->num_vertexes < 3 || header->num_vertexarrays < 1 || header->num_meshes < 1 ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has no geometry\n", mod->name );
		goto error;
	}
	if( header->num_frames < 1 || header->num_anims < 1 ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has no animations\n", mod->name );
		goto error;
	}
	if( header->num_joints != header->num_poses ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has an invalid number of poses: %i vs %i\n", mod->name, header->num_joints, header->num_poses );
		goto error;
	}
	if( !header->ofs_bounds ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has no frame bounds\n", mod->name );
		goto error;
	}

	pbase = ( qbyte * )buffer;
	filesize = header->filesize;

	// check data offsets against the filesize
	if( header->ofs_text + header->num_text > filesize
		|| header->ofs_vertexarrays + header->num_vertexarrays * sizeof( iqmvertexarray_t ) > filesize
		|| header->ofs_joints + header->num_joints * sizeof( iqmjoint_t ) > filesize
		|| header->ofs_frames + header->num_frames * header->num_framechannels * sizeof( unsigned short ) > filesize
		|| header->ofs_triangles + header->num_triangles * sizeof( int[3] ) > filesize
		|| header->ofs_meshes + header->num_meshes * sizeof( iqmmesh_t ) > filesize
		|| header->ofs_bounds + header->num_frames * sizeof( iqmbounds_t ) > filesize
		) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s has invalid size or offset information\n", mod->name );
		goto error;
	}

	poutmodel = mod->extradata = Mod_Malloc( mod, sizeof( *poutmodel ) );


	// load text
	texts = Mod_Malloc( mod, header->num_text + 1 );
	if( header->ofs_text ) {
		memcpy( texts, (const char *)(pbase + header->ofs_text), header->num_text );
	}
	texts[header->ofs_text] = '\0';


	// load vertex arrays
	vposition = NULL;
	vtexcoord = NULL;
	vnormal = NULL;
	vtangent = NULL;
	vblendindices_byte = NULL;
	vblendindexes_int = NULL;
	vblendweights_byte = NULL;
	vblendweights_float = NULL;

	va = ( iqmvertexarray_t * )( pbase + header->ofs_vertexarrays );
	for( i = 0; i < header->num_vertexarrays; i++ ) {
		size_t vsize;

		va[i].type = LittleLong( va[i].type );
		va[i].flags = LittleLong( va[i].flags );
		va[i].format = LittleLong( va[i].format );
		va[i].size = LittleLong( va[i].size );
		va[i].offset = LittleLong( va[i].offset );

		vsize = header->num_vertexes*va[i].size;
		switch( va[i].format ) { 
			case IQM_FLOAT:
				vsize *= sizeof( float );
				break;
			case IQM_INT:
			case IQM_UINT:
				vsize *= sizeof( int );
				break;
			case IQM_BYTE:
			case IQM_UBYTE:
				vsize *= sizeof( unsigned char );
				break;
			default:
				continue;
		}

		if( va[i].offset + vsize > filesize ) {
			continue;
		}

		switch( va[i].type ) {
			case IQM_POSITION:
				if( va[i].format == IQM_FLOAT && va[i].size == 3 ) {
					vposition = ( float * )( pbase + va[i].offset );
				}
				break;
			case IQM_TEXCOORD:
				if( va[i].format == IQM_FLOAT && va[i].size == 2 ) {
					vtexcoord = ( float * )( pbase + va[i].offset );
				}
				break;
			case IQM_NORMAL:
				if( va[i].format == IQM_FLOAT && va[i].size == 3 ) {
					vnormal = ( float * )( pbase + va[i].offset );
				}
				break;
			case IQM_TANGENT:
				if( va[i].format == IQM_FLOAT && va[i].size == 4 ) {
					vtangent = ( float * )( pbase + va[i].offset );
				}
				break;
			case IQM_BLENDINDEXES:
				if( va[i].size != SKM_MAX_WEIGHTS )
					break;
				if( va[i].format == IQM_BYTE || va[i].format == IQM_UBYTE ) {
					vblendindices_byte = ( qbyte * )( pbase + va[i].offset );
				}
				else if( va[i].format == IQM_INT || va[i].format == IQM_UINT ) {
					vblendindexes_int = ( int * )( pbase + va[i].offset );
				}
				break;
			case IQM_BLENDWEIGHTS:
				if( va[i].size != SKM_MAX_WEIGHTS )
					break;
				if( va[i].format == IQM_UBYTE ) {
					vblendweights_byte = ( qbyte * )( pbase + va[i].offset );
				}
				else if( va[i].format == IQM_FLOAT ) {
					vblendweights_float = ( float * )( pbase + va[i].offset );
				}
				break;
			default:
				break;
		}
	}

	if( !vposition || !vtexcoord 
		|| !(vblendindices_byte || vblendindexes_int) 
		|| !(vblendweights_byte || vblendweights_float) ) {
		ri.Com_Printf( S_COLOR_RED "ERROR: %s is missing vertex array data\n", mod->name );
		goto error;
	}

	// load joints
	memsize = 0;
	memsize += sizeof( bonepose_t ) * header->num_joints;
	pmem = Mod_Malloc( mod, memsize );

	baseposes = ( void * )pmem; pmem += sizeof( *baseposes );

	memsize = 0;
	memsize += sizeof( mskbone_t ) * header->num_joints;
	memsize += sizeof( bonepose_t ) * header->num_joints;
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->numbones = header->num_joints;
	poutmodel->bones = ( void * )pmem; pmem += sizeof( *poutmodel->bones ) * poutmodel->numbones;
	poutmodel->invbaseposes = ( void * )pmem; pmem += sizeof( *poutmodel->invbaseposes ) * poutmodel->numbones;

	joints = ( iqmjoint_t * )( pbase + header->ofs_joints );
	for( i = 0; i < poutmodel->numbones; i++ ) {
		joints[i].name = LittleLong( joints[i].name );
		joints[i].parent = LittleLong( joints[i].parent );

		for( j = 0; j < 3; j++ ) {
			joints[i].translate[j] = LittleFloat( joints[i].translate[j] );
			joints[i].rotate[j] = LittleFloat( joints[i].rotate[j] );
			joints[i].scale[j] = LittleFloat( joints[i].scale[j] );
		}

		if( joints[i].parent >= (int)i ) {
			ri.Com_Printf( S_COLOR_RED "ERROR: %s bone[%i].parent(%i) >= %i\n", mod->name, i, joints[i].parent, i );
			goto error;
		}

		poutmodel->bones[i].name = texts + joints[i].name;
		poutmodel->bones[i].parent = joints[i].parent;

		DualQuat_FromQuat3AndVector( joints[i].rotate, joints[i].translate, baseposes[i].dualquat );

		// scale is unused

		// reconstruct invserse bone pose

		if( joints[i].parent >= 0 )
		{
			bonepose_t bp, *pbp;
			bp = baseposes[i];
			pbp = &baseposes[joints[i].parent];

			DualQuat_Multiply( pbp->dualquat, bp.dualquat, baseposes[i].dualquat );
		}

		DualQuat_Copy( baseposes[i].dualquat, poutmodel->invbaseposes[i].dualquat );
		DualQuat_Invert( poutmodel->invbaseposes[i].dualquat );
	}


	// load frames
	poses = ( iqmpose_t * )( pbase + header->ofs_poses );
	for( i = 0; i < header->num_poses; i++ ) {
		poses[i].parent = LittleLong( poses[i].parent );
		poses[i].mask = LittleLong( poses[i].mask );

		for( j = 0; j < 10; j++ ) {
			poses[i].channeloffset[j] = LittleFloat( poses[i].channeloffset[j] );
			poses[i].channelscale[j] = LittleFloat( poses[i].channelscale[j] );
		}
	}

	memsize = 0;
	memsize += sizeof( mskframe_t ) * header->num_frames;
	memsize += sizeof( bonepose_t ) * header->num_joints * header->num_frames;
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->numframes = header->num_frames;
	poutmodel->frames = ( mskframe_t * )pmem; pmem += sizeof( mskframe_t ) * poutmodel->numframes;

	framedata = ( unsigned short * )( pbase + header->ofs_frames );
	for( i = 0; i < header->num_frames; i++ ) {
		bonepose_t *pbp;
		vec3_t translate;
		quat_t rotate;

		poutmodel->frames[i].boneposes = ( bonepose_t * )pmem; pmem += sizeof( bonepose_t ) * poutmodel->numbones;

		for( j = 0, pbp = poutmodel->frames[i].boneposes; j < header->num_poses; j++, pbp++ ) {
			translate[0] = poses[j].channeloffset[0]; if( poses[j].mask & 0x01 ) translate[0] += *framedata++ * poses[j].channelscale[0];
			translate[1] = poses[j].channeloffset[1]; if( poses[j].mask & 0x02 ) translate[1] += *framedata++ * poses[j].channelscale[1];
			translate[2] = poses[j].channeloffset[2]; if( poses[j].mask & 0x04 ) translate[2] += *framedata++ * poses[j].channelscale[2];

			rotate[0] = poses[j].channeloffset[3]; if( poses[j].mask & 0x08 ) rotate[0] += *framedata++ * poses[j].channelscale[3];
			rotate[1] = poses[j].channeloffset[4]; if( poses[j].mask & 0x10 ) rotate[1] += *framedata++ * poses[j].channelscale[4];
			rotate[2] = poses[j].channeloffset[5]; if( poses[j].mask & 0x20 ) rotate[2] += *framedata++ * poses[j].channelscale[5];
			rotate[3] = poses[j].channeloffset[6]; if( poses[j].mask & 0x40 ) rotate[3] += *framedata++ * poses[j].channelscale[6];
			if( rotate[3] > 0 ) {
				Vector4Inverse( rotate );
			}
			Vector4Normalize( rotate );

			// scale is unused
			if( poses[j].mask & 0x80  ) framedata++;
			if( poses[j].mask & 0x100 ) framedata++;
			if( poses[j].mask & 0x200 ) framedata++;

			DualQuat_FromQuatAndVector( rotate, translate, pbp->dualquat );
		}
	}


	// load triangles
	memsize = 0;
	memsize += sizeof( *outelems ) * header->num_triangles * 3;
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->numtris = header->num_triangles;
	poutmodel->elems = ( elem_t * )pmem; pmem += sizeof( *outelems ) * header->num_triangles * 3;

	inelems = ( const int * )(pbase + header->ofs_triangles);
	outelems = poutmodel->elems;

	for( i = 0; i < header->num_triangles; i++ ) {
		for( j = 0; j < 3; j++ ) {
			outelems[j] = LittleLong( inelems[j] );
		}
		inelems += 3;
		outelems += 3;
	}


	// load vertices
	memsize = 0;
	memsize += sizeof( *poutmodel->sVectorsArray ) * header->num_vertexes;	// 16-bytes aligned
	memsize += sizeof( *poutmodel->xyzArray ) * header->num_vertexes;
	memsize += sizeof( *poutmodel->normalsArray ) * header->num_vertexes;
	memsize += sizeof( *poutmodel->stArray ) * header->num_vertexes;
	memsize += sizeof( *poutmodel->blendWeights ) * header->num_vertexes * SKM_MAX_WEIGHTS;
	memsize += sizeof( *poutmodel->blendIndices ) * header->num_vertexes * SKM_MAX_WEIGHTS;
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->numverts = header->num_vertexes;

	// S-vectors
	poutmodel->sVectorsArray = ( vec4_t * )pmem; pmem += sizeof( *poutmodel->sVectorsArray ) * header->num_vertexes;

	if( vtangent ) {
		for( i = 0; i < header->num_vertexes; i++ ) {
			for( j = 0; j < 4; j++ ) {
				poutmodel->sVectorsArray[i][j] = LittleFloat( vtangent[j] );
			}
			vtangent += 4;
		}
	}

	// XYZ positions
	poutmodel->xyzArray = ( vec4_t * )pmem; pmem += sizeof( *poutmodel->xyzArray ) * header->num_vertexes;
	for( i = 0; i < header->num_vertexes; i++ ) {
		for( j = 0; j < 3; j++ ) {
			poutmodel->xyzArray[i][j] = LittleFloat( vposition[j] );
		}
		poutmodel->xyzArray[i][3] = 1;
		vposition += 3;
	}

	// normals
	poutmodel->normalsArray = ( vec4_t * )pmem; pmem += sizeof( *poutmodel->normalsArray ) * header->num_vertexes;
	for( i = 0; i < header->num_vertexes; i++ ) {
		for( j = 0; j < 3; j++ ) {
			poutmodel->normalsArray[i][j] = LittleFloat( vnormal[j] );
		}
		poutmodel->normalsArray[i][3] = 0;
		vnormal += 3;
	}

	// texture coordinates
	poutmodel->stArray = ( vec2_t * )pmem; pmem += sizeof( *poutmodel->stArray ) * header->num_vertexes;
	for( i = 0; i < header->num_vertexes; i++ ) {
		for( j = 0; j < 2; j++ ) {
			poutmodel->stArray[i][j] = LittleFloat( vtexcoord[j] );
		}
		vtexcoord += 2;
	}

	if( !vtangent ) {
		// if the loaded file is missing precomputed S-vectors, compute them now
		R_BuildTangentVectors( poutmodel->numverts, poutmodel->xyzArray, poutmodel->normalsArray, poutmodel->stArray, 
			poutmodel->numtris, poutmodel->elems, poutmodel->sVectorsArray );
	}

	// blend indices
	poutmodel->blendIndices = ( qbyte * )pmem; pmem += sizeof( *poutmodel->blendIndices ) * header->num_vertexes * SKM_MAX_WEIGHTS;
	if( vblendindices_byte ) {
		memcpy( poutmodel->blendIndices, vblendindices_byte, sizeof( qbyte ) * header->num_vertexes * SKM_MAX_WEIGHTS );
	} else if( vblendindexes_int ) {
		for( j = 0; j < header->num_vertexes * SKM_MAX_WEIGHTS; j++ ) {
			poutmodel->blendIndices[j] = LittleLong( vblendindexes_int[j] );
		}
	}

	// blend weights
	poutmodel->blendWeights = ( qbyte * )pmem; pmem += sizeof( *poutmodel->blendWeights ) * header->num_vertexes * SKM_MAX_WEIGHTS;
	if( vblendweights_byte ) {
		memcpy( poutmodel->blendWeights, vblendweights_byte, sizeof( qbyte ) * header->num_vertexes * SKM_MAX_WEIGHTS );
	}
	else if( vblendweights_float ) {
		for( j = 0; j < header->num_vertexes * SKM_MAX_WEIGHTS; j++ ) {
			poutmodel->blendWeights[j] = LittleFloat( vblendweights_float[j] ) * 255.0f;
		}
	}


	// blends
	memsize = 0;
	memsize += poutmodel->numverts * ( sizeof( mskblend_t ) + sizeof( unsigned int ) );
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->numblends = 0;
	poutmodel->blends = ( mskblend_t * )pmem; pmem += sizeof( *poutmodel->blends ) * poutmodel->numverts;
	poutmodel->vertexBlends = ( unsigned int * )pmem;

	vblendindices_byte = poutmodel->blendIndices;
	vblendweights_byte = poutmodel->blendWeights;

	for( i = 0; i < poutmodel->numverts; i++ ) {
		mskblend_t blend;

		for( j = 0; j < SKM_MAX_WEIGHTS; j++ ) {
			blend.indices[j] = vblendindices_byte[j];
			blend.weights[j] = vblendweights_byte[j];
		}

		poutmodel->vertexBlends[i] = Mod_SkeletalModel_AddBlend( poutmodel, &blend );

		vblendindices_byte += SKM_MAX_WEIGHTS;
		vblendweights_byte += SKM_MAX_WEIGHTS;
	}

	// meshes
	memsize = 0;
	memsize += sizeof( mskmesh_t ) * header->num_meshes;
	memsize += sizeof( drawSurfaceSkeletal_t ) * header->num_meshes;
	pmem = Mod_Malloc( mod, memsize );

	poutmodel->nummeshes = header->num_meshes;
	poutmodel->meshes = ( mskmesh_t * )pmem; pmem += sizeof( *poutmodel->meshes ) * header->num_meshes;

	inmesh = ( iqmmesh_t * )(pbase + header->ofs_meshes);
	for( i = 0; i < header->num_meshes; i++ ) {
		inmesh[i].name = LittleLong( inmesh[i].name );
		inmesh[i].material = LittleLong( inmesh[i].material );
		inmesh[i].first_vertex = LittleLong( inmesh[i].first_vertex );
		inmesh[i].num_vertexes = LittleLong( inmesh[i].num_vertexes );
		inmesh[i].first_triangle = LittleLong( inmesh[i].first_triangle );
		inmesh[i].num_triangles = LittleLong( inmesh[i].num_triangles );

		poutmodel->meshes[i].name = texts + inmesh[i].name;
		Mod_StripLODSuffix( poutmodel->meshes[i].name );

		poutmodel->meshes[i].skin.name = texts + inmesh[i].material;
		poutmodel->meshes[i].skin.shader = R_RegisterSkin( poutmodel->meshes[i].skin.name );

		poutmodel->meshes[i].elems = poutmodel->elems + inmesh[i].first_triangle * 3;
		poutmodel->meshes[i].numtris = inmesh[i].num_triangles;

		poutmodel->meshes[i].numverts = inmesh[i].num_vertexes;
		poutmodel->meshes[i].xyzArray = poutmodel->xyzArray + inmesh[i].first_vertex;
		poutmodel->meshes[i].normalsArray = poutmodel->normalsArray + inmesh[i].first_vertex;
		poutmodel->meshes[i].stArray = poutmodel->stArray + inmesh[i].first_vertex;
		poutmodel->meshes[i].sVectorsArray = poutmodel->sVectorsArray + inmesh[i].first_vertex;

		poutmodel->meshes[i].blendIndices = poutmodel->blendIndices + inmesh[i].first_vertex * SKM_MAX_WEIGHTS;
		poutmodel->meshes[i].blendWeights = poutmodel->blendWeights + inmesh[i].first_vertex * SKM_MAX_WEIGHTS;

		poutmodel->meshes[i].vertexBlends = poutmodel->vertexBlends + inmesh[i].first_vertex;

		// elements are always offset to start vertex 0 for each mesh
		outelems = poutmodel->meshes[i].elems;
		for( j = 0; j < poutmodel->meshes[i].numtris; j++ ) {
			outelems[0] -= inmesh[i].first_vertex;
			outelems[1] -= inmesh[i].first_vertex;
			outelems[2] -= inmesh[i].first_vertex;
			outelems += 3;
		}

		poutmodel->meshes[i].maxWeights = 1;

		vblendweights_byte = poutmodel->meshes[i].blendWeights;
		for( j = 0; j < poutmodel->meshes[i].numverts; j++ ) {
			for( k = 1; k < SKM_MAX_WEIGHTS && vblendweights_byte[k]; k++ );

			if( k > poutmodel->meshes[i].maxWeights ) {
				poutmodel->meshes[i].maxWeights = k;
				if( k == SKM_MAX_WEIGHTS ) {
					break;
				}
			}
			vblendweights_byte += SKM_MAX_WEIGHTS;
		}

		// creating a VBO only makes sense if GLSL is present and the number of bones 
		// we can handle on the GPU is sufficient
		if( glConfig.ext.vertex_buffer_object && poutmodel->numbones <= glConfig.maxGLSLBones ) {
			// build a static vertex buffer object for this mesh
			Mod_SkeletalBuildStaticVBOForMesh( &poutmodel->meshes[i] );
		}
	}

	poutmodel->drawSurfs = ( drawSurfaceSkeletal_t * )pmem; pmem += sizeof( *poutmodel->drawSurfs ) * header->num_meshes;
	for( i = 0; i < header->num_meshes; i++ ) {
		poutmodel->drawSurfs[i].type = ST_SKELETAL;
		poutmodel->drawSurfs[i].model = mod;
		poutmodel->drawSurfs[i].mesh = poutmodel->meshes + i;
	}

	// bounds
	ClearBounds( mod->mins, mod->maxs );

	inbounds = ( iqmbounds_t * )(pbase + header->ofs_bounds);
	for( i = 0; i < header->num_frames; i++ ) {
		for( j = 0; j < 3; j++ ) {
			inbounds[i].bbmin[j] = LittleFloat( inbounds[i].bbmin[j] );
			inbounds[i].bbmax[j] = LittleFloat( inbounds[i].bbmax[j] );
		}
		inbounds[i].radius = LittleFloat( inbounds[i].radius );
		inbounds[i].xyradius = LittleFloat( inbounds[i].xyradius );

		VectorCopy( inbounds[i].bbmin, poutmodel->frames[i].mins );
		VectorCopy( inbounds[i].bbmax, poutmodel->frames[i].maxs );
		poutmodel->frames[i].radius = inbounds[i].radius;

		AddPointToBounds( poutmodel->frames[i].mins, mod->mins, mod->maxs );
		AddPointToBounds( poutmodel->frames[i].maxs, mod->mins, mod->maxs );
	}

	mod->radius = RadiusFromBounds( mod->mins, mod->maxs );
	mod->type = mod_skeletal;
	mod->registrationSequence = rsh.registrationSequence;
	mod->touch = &Mod_TouchSkeletalModel;

	R_Free( baseposes );
	return;

error:
	if( baseposes ) {
		R_Free( baseposes );
	}
	mod->type = mod_bad;
}
Пример #4
0
/*
* R_DrawAliasSurf
* 
* Interpolates between two frames and origins
*/
qboolean R_DrawAliasSurf( const entity_t *e, const shader_t *shader, const mfog_t *fog, drawSurfaceAlias_t *drawSurf )
{
	int i;
	int framenum, oldframenum;
	float backv[3], frontv[3];
	vec3_t normal, oldnormal;
	qboolean calcVerts, calcNormals, calcSTVectors;
	vec3_t move;
	const maliasframe_t *frame, *oldframe;
	const maliasvertex_t *v, *ov;
	float backlerp = e->backlerp;
	const maliasmodel_t *model = ( const maliasmodel_t * )drawSurf->model->extradata;
	const maliasmesh_t *aliasmesh = drawSurf->mesh;
	vattribmask_t vattribs;

	// see what vertex attribs backend needs
	vattribs = RB_GetVertexAttribs();

	framenum = bound( e->frame, 0, model->numframes );
	oldframenum = bound( e->oldframe, 0, model->numframes );

	frame = model->frames + framenum;
	oldframe = model->frames + oldframenum;
	for( i = 0; i < 3; i++ )
		move[i] = frame->translate[i] + ( oldframe->translate[i] - frame->translate[i] ) * backlerp;

	// based on backend's needs
	calcNormals = calcSTVectors = qfalse;
	calcNormals = ( ( vattribs & VATTRIB_NORMAL_BIT ) != 0 ) && ( ( framenum != 0 ) || ( oldframenum != 0 ) );
	calcSTVectors = ( ( vattribs & VATTRIB_SVECTOR_BIT ) != 0 ) && calcNormals;

	if( aliasmesh->vbo != NULL && !framenum && !oldframenum )
	{
		RB_BindVBO( aliasmesh->vbo->index, GL_TRIANGLES );

		RB_DrawElements( 0, aliasmesh->numverts, 0, aliasmesh->numtris * 3 );
	}
	else
	{
		mesh_t *rb_mesh;
		vec3_t *inVertsArray;
		vec3_t *inNormalsArray;
		vec4_t *inSVectorsArray;

		RB_BindVBO( RB_VBO_STREAM, GL_TRIANGLES );

		rb_mesh = RB_MapBatchMesh( aliasmesh->numverts, aliasmesh->numtris * 3 );
		if( !rb_mesh ) {
			ri.Com_DPrintf( S_COLOR_YELLOW "R_DrawAliasSurf: RB_MapBatchMesh returned NULL for (%s)(%s)", 
				drawSurf->model->name, aliasmesh->name );
			return qfalse;
		}

		inVertsArray = rb_mesh->xyzArray;
		inNormalsArray = rb_mesh->normalsArray;
		inSVectorsArray = rb_mesh->sVectorsArray;

		if( !framenum && !oldframenum )
		{
			calcVerts = qfalse;

			if( calcNormals )
			{
				v = aliasmesh->vertexes;
				for( i = 0; i < aliasmesh->numverts; i++, v++ )
					R_LatLongToNorm( v->latlong, inNormalsArray[i] );
			}
		}
		else if( framenum == oldframenum )
		{
			calcVerts = qtrue;

			for( i = 0; i < 3; i++ )
				frontv[i] = frame->scale[i];

			v = aliasmesh->vertexes + framenum * aliasmesh->numverts;
			for( i = 0; i < aliasmesh->numverts; i++, v++ )
			{
				VectorSet( inVertsArray[i],
					move[0] + v->point[0]*frontv[0],
					move[1] + v->point[1]*frontv[1],
					move[2] + v->point[2]*frontv[2] );

				if( calcNormals )
					R_LatLongToNorm( v->latlong, inNormalsArray[i] );
			}
		}
		else
		{
			calcVerts = qtrue;

			for( i = 0; i < 3; i++ )
			{
				backv[i] = backlerp * oldframe->scale[i];
				frontv[i] = ( 1.0f - backlerp ) * frame->scale[i];
			}

			v = aliasmesh->vertexes + framenum * aliasmesh->numverts;
			ov = aliasmesh->vertexes + oldframenum * aliasmesh->numverts;
			for( i = 0; i < aliasmesh->numverts; i++, v++, ov++ )
			{
				VectorSet( inVertsArray[i],
					move[0] + v->point[0]*frontv[0] + ov->point[0]*backv[0],
					move[1] + v->point[1]*frontv[1] + ov->point[1]*backv[1],
					move[2] + v->point[2]*frontv[2] + ov->point[2]*backv[2] );

				if( calcNormals )
				{
					R_LatLongToNorm( v->latlong, normal );
					R_LatLongToNorm( ov->latlong, oldnormal );

					VectorSet( inNormalsArray[i],
						normal[0] + ( oldnormal[0] - normal[0] ) * backlerp,
						normal[1] + ( oldnormal[1] - normal[1] ) * backlerp,
						normal[2] + ( oldnormal[2] - normal[2] ) * backlerp );
				}
			}
		}

		if( calcSTVectors )
			R_BuildTangentVectors( aliasmesh->numverts, inVertsArray, inNormalsArray, aliasmesh->stArray, aliasmesh->numtris, aliasmesh->elems, inSVectorsArray );

		if( !calcVerts ) {
			rb_mesh->xyzArray = aliasmesh->xyzArray;
		}
		rb_mesh->elems = aliasmesh->elems;
		rb_mesh->numElems = aliasmesh->numtris * 3;
		rb_mesh->numVerts = aliasmesh->numverts;

		rb_mesh->stArray = aliasmesh->stArray;
		if( !calcNormals ) {
			rb_mesh->normalsArray = aliasmesh->normalsArray;
		}
		if( !calcSTVectors ) {
			rb_mesh->sVectorsArray = aliasmesh->sVectorsArray;
		}

		RB_UploadMesh( rb_mesh );

		RB_EndBatch();
	}

	return qfalse;
}
Пример #5
0
/*
* R_DrawAliasFrameLerp
* 
* Interpolates between two frames and origins
*/
static void R_DrawAliasFrameLerp( const meshbuffer_t *mb, float backlerp )
{
	int i, meshnum;
	int features;
	float backv[3], frontv[3];
	vec3_t normal, oldnormal;
	qboolean calcVerts, calcNormals, calcSTVectors;
	vec3_t move;
	maliasframe_t *frame, *oldframe;
	maliasmesh_t *mesh;
	maliasvertex_t *v, *ov;
	entity_t *e;
	model_t	*mod;
	maliasmodel_t *model;
	shader_t *shader;

	MB_NUM2ENTITY( mb->sortkey, e );
	mod = Mod_ForHandle( mb->LODModelHandle );
	model = ( maliasmodel_t * )mod->extradata;

	meshnum = -mb->infokey - 1;
	if( meshnum < 0 || meshnum >= model->nummeshes )
		return;
	mesh = model->meshes + meshnum;

	frame = model->frames + e->frame;
	oldframe = model->frames + e->oldframe;
	for( i = 0; i < 3; i++ )
		move[i] = frame->translate[i] + ( oldframe->translate[i] - frame->translate[i] ) * backlerp;

	MB_NUM2SHADER( mb->shaderkey, shader );

	features = MF_NONBATCHED | shader->features;
	if( !mb->vboIndex ) {
		features &= ~MF_HARDWARE;
	}

	if( ri.params & RP_SHADOWMAPVIEW )
	{
		features &= ~( MF_COLORS|MF_SVECTORS|MF_ENABLENORMALS );
		if( !( shader->features & MF_DEFORMVS ) )
			features &= ~MF_NORMALS;
	}
	else
	{
		if( features & MF_SVECTORS )
			features |= MF_NORMALS;
#ifdef HARDWARE_OUTLINES
		if( e->outlineHeight )
			features |= MF_NORMALS|(glConfig.ext.GLSL ? MF_ENABLENORMALS : 0);
#endif
	}

	calcNormals = calcSTVectors = qfalse;
	calcNormals = ( ( features & MF_NORMALS ) != 0 ) && ( ( e->frame != 0 ) || ( e->oldframe != 0 ) );
	calcSTVectors = ( ( features & MF_SVECTORS ) != 0 ) && calcNormals;

	if( mb->vboIndex != 0 )
	{
		calcVerts = calcNormals = calcSTVectors = qfalse;
	}
	else
	{
		if( !e->frame && !e->oldframe )
		{
			calcVerts = qfalse;

			if( calcNormals )
			{
				v = mesh->vertexes;
				for( i = 0; i < mesh->numverts; i++, v++ )
					R_LatLongToNorm( v->latlong, inNormalsArray[i] );
			}
		}
		else if( e->frame == e->oldframe )
		{
			calcVerts = qtrue;

			for( i = 0; i < 3; i++ )
				frontv[i] = frame->scale[i];

			v = mesh->vertexes + e->frame * mesh->numverts;
			for( i = 0; i < mesh->numverts; i++, v++ )
			{
				Vector4Set( inVertsArray[i],
					move[0] + v->point[0]*frontv[0],
					move[1] + v->point[1]*frontv[1],
					move[2] + v->point[2]*frontv[2], 1 );

				if( calcNormals )
					R_LatLongToNorm( v->latlong, inNormalsArray[i] );
			}
		}
		else
		{
			calcVerts = qtrue;

			for( i = 0; i < 3; i++ )
			{
				backv[i] = backlerp * oldframe->scale[i];
				frontv[i] = ( 1.0f - backlerp ) * frame->scale[i];
			}

			v = mesh->vertexes + e->frame * mesh->numverts;
			ov = mesh->vertexes + e->oldframe * mesh->numverts;
			for( i = 0; i < mesh->numverts; i++, v++, ov++ )
			{
				Vector4Set( inVertsArray[i],
					move[0] + v->point[0]*frontv[0] + ov->point[0]*backv[0],
					move[1] + v->point[1]*frontv[1] + ov->point[1]*backv[1],
					move[2] + v->point[2]*frontv[2] + ov->point[2]*backv[2], 1 );

				if( calcNormals )
				{
					R_LatLongToNorm( v->latlong, normal );
					R_LatLongToNorm( ov->latlong, oldnormal );

					VectorSet( inNormalsArray[i],
						normal[0] + ( oldnormal[0] - normal[0] ) * backlerp,
						normal[1] + ( oldnormal[1] - normal[1] ) * backlerp,
						normal[2] + ( oldnormal[2] - normal[2] ) * backlerp );
				}
			}
		}

		if( calcSTVectors )
			R_BuildTangentVectors( mesh->numverts, inVertsArray, inNormalsArray, mesh->stArray, mesh->numtris, mesh->elems, inSVectorsArray );
	}

	alias_mesh.xyzArray = calcVerts ? inVertsArray : mesh->xyzArray;
	alias_mesh.elems = mesh->elems;
	alias_mesh.numElems = mesh->numtris * 3;
	alias_mesh.numVerts = mesh->numverts;

	alias_mesh.stArray = mesh->stArray;
	if( features & MF_NORMALS )
		alias_mesh.normalsArray = calcNormals ? inNormalsArray : mesh->normalsArray;
	if( features & MF_SVECTORS )
		alias_mesh.sVectorsArray = calcSTVectors ? inSVectorsArray : mesh->sVectorsArray;

	R_RotateForEntity( e );
	R_PushMesh( &alias_mesh, mb->vboIndex != 0, features );
	R_RenderMeshBuffer( mb, NULL );
}