/************************************************************************* * This file randomly permutes the contents of an array. * flag == 0, don't initialize perm * flag == 1, set p[i] = i **************************************************************************/ void FastRandomPermute(int n, idxtype *p, int flag) { int i, u, v; idxtype tmp; /* this is for very small arrays */ if (n < 25) { RandomPermute(n, p, flag); return; } if (flag == 1) { for (i=0; i<n; i++) p[i] = i; } for (i=0; i<n; i+=8) { v = RandomInRange(n-4); u = RandomInRange(n-4); SWAP(p[v], p[u], tmp); SWAP(p[v+1], p[u+1], tmp); SWAP(p[v+2], p[u+2], tmp); SWAP(p[v+3], p[u+3], tmp); } }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void Match_HEM(CtrlType *ctrl, GraphType *graph) { int i, ii, j, k, nvtxs, cnvtxs, maxidx, dim; idxtype *xadj, *vwgt, *adjncy; idxtype *match, *cmap, *perm, *tperm; realtype curwgt, maxwgt; realtype *vvol, *vsurf, *adjwgt, *adjwgtsum; dim = ctrl->dim; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; vvol = graph->vvol; vsurf = graph->vsurf; adjncy = graph->adjncy; adjwgt = graph->adjwgt; adjwgtsum = graph->adjwgtsum; cmap = graph->cmap = idxsmalloc(nvtxs, -1, "cmap"); match = idxsmalloc(nvtxs, -1, "match"); perm = idxmalloc(nvtxs, "perm"); tperm = idxmalloc(nvtxs, "tperm"); RandomPermute(nvtxs, tperm, 1); BucketSortKeysInc(nvtxs, vwgt[iamax(nvtxs, vwgt)], vwgt, tperm, perm); /* RandomPermute(nvtxs, perm, 1); */ cnvtxs = 0; /* Compute a heavy-edge style matching giving preferance to small vertices */ for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { maxidx = i; maxwgt = 0.0; /* Find a heavy-edge matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = adjncy[j]; curwgt = 1.0/ARATIO2(dim, vsurf[i]+vsurf[k]+adjwgtsum[i]+adjwgtsum[k]- 2.0*adjwgt[j], vvol[i]+vvol[k]); if (match[k] == UNMATCHED && vwgt[i]+vwgt[k] <= ctrl->maxsize && curwgt > maxwgt) { maxwgt = curwgt; maxidx = k; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } CreateCoarseGraph(graph, cnvtxs, match, perm); IMfree((void**)&tperm, &perm, &match, LTERM); }
int main(int argc, char **argv) { long *X, *Tmp, n, i; double *D; printf("Test RandomPermute: "); n=1000 ; X = (long *) malloc(n* sizeof(long)) ; Tmp = (long *) malloc(n* sizeof(long)) ; D = (double *) malloc(n* sizeof(double)) ; if ( X == NULL || Tmp == NULL || D == NULL){ printf("Error\n") ; exit(1); } for (i=0; i<n; i++){ X[i] = i ; D[i] = i; } #ifdef INFO2 printf("RAND_MAX = %ld ", (long)(RAND_MAX) ); #endif /* Permute randomly */ RandomPermute(X,NULL,D,NULL,0,n-1); /* Check result values and corresponding indices */ for (i=0; i<n; i++){ if (X[i] != (long)(D[i]+0.5) || X[i] < 0 || X[i] >= n){ /* round to nearest integer */ printf("Error\n") ; exit(1); } } /* Check whether X is a permutation of 0..n-1. Use Tmp as a temporary array */ for (i=0; i<n; i++) Tmp[i] = -1; for (i=0; i<n; i++){ Tmp[X[i]]= X[i]; } for (i=0; i<n; i++){ if (Tmp[i] != i){ printf("Error\n") ; exit(1); } } printf("OK\n") ; exit(0); } /* end main */
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void MCMatch_HEM(CtrlType *ctrl, GraphType *graph) { int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt; idxtype *xadj, *adjncy, *adjwgt; idxtype *match, *cmap, *perm; float *nvwgt; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr)); nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; cmap = graph->cmap; match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs)); perm = idxwspacemalloc(ctrl, nvtxs); RandomPermute(nvtxs, perm, 1); cnvtxs = 0; for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ maxidx = i; maxwgt = 0; /* Find a heavy-edge matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = adjncy[j]; if (match[k] == UNMATCHED && maxwgt <= adjwgt[j] && AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) { maxwgt = adjwgt[j]; maxidx = adjncy[j]; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr)); CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void Match_RM(CtrlType *ctrl, GraphType *graph) { int i, ii, j, nvtxs, cnvtxs, maxidx; idxtype *xadj, *vwgt, *adjncy, *adjwgt; idxtype *match, *cmap, *perm; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr)); nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; cmap = graph->cmap; match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs)); perm = idxwspacemalloc(ctrl, nvtxs); RandomPermute(nvtxs, perm, 1); cnvtxs = 0; for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ maxidx = i; /* Find a random matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { if (match[adjncy[j]] == UNMATCHED && vwgt[i]+vwgt[adjncy[j]] <= ctrl->maxvwgt) { maxidx = adjncy[j]; break; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr)); CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function generates random initialization **************************************************************************/ void RandomInit(int n, int k, idxtype *label) { int i, chunksize, j; idxtype tmp; idxtype *p= idxmalloc(n, "Util: RandomInit\n"); RandomPermute(n, p, 1); chunksize = n / k +1; j=0; for (i=0; i<n; i++){ label[p[i]] = j; if ((i+1)% chunksize ==0) j++; } free (p); }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void Match_RM(CtrlType *ctrl, GraphType *graph) { int i, ii, j, k, nvtxs, cnvtxs, maxidx; idxtype *xadj, *vwgt, *adjncy; idxtype *match, *cmap, *perm; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; cmap = graph->cmap = idxsmalloc(nvtxs, -1, "graph->cmap"); match = idxsmalloc(nvtxs, -1, "match"); perm = idxmalloc(nvtxs, "perm"); RandomPermute(nvtxs, perm, 1); cnvtxs = 0; for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { maxidx = i; /* Find a random matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = adjncy[j]; if (match[k] == UNMATCHED && vwgt[i]+vwgt[k] <= ctrl->maxsize) { maxidx = k; break; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } CreateCoarseGraph(graph, cnvtxs, match, perm); IMfree((void**)&match, &perm, LTERM); }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void EstimateCFraction(int nvtxs, idxtype *xadj, idxtype *adjncy, floattype *vfraction, floattype *efraction) { int i, ii, j, cnvtxs, cnedges, maxidx; idxtype *match, *cmap, *perm; cmap = idxmalloc(nvtxs, "cmap"); match = idxsmalloc(nvtxs, UNMATCHED, "match"); perm = idxmalloc(nvtxs, "perm"); RandomPermute(nvtxs, perm, 1); cnvtxs = 0; for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ maxidx = i; /* Find a random matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { if (match[adjncy[j]] == UNMATCHED) { maxidx = adjncy[j]; break; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } cnedges = ComputeCoarseGraphSize(nvtxs, xadj, adjncy, cnvtxs, cmap, match, perm); *vfraction = (1.0*cnvtxs)/(1.0*nvtxs); *efraction = (1.0*cnedges)/(1.0*xadj[nvtxs]); GKfree(&cmap, &match, &perm, LTERM); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void MCRandom_KWayEdgeRefineHorizontal(CtrlType *ctrl, GraphType *graph, int nparts, float *orgubvec, int npasses) { int i, ii, iii, j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nmoves, nbnd, myndegrees, same; int from, me, to, oldcut, gain; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *perm, *bndptr, *bndind; EDegreeType *myedegrees; RInfoType *myrinfo; float *npwgts, *nvwgt, *minwgt, *maxwgt, maxlb, minlb, ubvec[MAXNCON], tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndptr = graph->bndptr; bndind = graph->bndind; where = graph->where; npwgts = graph->npwgts; /* Setup the weight intervals of the various subdomains */ minwgt = fwspacemalloc(ctrl, nparts*ncon); maxwgt = fwspacemalloc(ctrl, nparts*ncon); /* See if the orgubvec consists of identical constraints */ maxlb = minlb = orgubvec[0]; for (i=1; i<ncon; i++) { minlb = (orgubvec[i] < minlb ? orgubvec[i] : minlb); maxlb = (orgubvec[i] > maxlb ? orgubvec[i] : maxlb); } same = (fabs(maxlb-minlb) < .01 ? 1 : 0); /* Let's not get very optimistic. Let Balancing do the work */ ComputeHKWayLoadImbalance(ncon, nparts, npwgts, ubvec); for (i=0; i<ncon; i++) ubvec[i] = amax(ubvec[i], orgubvec[i]); if (!same) { for (i=0; i<nparts; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = ubvec[j]/nparts; minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts); } } } else { maxlb = ubvec[0]; for (i=1; i<ncon; i++) maxlb = (ubvec[i] > maxlb ? ubvec[i] : maxlb); for (i=0; i<nparts; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = maxlb/nparts; minwgt[i*ncon+j] = 1.0/(maxlb*nparts); } } } perm = idxwspacemalloc(ctrl, nvtxs); if (ctrl->dbglvl&DBG_REFINE) { printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], graph->nvtxs, graph->nbnd, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (nmoves=iii=0; iii<graph->nbnd; iii++) { ii = perm[iii]; if (ii >= nbnd) continue; i = bndind[ii]; myrinfo = graph->rinfo+i; if (myrinfo->ed >= myrinfo->id) { /* Total ED is too high */ from = where[i]; nvwgt = graph->nvwgt+i*ncon; if (myrinfo->id > 0 && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon)) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; gain = myedegrees[k].ed - myrinfo->id; if (gain >= 0 && (AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon) || IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec))) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if ((myedegrees[j].ed > myedegrees[k].ed && (AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon) || IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec))) || (myedegrees[j].ed == myedegrees[k].ed && IsHBalanceBetterTT(ncon, nparts, npwgts+myedegrees[k].pid*ncon, npwgts+to*ncon, nvwgt, ubvec))) k = j; } to = myedegrees[k].pid; if (myedegrees[k].ed-myrinfo->id == 0 && !IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec) && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, npwgts+from*ncon, maxwgt+from*ncon)) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update where, weight, and ID/ED information of the vertex you moved */ saxpy(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1); where[i] = to; myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed-myrinfo->id < 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } } graph->nbnd = nbnd; if (ctrl->dbglvl&DBG_REFINE) { printf("\t [%5.4f %5.4f], Nb: %6d, Nmoves: %5d, Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], nbnd, nmoves, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } if (graph->mincut == oldcut) break; } fwspacefree(ctrl, ncon*nparts); fwspacefree(ctrl, ncon*nparts); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain. * It is used only when tha unbalance is due to non contigous * subdomains. That is, the are no boundary vertices. * It moves vertices from the domain that is overweight to the one that * is underweight. **************************************************************************/ void MocInit2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts) { int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *perm, *qnum; float *nvwgt, *npwgts; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; nvwgt = graph->nvwgt; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); /* This is called for initial partitioning so we know from where to pick nodes */ from = 1; to = (from+1)%2; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); ASSERT(CheckGraph(graph)); /* Compute the queues in which each vertex will be assigned to */ for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); /* Insert the nodes of the proper partition in the appropriate priority queue */ RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (where[i] == from) { if (ed[i] > 0) PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]); else PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]); } } mincut = graph->mincut; nbnd = graph->nbnd; for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts[from])) break; if ((cnum = SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1) break; if ((higain = PQueueGetMax(&parts[cnum][0])) == -1) higain = PQueueGetMax(&parts[cnum][1]); mincut -= (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); where[higain] = to; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); if (ed[higain] == 0 && id[higain] > 0) printf("\t Pulled from the interior!\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (where[k] == from) { if (ed[k] > 0 && bndptr[k] == -1) { /* It moves in boundary */ PQueueDelete(&parts[qnum[k]][1], k, oldgain); PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]); } else { /* It must be in the boundary already */ if (bndptr[k] == -1) printf("What you thought was wrong!\n"); PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]); } } /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut)); } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, origbal[MAXNCON], minbal[MAXNCON], newbal[MAXNCON]; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; float *maxwgt, *minwgt, tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Setup the weight intervals of the two subdomains */ minwgt = fwspacemalloc(ctrl, 2*ncon); maxwgt = fwspacemalloc(ctrl, 2*ncon); for (i=0; i<2; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j]; minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]); } } /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal); for (i=0; i<ncon; i++) minbal[i] = origbal[i]; newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut); for (i=0; i<ncon; i++) printf("%.3f ", origbal[i]); printf("[B]\n"); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (AreAllBelow(ncon, minbal, ubvec)) break; SelectQueue3(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, newbal); if (IsBetter2wayBalance(ncon, newbal, minbal, ubvec) || (IsBetter2wayBalance(ncon, newbal, origbal, ubvec) && newcut < mincut)) { mincut = newcut; for (i=0; i<ncon; i++) minbal[i] = newbal[i]; mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); printf(", LB: "); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); if (mincutorder == nswaps) printf(" *\n"); else printf("\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (i=0; i<ncon; i++) printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]); printf("], LB: "); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); fwspacefree(ctrl, 2*ncon); fwspacefree(ctrl, 2*ncon); }
/************************************************************************* * This function performs a node-based FM refinement **************************************************************************/ void FM_2WayNodeBalance(CtrlType *ctrl, GraphType *graph, float ubfactor) { idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *perm, *moved; PQueueType parts; NRInfoType *rinfo; idxtype higain, oldgain; idxtype pass, to, other; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; if (idxtype_abs(pwgts[0]-pwgts[1]) < (int)((ubfactor-1.0)*(pwgts[0]+pwgts[1]))) return; if (idxtype_abs(pwgts[0]-pwgts[1]) < 3*idxsum(nvtxs, vwgt, 1)/nvtxs) return; to = (pwgts[0] < pwgts[1] ? 0 : 1); other = (to+1)%2; PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt)); perm = idxwspacemalloc(ctrl, nvtxs); moved = idxset(nvtxs, -1, idxwspacemalloc(ctrl, nvtxs)); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D [B]\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[other]); } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); /****************************************************** * Get into the FM loop *******************************************************/ for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; moved[higain] = 1; if (pwgts[other] - rinfo[higain].edegrees[other] < (pwgts[0]+pwgts[1])/2) continue; #ifdef XXX if (pwgts[other] - rinfo[higain].edegrees[other] < pwgts[to]+vwgt[higain]) break; #endif ASSERT(bndptr[higain] != -1); pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; IFSET(ctrl->dbglvl, DBG_MOVEINFO, mprintf("Moved %6D to %3D, Gain: %3D, \t[%5D %5D %5D]\n", higain, to, vwgt[higain]-rinfo[higain].edegrees[other], pwgts[0], pwgts[1], pwgts[2])); /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ rinfo[k].edegrees[to] += vwgt[higain]; } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { ASSERT(bndptr[kk] != -1); oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; if (moved[kk] == -1) PQueueUpdateUp(&parts, kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue */ PQueueInsert(&parts, k, vwgt[k]-edegrees[other]); } } if (pwgts[to] > pwgts[other]) break; } IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("\tBalanced sep: %6D at %4D, PWGTS: [%6D %6D], NBND: %6D\n", pwgts[2], nswaps, pwgts[0], pwgts[1], nbnd)); graph->mincut = pwgts[2]; graph->nbnd = nbnd; PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function takes a graph and produces a bisection by using a region * growing algorithm. The resulting partition is returned in * graph->where **************************************************************************/ void MocRandomBisection(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor) { int i, ii, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs, qnum; idxtype *bestwhere, *where, *perm; int counts[MAXNCON]; float *nvwgt; nvtxs = graph->nvtxs; ncon = graph->ncon; nvwgt = graph->nvwgt; MocAllocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); bestcut = idxsum(graph->nedges, graph->adjwgt); perm = idxmalloc(nvtxs, "BisectGraph: perm"); for (; nbfs>0; nbfs--) { for (i=0; i<ncon; i++) counts[i] = 0; RandomPermute(nvtxs, perm, 1); /* Partition by spliting the queues randomly */ for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; qnum = samax(ncon, nvwgt+i*ncon); where[i] = counts[qnum]; counts[qnum] = (counts[qnum]+1)%2; } MocCompute2WayPartitionParams(ctrl, graph); MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); MocBalance2Way(ctrl, graph, tpwgts, 1.02); MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); MocBalance2Way(ctrl, graph, tpwgts, 1.02); MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); /* printf("Edgecut: %6d, NPwgts: [", graph->mincut); for (i=0; i<graph->ncon; i++) printf("(%.3f %.3f) ", graph->npwgts[i], graph->npwgts[graph->ncon+i]); printf("]\n"); */ if (bestcut > graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); GKfree((void**)&bestwhere, &perm, LTERM); }
/************************************************************************* * This function performs a node-based FM refinement **************************************************************************/ void FM_2WayNodeRefineEqWgt(CtrlType *ctrl, GraphType *graph, idxtype npasses) { idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *moved, *swaps, *perm; PQueueType parts[2]; NRInfoType *rinfo; idxtype higain, oldgain, mincut, initcut, mincutorder; idxtype pass, to, other, limit; idxtype mindiff, newdiff; idxtype u[2], g[2]; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt); PQueueInit(ctrl, &parts[0], nvtxs, i); PQueueInit(ctrl, &parts[1], nvtxs, i); moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { idxset(nvtxs, -1, moved); PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]); PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]); } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300)); /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = 0; mindiff = idxtype_abs(pwgts[0]-pwgts[1]); to = (pwgts[0] < pwgts[1] ? 0 : 1); for (nswaps=0; nswaps<nvtxs; nswaps++) { to = (pwgts[0] < pwgts[1] ? 0 : 1); if (pwgts[0] == pwgts[1]) { u[0] = PQueueSeeMax(&parts[0]); u[1] = PQueueSeeMax(&parts[1]); if (u[0] != -1 && u[1] != -1) { g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1]; g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0]; to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); } } other = (to+1)%2; if ((higain = PQueueGetMax(&parts[to])) == -1) break; if (moved[higain] == -1) /* Delete if it was in the separator originally */ PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]); ASSERT(bndptr[higain] != -1); pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; } else { if (nswaps - mincutorder > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ oldgain = vwgt[k]-rinfo[k].edegrees[to]; rinfo[k].edegrees[to] += vwgt[higain]; if (moved[k] == -1 || moved[k] == -(2+other)) PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]); } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; if (moved[kk] == -1 || moved[kk] == -(2+to)) PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue. Only one side! */ if (moved[k] == -1) { PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]); moved[k] = -(2+to); } } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, mprintf("Moved %6D to %3D, Gain: %5D [%5D] [%4D %4D] \t[%5D %5D %5D]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2])); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); to = where[higain]; other = (to+1)%2; INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = other; INC_DEC(pwgts[other], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[other] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("\tMinimum sep: %6D at %5D, PWGTS: [%6D %6D], NBND: %6D\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut >= initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs a node-based FM refinement. This is the * one-way version **************************************************************************/ void FM_2WayNodeRefine_OneSided(CtrlType *ctrl, GraphType *graph, float ubfactor, idxtype npasses) { idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *swaps, *perm; PQueueType parts; NRInfoType *rinfo; idxtype higain, oldgain, mincut, initcut, mincutorder; idxtype pass, to, other, limit; idxtype badmaxpwgt, mindiff, newdiff; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt)); perm = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("Partitions-N1: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); badmaxpwgt = (int)(ubfactor*(pwgts[0]+pwgts[1]+pwgts[2])/2); to = (pwgts[0] < pwgts[1] ? 1 : 0); for (pass=0; pass<npasses; pass++) { other = to; to = (to+1)%2; PQueueReset(&parts); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[other]); } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300)); /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = 0; mindiff = idxtype_abs(pwgts[0]-pwgts[1]); for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; ASSERT(bndptr[higain] != -1); if (pwgts[to]+vwgt[higain] > badmaxpwgt) break; /* No point going any further. Balance will be bad */ pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; } else { if (nswaps - mincutorder > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ rinfo[k].edegrees[to] += vwgt[higain]; } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; /* Since the moves are one-sided this vertex has not been moved yet */ PQueueUpdateUp(&parts, kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue. Safe due to one-sided moves */ PQueueInsert(&parts, k, vwgt[k]-edegrees[other]); } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, mprintf("Moved %6D to %3D, Gain: %5D [%5D] \t[%5D %5D %5D] [%3D %2D]\n", higain, to, (vwgt[higain]-rinfo[higain].edegrees[other]), vwgt[higain], pwgts[0], pwgts[1], pwgts[2], nswaps, limit)); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); ASSERT(where[higain] == to); INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = other; INC_DEC(pwgts[other], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[other] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, mprintf("\tMinimum sep: %6D at %5D, PWGTS: [%6D %6D], NBND: %6D\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (pass%2 == 1 && (mincutorder == -1 || mincut >= initcut)) break; } PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void MCGreedy_KWayEdgeBalanceHorizontal(CtrlType *ctrl, GraphType *graph, int nparts, float *ubvec, int npasses) { int i, ii, /*iii,*/ j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nbnd, myndegrees, oldgain, gain, nmoves; int from, me, to, oldcut; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *perm, *bndptr, *bndind, *moved; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; float *npwgts, *nvwgt, *minwgt, *maxwgt, tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; npwgts = graph->npwgts; /* Setup the weight intervals of the various subdomains */ minwgt = fwspacemalloc(ctrl, ncon*nparts); maxwgt = fwspacemalloc(ctrl, ncon*nparts); for (i=0; i<nparts; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = ubvec[j]/nparts; minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts); } } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); if (ctrl->dbglvl&DBG_REFINE) { printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], graph->nvtxs, graph->nbnd, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("[B]\n"); } for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); /* Check to see if things are out of balance, given the tolerance */ if (MocIsHBalanced(ncon, nparts, npwgts, ubvec)) break; PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } nmoves = 0; for (;;) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; nvwgt = graph->nvwgt+i*ncon; if (AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon)) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; if (IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec)) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (IsHBalanceBetterTT(ncon, nparts, npwgts+myedegrees[k].pid*ncon, npwgts+to*ncon, nvwgt, ubvec)) k = j; } to = myedegrees[k].pid; j = 0; if (!AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon)) j++; if (myedegrees[k].ed-myrinfo->id >= 0) j++; if (!AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) && AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon)) j++; if (j == 0) continue; /* DELETE if (myedegrees[k].ed-myrinfo->id < 0 && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon) && AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) && AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon)) continue; */ /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update where, weight, and ID/ED information of the vertex you moved */ saxpy(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1); where[i] = to; myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed == 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed > 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed == 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (myrinfo->ed > 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && myrinfo->ed > 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } graph->nbnd = nbnd; if (ctrl->dbglvl&DBG_REFINE) { printf("\t [%5.4f %5.4f], Nb: %6d, Nmoves: %5d, Cut: %6d, LB: ", npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], nbnd, nmoves, graph->mincut); ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } if (nmoves == 0) break; } PQueueFree(ctrl, &queue); fwspacefree(ctrl, ncon*nparts); fwspacefree(ctrl, ncon*nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function balances two partitions by moving boundary nodes * from the domain that is overweight to the one that is underweight. **************************************************************************/ void Bnd2WayBalance(CtrlType *ctrl, GraphType *graph, int *tpwgts) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *perm; PQueueType parts; int higain, oldgain, mincut, mindiff; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); /* Determine from which domain you will be moving data */ mindiff = abs(tpwgts[0]-pwgts[0]); from = (pwgts[0] < tpwgts[0] ? 1 : 0); to = (from+1)%2; IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d [B]\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts, nvtxs, tmp); idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert the boundary nodes of the proper partition whose size is OK in the priority queue */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); if (where[bndind[i]] == from && vwgt[bndind[i]] <= mindiff) PQueueInsert(&parts, bndind[i], ed[bndind[i]]-id[bndind[i]]); } mincut = graph->mincut; for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; ASSERT(bndptr[higain] != -1); if (pwgts[to]+vwgt[higain] > tpwgts[to]) break; mincut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); where[higain] = to; moved[higain] = nswaps; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], mincut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) /* Remove it if in the queues */ PQueueDelete(&parts, k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueUpdate(&parts, k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) PQueueInsert(&parts, k, ed[k]-id[k]); } } } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void MCMatch_SBHEM(CtrlType *ctrl, GraphType *graph, int norm) { int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt, avgdegree; idxtype *xadj, *adjncy, *adjwgt; idxtype *match, *cmap, *degrees, *perm, *tperm; float *nvwgt, vbal; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr)); nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; cmap = graph->cmap; match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs)); perm = idxwspacemalloc(ctrl, nvtxs); tperm = idxwspacemalloc(ctrl, nvtxs); degrees = idxwspacemalloc(ctrl, nvtxs); RandomPermute(nvtxs, tperm, 1); avgdegree = (int)(0.7*(xadj[nvtxs]/nvtxs)); for (i=0; i<nvtxs; i++) degrees[i] = (xadj[i+1]-xadj[i] > avgdegree ? avgdegree : xadj[i+1]-xadj[i]); BucketSortKeysInc(nvtxs, avgdegree, degrees, tperm, perm); cnvtxs = 0; /* Take care any islands. Islands are matched with non-islands due to coarsening */ for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ if (xadj[i] < xadj[i+1]) break; maxidx = i; for (j=nvtxs-1; j>ii; j--) { k = perm[j]; if (match[k] == UNMATCHED && xadj[k] < xadj[k+1]) { maxidx = k; break; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } /* Continue with normal matching */ for (; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ maxidx = i; maxwgt = -1; vbal = 0.0; /* Find a heavy-edge matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = adjncy[j]; if (match[k] == UNMATCHED && AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) { if (maxidx != i) vbal = BetterVBalance(ncon, norm, nvwgt+i*ncon, nvwgt+maxidx*ncon, nvwgt+k*ncon); if (vbal > 0 || (vbal > -.01 && maxwgt < adjwgt[j])) { maxwgt = adjwgt[j]; maxidx = k; } } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr)); idxwspacefree(ctrl, nvtxs); /* degrees */ idxwspacefree(ctrl, nvtxs); /* tperm */ CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Random_KWayEdgeRefineMConn(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses, int ffactor) { int i, ii, iii, j, jj, k, l, pass, nvtxs, nmoves, nbnd, tvwgt, myndegrees; int from, me, to, oldcut, vwgt, gain; int maxndoms, nadd; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *itpwgts; idxtype *phtable, *pmat, *pmatptr, *ndoms; EDegreeType *myedegrees; RInfoType *myrinfo; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndptr = graph->bndptr; bndind = graph->bndind; where = graph->where; pwgts = graph->pwgts; pmat = ctrl->wspace.pmat; phtable = idxwspacemalloc(ctrl, nparts); ndoms = idxwspacemalloc(ctrl, nparts); ComputeSubDomainGraph(graph, nparts, pmat, ndoms); /* Setup the weight intervals of the various subdomains */ minwgt = idxwspacemalloc(ctrl, nparts); maxwgt = idxwspacemalloc(ctrl, nparts); itpwgts = idxwspacemalloc(ctrl, nparts); tvwgt = idxsum(nparts, pwgts); ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt)); for (i=0; i<nparts; i++) { itpwgts[i] = tpwgts[i]*tvwgt; maxwgt[i] = tpwgts[i]*tvwgt*ubfactor; minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor); } perm = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); maxndoms = ndoms[idxamax(nparts, ndoms)]; oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (nmoves=iii=0; iii<graph->nbnd; iii++) { ii = perm[iii]; if (ii >= nbnd) continue; i = bndind[ii]; myrinfo = graph->rinfo+i; if (myrinfo->ed >= myrinfo->id) { /* Total ED is too high */ from = where[i]; vwgt = graph->vwgt[i]; if (myrinfo->id > 0 && pwgts[from]-vwgt < minwgt[from]) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; /* Determine the valid domains */ for (j=0; j<myndegrees; j++) { to = myedegrees[j].pid; phtable[to] = 1; pmatptr = pmat + to*nparts; for (nadd=0, k=0; k<myndegrees; k++) { if (k == j) continue; l = myedegrees[k].pid; if (pmatptr[l] == 0) { if (ndoms[l] > maxndoms-1) { phtable[to] = 0; nadd = maxndoms; break; } nadd++; } } if (ndoms[to]+nadd > maxndoms) phtable[to] = 0; if (nadd == 0) phtable[to] = 2; } /* Find the first valid move */ j = myrinfo->id; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; if (!phtable[to]) continue; gain = myedegrees[k].ed-j; /* j = myrinfo->id. Allow good nodes to move */ if (pwgts[to]+vwgt <= maxwgt[to]+ffactor*gain && gain >= 0) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (!phtable[to]) continue; if ((myedegrees[j].ed > myedegrees[k].ed && pwgts[to]+vwgt <= maxwgt[to]) || (myedegrees[j].ed == myedegrees[k].ed && itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid])) k = j; } to = myedegrees[k].pid; j = 0; if (myedegrees[k].ed-myrinfo->id > 0) j = 1; else if (myedegrees[k].ed-myrinfo->id == 0) { if (/*(iii&7) == 0 ||*/ phtable[myedegrees[k].pid] == 2 || pwgts[from] >= maxwgt[from] || itpwgts[from]*(pwgts[to]+vwgt) < itpwgts[to]*pwgts[from]) j = 1; } if (j == 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update pmat to reflect the move of 'i' */ pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed); pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed); if (pmat[from*nparts+to] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[to*nparts+from] == 0) { ndoms[to]--; if (ndoms[to]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed-myrinfo->id < 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */ if (me != from && me != to) { pmat[me*nparts+from] -= adjwgt[j]; pmat[from*nparts+me] -= adjwgt[j]; if (pmat[me*nparts+from] == 0) { ndoms[me]--; if (ndoms[me]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[from*nparts+me] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[me*nparts+to] == 0) { ndoms[me]++; if (ndoms[me] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms); maxndoms = ndoms[me]; } } if (pmat[to*nparts+me] == 0) { ndoms[to]++; if (ndoms[to] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms); maxndoms = ndoms[to]; } } pmat[me*nparts+to] += adjwgt[j]; pmat[to*nparts+me] += adjwgt[j]; } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %5d, Vol: %5d, %d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, graph->mincut, ComputeVolume(graph, where), idxsum(nparts, ndoms))); if (graph->mincut == oldcut) break; } idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void FM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, int *tpwgts, int npasses) { int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts; idxtype *moved, *swaps, *perm; PQueueType parts[2]; int higain, oldgain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; pwgts = graph->pwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); limit = (int) amin(amax(0.01*nvtxs, 15), 100); avgvwgt = amin((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs); tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]; PQueueInit(ctrl, &parts[0], nvtxs, tmp); PQueueInit(ctrl, &parts[1], nvtxs, tmp); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d\n", pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); origdiff = abs(tpwgts[0]-pwgts[0]); idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; newcut = mincut = initcut = graph->mincut; mindiff = abs(tpwgts[0]-pwgts[0]); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = perm[ii]; ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0); ASSERT(bndptr[bndind[i]] != -1); PQueueInsert(&parts[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1); to = (from+1)%2; if ((higain = PQueueGetMax(&parts[from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); INC_DEC(pwgts[to], pwgts[from], vwgt[higain]); if ((newcut < mincut && abs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) || (newcut == mincut && abs(tpwgts[0]-pwgts[0]) < mindiff)) { mincut = newcut; mindiff = abs(tpwgts[0]-pwgts[0]); mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); INC_DEC(pwgts[from], pwgts[to], vwgt[higain]); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1])); /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum cut: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocFM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, float *tpwgts, int npasses) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, initcut, newcut, mincutorder; float rtpwgts[2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 25), 150); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); rtpwgts[0] = origbal*tpwgts[0]; rtpwgts[1] = origbal*tpwgts[1]; /* if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } */ idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ for (i=0; i<ncon; i++) { PQueueReset(&parts[i][0]); PQueueReset(&parts[i][1]); } mincutorder = -1; newcut = mincut = initcut = graph->mincut; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(ed[i] > 0 || id[i] == 0); ASSERT(bndptr[i] != -1); PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { SelectQueue(ncon, npwgts, rtpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; ASSERT(bndptr[higain] != -1); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if ((newcut < mincut && newbal-origbal <= .00001) || (newcut == mincut && (newbal < minbal || (newbal == minbal && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /* if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } */ /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } /* if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } */ graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function takes a graph and a bisection and splits it into two graphs. * It relies on the fact that adjwgt is all set to 1. **************************************************************************/ int SplitGraphOrderCC(CtrlType *ctrl, GraphType *graph, GraphType *sgraphs, int ncmps, idxtype *cptr, idxtype *cind) { int i, ii, iii, j, k, l, istart, iend, mypart, nvtxs, snvtxs, snedges; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *adjwgtsum, *label, *where, *bndptr, *bndind; idxtype *sxadj, *svwgt, *sadjncy, *sadjwgt, *sadjwgtsum, *slabel; idxtype *rename; idxtype *auxadjncy, *auxadjwgt; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->SplitTmr)); nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; adjwgtsum = graph->adjwgtsum; label = graph->label; where = graph->where; bndptr = graph->bndptr; bndind = graph->bndind; ASSERT(bndptr != NULL); /* Go and use bndptr to also mark the boundary nodes in the two partitions */ for (ii=0; ii<graph->nbnd; ii++) { i = bndind[ii]; for (j=xadj[i]; j<xadj[i+1]; j++) bndptr[adjncy[j]] = 1; } rename = idxwspacemalloc(ctrl, nvtxs); /* Go and split the graph a component at a time */ for (iii=0; iii<ncmps; iii++) { RandomPermute(cptr[iii+1]-cptr[iii], cind+cptr[iii], 0); snvtxs = snedges = 0; for (j=cptr[iii]; j<cptr[iii+1]; j++) { i = cind[j]; rename[i] = snvtxs++; snedges += xadj[i+1]-xadj[i]; } SetUpSplitGraph(graph, sgraphs+iii, snvtxs, snedges); sxadj = sgraphs[iii].xadj; svwgt = sgraphs[iii].vwgt; sadjwgtsum = sgraphs[iii].adjwgtsum; sadjncy = sgraphs[iii].adjncy; sadjwgt = sgraphs[iii].adjwgt; slabel = sgraphs[iii].label; snvtxs = snedges = sxadj[0] = 0; for (ii=cptr[iii]; ii<cptr[iii+1]; ii++) { i = cind[ii]; istart = xadj[i]; iend = xadj[i+1]; if (bndptr[i] == -1) { /* This is an interior vertex */ auxadjncy = sadjncy + snedges - istart; auxadjwgt = sadjwgt + snedges - istart; for(j=istart; j<iend; j++) auxadjncy[j] = adjncy[j]; snedges += iend-istart; } else { l = snedges; for (j=istart; j<iend; j++) { k = adjncy[j]; if (where[k] != 2) sadjncy[l++] = k; } snedges = l; } svwgt[snvtxs] = vwgt[i]; sadjwgtsum[snvtxs] = snedges-sxadj[snvtxs]; slabel[snvtxs] = label[i]; sxadj[++snvtxs] = snedges; } idxset(snedges, 1, sadjwgt); for (i=0; i<snedges; i++) sadjncy[i] = rename[sadjncy[i]]; sgraphs[iii].nvtxs = snvtxs; sgraphs[iii].nedges = snedges; sgraphs[iii].ncon = 1; if (snvtxs < MMDSWITCH) sgraphs[iii].adjwgt = NULL; /* A marker to call MMD on the driver */ } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->SplitTmr)); idxwspacefree(ctrl, nvtxs); return ncmps; }
void FM_2WayNodeRefine_TwoSidedP(CtrlType *ctrl, GraphType *graph, idxtype *hmarker, float ubfactor, int npasses) { int i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *moved, *swaps, *perm; PQueueType parts[2]; NRInfoType *rinfo; int higain, oldgain, mincut, initcut, mincutorder; int pass, to, other, limit; int badmaxpwgt, mindiff, newdiff; int u[2], g[2]; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt); PQueueInit(ctrl, &parts[0], nvtxs, i); PQueueInit(ctrl, &parts[1], nvtxs, i); moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d] Nv-Nb[%6d %6d]. ISep: %6d\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut)); badmaxpwgt = (int)(ubfactor*amax(pwgts[0], pwgts[1])); for (pass=0; pass<npasses; pass++) { idxset(nvtxs, -1, moved); PQueueReset(&parts[0]); PQueueReset(&parts[1]); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); if (hmarker[i] == -1) { PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]); PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]); moved[i] = -5; } else if (hmarker[i] != 2) { PQueueInsert(&parts[hmarker[i]], i, vwgt[i]-rinfo[i].edegrees[(hmarker[i]+1)%2]); moved[i] = -(10+hmarker[i]); } } ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = nbnd; /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = 0; mindiff = abs(pwgts[0]-pwgts[1]); to = (pwgts[0] < pwgts[1] ? 0 : 1); for (nswaps=0; nswaps<nvtxs; nswaps++) { u[0] = PQueueSeeMax(&parts[0]); u[1] = PQueueSeeMax(&parts[1]); if (u[0] != -1 && u[1] != -1) { g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1]; g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0]; to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); if (pwgts[to]+vwgt[u[to]] > badmaxpwgt) to = (to+1)%2; } else if (u[0] == -1 && u[1] == -1) { break; } else if (u[0] != -1 && pwgts[0]+vwgt[u[0]] <= badmaxpwgt) { to = 0; } else if (u[1] != -1 && pwgts[1]+vwgt[u[1]] <= badmaxpwgt) { to = 1; } else break; other = (to+1)%2; higain = PQueueGetMax(&parts[to]); /* Delete its matching entry in the other queue */ if (moved[higain] == -5) PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]); ASSERT(bndptr[higain] != -1); pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]); newdiff = abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; } else { if (nswaps - mincutorder > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ oldgain = vwgt[k]-rinfo[k].edegrees[to]; rinfo[k].edegrees[to] += vwgt[higain]; if (moved[k] == -5 || moved[k] == -(10+other)) PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]); } else if (where[k] == other) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[other] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[other]; rinfo[kk].edegrees[other] -= vwgt[k]; if (moved[kk] == -5 || moved[kk] == -(10+to)) PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue (if it has not been moved). */ if (moved[k] == -1 && (hmarker[k] == -1 || hmarker[k] == to)) { PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]); moved[k] = -(10+to); } #ifdef FULLMOVES /* this does not work as well as the above partial one */ if (moved[k] == -1) { if (hmarker[k] == -1) { PQueueInsert(&parts[0], k, vwgt[k]-edegrees[1]); PQueueInsert(&parts[1], k, vwgt[k]-edegrees[0]); moved[k] = -5; } else if (hmarker[k] != 2) { PQueueInsert(&parts[hmarker[k]], k, vwgt[k]-edegrees[(hmarker[k]+1)%2]); moved[k] = -(10+hmarker[k]); } } #endif } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d to %3d, Gain: %5d [%5d] [%4d %4d] \t[%5d %5d %5d]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2])); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); to = where[higain]; other = (to+1)%2; INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = other; INC_DEC(pwgts[other], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[other] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum sep: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd)); graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut >= initcut) break; } PQueueFree(ctrl, &parts[0]); PQueueFree(ctrl, &parts[1]); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
void FM_2WayNodeRefine_OneSidedP(CtrlType *ctrl, GraphType *graph, idxtype *hmarker, float ubfactor, int npasses) { int i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind, nbad, qsize; idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr; idxtype *mptr, *mind, *swaps, *perm, *inqueue; PQueueType parts; NRInfoType *rinfo; int higain, oldgain, mincut, initcut, mincutorder; int pass, from, to, limit; int badmaxpwgt, mindiff, newdiff; ASSERT(graph->mincut == graph->pwgts[2]); nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; rinfo = graph->nrinfo; PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt)); perm = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); mptr = idxwspacemalloc(ctrl, nvtxs+1); mind = idxwspacemalloc(ctrl, nvtxs); inqueue = idxwspacemalloc(ctrl, nvtxs); idxset(nvtxs, -1, inqueue); badmaxpwgt = (int)(ubfactor*amax(pwgts[0], pwgts[1])); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions-N1: [%6d %6d] Nv-Nb[%6d %6d] MaxPwgt[%6d]. ISep: %6d\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, badmaxpwgt, graph->mincut)); to = (pwgts[0] < pwgts[1] ? 1 : 0); for (pass=0; pass<npasses; pass++) { from = to; to = (from+1)%2; PQueueReset(&parts); mincutorder = -1; initcut = mincut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(where[i] == 2); if (hmarker[i] == -1 || hmarker[i] == to) { PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[from]); inqueue[i] = pass; } } qsize = parts.nnodes; ASSERT(CheckNodeBnd(graph, nbnd)); ASSERT(CheckNodePartitionParams(graph)); limit = nbnd; /****************************************************** * Get into the FM loop *******************************************************/ mptr[0] = nmind = nbad = 0; mindiff = abs(pwgts[0]-pwgts[1]); for (nswaps=0; nswaps<nvtxs; nswaps++) { if ((higain = PQueueGetMax(&parts)) == -1) break; inqueue[higain] = -1; ASSERT(bndptr[higain] != -1); if (pwgts[to]+vwgt[higain] > badmaxpwgt) { /* Skip this vertex */ if (nbad++ > limit) break; else { nswaps--; continue; } } pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[from]); newdiff = abs(pwgts[to]+vwgt[higain] - (pwgts[from]-rinfo[higain].edegrees[from])); if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) { mincut = pwgts[2]; mincutorder = nswaps; mindiff = newdiff; nbad = 0; } else { if (nbad++ > limit) { pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[from]); break; /* No further improvement, break out */ } } BNDDelete(nbnd, bndind, bndptr, higain); pwgts[to] += vwgt[higain]; where[higain] = to; swaps[nswaps] = higain; /********************************************************** * Update the degrees of the affected nodes ***********************************************************/ for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */ rinfo[k].edegrees[to] += vwgt[higain]; } else if (where[k] == from) { /* This vertex is pulled into the separator */ ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k])); BNDInsert(nbnd, bndind, bndptr, k); mind[nmind++] = k; /* Keep track for rollback */ where[k] = 2; pwgts[from] -= vwgt[k]; edegrees = rinfo[k].edegrees; edegrees[0] = edegrees[1] = 0; for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] != 2) edegrees[where[kk]] += vwgt[kk]; else { oldgain = vwgt[kk]-rinfo[kk].edegrees[from]; rinfo[kk].edegrees[from] -= vwgt[k]; /* Update the gain of this node if it was skipped */ if (inqueue[kk] == pass) PQueueUpdateUp(&parts, kk, oldgain, oldgain+vwgt[k]); } } /* Insert the new vertex into the priority queue. Safe due to one-sided moves */ if (hmarker[k] == -1 || hmarker[k] == to) { PQueueInsert(&parts, k, vwgt[k]-edegrees[from]); inqueue[k] = pass; } } } mptr[nswaps+1] = nmind; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("Moved %6d to %3d, Gain: %5d [%5d] \t[%5d %5d %5d] [%3d %2d]\n", higain, to, (vwgt[higain]-rinfo[higain].edegrees[from]), vwgt[higain], pwgts[0], pwgts[1], pwgts[2], nswaps, limit)); } /**************************************************************** * Roll back computation *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; ASSERT(CheckNodePartitionParams(graph)); ASSERT(where[higain] == to); INC_DEC(pwgts[2], pwgts[to], vwgt[higain]); where[higain] = 2; BNDInsert(nbnd, bndind, bndptr, higain); edegrees = rinfo[higain].edegrees; edegrees[0] = edegrees[1] = 0; for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; if (where[k] == 2) rinfo[k].edegrees[to] -= vwgt[higain]; else edegrees[where[k]] += vwgt[k]; } /* Push nodes out of the separator */ for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) { k = mind[j]; ASSERT(where[k] == 2); where[k] = from; INC_DEC(pwgts[from], pwgts[2], vwgt[k]); BNDDelete(nbnd, bndind, bndptr, k); for (jj=xadj[k]; jj<xadj[k+1]; jj++) { kk = adjncy[jj]; if (where[kk] == 2) rinfo[kk].edegrees[from] += vwgt[k]; } } } ASSERT(mincut == pwgts[2]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("\tMinimum sep: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d, QSIZE: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd, qsize)); graph->mincut = mincut; graph->nbnd = nbnd; if (pass%2 == 1 && (mincutorder == -1 || mincut >= initcut)) break; } PQueueFree(ctrl, &parts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs+1); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function finds a matching using the HEM heuristic **************************************************************************/ void Match_SHEM(CtrlType *ctrl, GraphType *graph) { int i, ii, j, k, nvtxs, cnvtxs, maxidx, maxwgt, avgdegree; idxtype *xadj, *vwgt, *adjncy, *adjwgt; idxtype *match, *cmap, *degrees, *perm, *tperm; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr)); nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; cmap = graph->cmap; match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs)); perm = idxwspacemalloc(ctrl, nvtxs); tperm = idxwspacemalloc(ctrl, nvtxs); degrees = idxwspacemalloc(ctrl, nvtxs); RandomPermute(nvtxs, tperm, 1); avgdegree = 0.7*(xadj[nvtxs]/nvtxs); for (i=0; i<nvtxs; i++) degrees[i] = (xadj[i+1]-xadj[i] > avgdegree ? avgdegree : xadj[i+1]-xadj[i]); BucketSortKeysInc(nvtxs, avgdegree, degrees, tperm, perm); cnvtxs = 0; /* Take care any islands. Islands are matched with non-islands due to coarsening */ for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ if (xadj[i] < xadj[i+1]) break; maxidx = i; for (j=nvtxs-1; j>ii; j--) { k = perm[j]; if (match[k] == UNMATCHED && xadj[k] < xadj[k+1]) { maxidx = k; break; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } /* Continue with normal matching */ for (; ii<nvtxs; ii++) { i = perm[ii]; if (match[i] == UNMATCHED) { /* Unmatched */ maxidx = i; maxwgt = 0; /* Find a heavy-edge matching, subject to maxvwgt constraints */ for (j=xadj[i]; j<xadj[i+1]; j++) { if (match[adjncy[j]] == UNMATCHED && maxwgt < adjwgt[j] && vwgt[i]+vwgt[adjncy[j]] <= ctrl->maxvwgt) { maxwgt = adjwgt[j]; maxidx = adjncy[j]; } } cmap[i] = cmap[maxidx] = cnvtxs++; match[i] = maxidx; match[maxidx] = i; } } IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr)); idxwspacefree(ctrl, nvtxs); /* degrees */ idxwspacefree(ctrl, nvtxs); /* tperm */ CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function takes a graph and produces a bisection by using a region * growing algorithm. The resulting partition is returned in * graph->where **************************************************************************/ void RandomBisection(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor) { int i, ii, j, k, nvtxs, pwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs; idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where; idxtype *perm, *bestwhere; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; Allocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); perm = idxmalloc(nvtxs, "BisectGraph: queue"); ASSERTP(tpwgts[0]+tpwgts[1] == idxsum(nvtxs, vwgt), ("%d %d\n", tpwgts[0]+tpwgts[1], idxsum(nvtxs, vwgt))); maxpwgt[0] = ubfactor*tpwgts[0]; maxpwgt[1] = ubfactor*tpwgts[1]; minpwgt[0] = (1.0/ubfactor)*tpwgts[0]; minpwgt[1] = (1.0/ubfactor)*tpwgts[1]; nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); bestcut = idxsum(nvtxs, graph->adjwgtsum)+1; /* The +1 is for the 0 edges case */ for (; nbfs>0; nbfs--) { RandomPermute(nvtxs, perm, 1); idxset(nvtxs, 1, where); pwgts[1] = tpwgts[0]+tpwgts[1]; pwgts[0] = 0; if (nbfs != 1) { for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (pwgts[0]+vwgt[i] < maxpwgt[0]) { where[i] = 0; pwgts[0] += vwgt[i]; pwgts[1] -= vwgt[i]; if (pwgts[0] > minpwgt[0]) break; } } } /************************************************************* * Do some partition refinement **************************************************************/ Compute2WayPartitionParams(ctrl, graph); /* printf("IPART: %3d [%5d %5d] [%5d %5d] %5d\n", graph->nvtxs, pwgts[0], pwgts[1], graph->pwgts[0], graph->pwgts[1], graph->mincut); */ Balance2Way(ctrl, graph, tpwgts, ubfactor); /* printf("BPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut); */ FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4); /* printf("RPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut); */ if (bestcut > graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); GKfree(&bestwhere, &perm, LTERM); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses) { int h, i, ii, iii, j, k, c; int pass, nvtxs, nedges, ncon; int nmoves, nmoved, nswaps, nzgswaps; /* int gnswaps, gnzgswaps; */ int me, firstvtx, lastvtx, yourlastvtx; int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight; int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts; int nlupd, nsupd, nnbrs, nchanged; idxtype *xadj, *ladjncy, *adjwgt, *vtxdist; idxtype *where, *tmp_where, *moved; floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill; idxtype *update, *supdate, *rupdate, *pe_updates; idxtype *changed, *perm, *pperm, *htable; idxtype *peind, *recvptr, *sendptr; KeyValueType *swchanges, *rwchanges; RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo; EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees; floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg; int *nupds_pe; IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr)); /*************************/ /* set up common aliases */ /*************************/ nvtxs = graph->nvtxs; nedges = graph->nedges; ncon = graph->ncon; vtxdist = graph->vtxdist; xadj = graph->xadj; ladjncy = graph->adjncy; adjwgt = graph->adjwgt; firstvtx = vtxdist[mype]; lastvtx = vtxdist[mype+1]; where = graph->where; rinfo = graph->rinfo; lnpwgts = graph->lnpwgts; gnpwgts = graph->gnpwgts; ubvec = ctrl->ubvec; tpwgts = ctrl->tpwgts; nnbrs = graph->nnbrs; peind = graph->peind; recvptr = graph->recvptr; sendptr = graph->sendptr; changed = idxmalloc(nvtxs, "KWR: changed"); rwchanges = wspace->pairs; swchanges = rwchanges + recvptr[nnbrs]; /************************************/ /* set up important data structures */ /************************************/ perm = idxmalloc(nvtxs, "KWR: perm"); pperm = idxmalloc(nparts, "KWR: pperm"); update = idxmalloc(nvtxs, "KWR: update"); supdate = wspace->indices; rupdate = supdate + recvptr[nnbrs]; nupds_pe = imalloc(npes, "KWR: nupds_pe"); htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable"); badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt"); for (i=0; i<nparts; i++) { for (h=0; h<ncon; h++) { badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h]; } } movewgts = fmalloc(nparts*ncon, "KWR: movewgts"); ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts"); pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts"); overfill = fmalloc(nparts*ncon, "KWR: overfill"); moved = idxmalloc(nvtxs, "KWR: moved"); tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where"); tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo"); tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees"); idxcopy(nvtxs+graph->nrecv, where, tmp_where); for (i=0; i<nvtxs; i++) { tmp_rinfo[i].id = rinfo[i].id; tmp_rinfo[i].ed = rinfo[i].ed; tmp_rinfo[i].ndegrees = rinfo[i].ndegrees; tmp_rinfo[i].degrees = tmp_edegrees+xadj[i]; for (j=0; j<rinfo[i].ndegrees; j++) { tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge; tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt; } } nswaps = nzgswaps = 0; /*********************************************************/ /* perform a small number of passes through the vertices */ /*********************************************************/ for (pass=0; pass<npasses; pass++) { if (mype == 0) RandomPermute(nparts, pperm, 1); MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm); FastRandomPermute(nvtxs, perm, 1); oldcut = graph->mincut; /* check to see if the partitioning is imbalanced */ Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec); ubavg = savg(ncon, ubvec); lbavg = savg(ncon, lbvec); imbalanced = (lbavg > ubavg) ? 1 : 0; for (c=0; c<2; c++) { scopy(ncon*nparts, gnpwgts, ognpwgts); sset(ncon*nparts, 0.0, movewgts); nmoved = 0; /**********************************************/ /* PASS ONE -- record stats for desired moves */ /**********************************************/ for (iii=0; iii<nvtxs; iii++) { i = perm[iii]; from = tmp_where[i]; nvwgt = graph->nvwgt+i*ncon; for (h=0; h<ncon; h++) if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT) break; if (h < ncon) { continue; } /* check for a potential improvement */ if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) { my_edegrees = tmp_rinfo[i].degrees; for (k=0; k<tmp_rinfo[i].ndegrees; k++) { to = my_edegrees[k].edge; if (ProperSide(c, pperm[from], pperm[to])) { for (h=0; h<ncon; h++) if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0) break; if (h == ncon) break; } } oldto = to; /* check if a subdomain was found that fits */ if (k < tmp_rinfo[i].ndegrees) { for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) { to = my_edegrees[j].edge; if (ProperSide(c, pperm[from], pperm[to])) { for (h=0; h<ncon; h++) if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0) break; if (h == ncon) { if (my_edegrees[j].ewgt > my_edegrees[k].ewgt || (my_edegrees[j].ewgt == my_edegrees[k].ewgt && IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){ k = j; oldto = my_edegrees[k].edge; } } } } to = oldto; if (my_edegrees[k].ewgt > tmp_rinfo[i].id || (my_edegrees[k].ewgt == tmp_rinfo[i].id && (imbalanced || graph->level > 3 || iii % 8 == 0) && IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){ /****************************************/ /* Update tmp arrays of the moved vertex */ /****************************************/ tmp_where[i] = to; moved[nmoved++] = i; for (h=0; h<ncon; h++) { lnpwgts[to*ncon+h] += nvwgt[h]; lnpwgts[from*ncon+h] -= nvwgt[h]; gnpwgts[to*ncon+h] += nvwgt[h]; gnpwgts[from*ncon+h] -= nvwgt[h]; movewgts[to*ncon+h] += nvwgt[h]; movewgts[from*ncon+h] -= nvwgt[h]; } tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt; SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j); if (my_edegrees[k].ewgt == 0) { tmp_rinfo[i].ndegrees--; my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge; my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt; } else { my_edegrees[k].edge = from; } /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { /* no need to bother about vertices on different pe's */ if (ladjncy[j] >= nvtxs) continue; me = ladjncy[j]; mydomain = tmp_where[me]; myrinfo = tmp_rinfo+me; your_edegrees = myrinfo->degrees; if (mydomain == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); } else { if (mydomain == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); } } /* Remove contribution from the .ed of 'from' */ if (mydomain != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == from) { if (your_edegrees[k].ewgt == adjwgt[j]) { myrinfo->ndegrees--; your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge; your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt; } else { your_edegrees[k].ewgt -= adjwgt[j]; } break; } } } /* Add contribution to the .ed of 'to' */ if (mydomain != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == to) { your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { your_edegrees[myrinfo->ndegrees].edge = to; your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j]; } } } } } } } /******************************************/ /* Let processors know the subdomain wgts */ /* if all proposed moves commit. */ /******************************************/ MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon, MPI_DOUBLE, MPI_SUM, ctrl->comm); /**************************/ /* compute overfill array */ /**************************/ overweight = 0; for (j=0; j<nparts; j++) { for (h=0; h<ncon; h++) { if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) { overfill[j*ncon+h] = (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) / (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]); } else { overfill[j*ncon+h] = 0.0; } overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0); overfill[j*ncon+h] *= movewgts[j*ncon+h]; if (overfill[j*ncon+h] > 0.0) overweight = 1; ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] || pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h], (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h], badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h])); } } /****************************************************/ /* select moves to undo according to overfill array */ /****************************************************/ if (overweight == 1) { for (iii=0; iii<nmoved; iii++) { i = moved[iii]; oldto = tmp_where[i]; nvwgt = graph->nvwgt+i*ncon; my_edegrees = tmp_rinfo[i].degrees; for (k=0; k<tmp_rinfo[i].ndegrees; k++) if (my_edegrees[k].edge == where[i]) break; for (h=0; h<ncon; h++) if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0) break; /**********************************/ /* nullify this move if necessary */ /**********************************/ if (k != tmp_rinfo[i].ndegrees && h != ncon) { moved[iii] = -1; from = oldto; to = where[i]; for (h=0; h<ncon; h++) { overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0); } tmp_where[i] = to; tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt; SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j); if (my_edegrees[k].ewgt == 0) { tmp_rinfo[i].ndegrees--; my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge; my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt; } else { my_edegrees[k].edge = from; } for (h=0; h<ncon; h++) { lnpwgts[to*ncon+h] += nvwgt[h]; lnpwgts[from*ncon+h] -= nvwgt[h]; } /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { /* no need to bother about vertices on different pe's */ if (ladjncy[j] >= nvtxs) continue; me = ladjncy[j]; mydomain = tmp_where[me]; myrinfo = tmp_rinfo+me; your_edegrees = myrinfo->degrees; if (mydomain == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); } else { if (mydomain == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); } } /* Remove contribution from the .ed of 'from' */ if (mydomain != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == from) { if (your_edegrees[k].ewgt == adjwgt[j]) { myrinfo->ndegrees--; your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge; your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt; } else { your_edegrees[k].ewgt -= adjwgt[j]; } break; } } } /* Add contribution to the .ed of 'to' */ if (mydomain != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (your_edegrees[k].edge == to) { your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { your_edegrees[myrinfo->ndegrees].edge = to; your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j]; } } } } } } /*************************************************/ /* PASS TWO -- commit the remainder of the moves */ /*************************************************/ nlupd = nsupd = nmoves = nchanged = 0; for (iii=0; iii<nmoved; iii++) { i = moved[iii]; if (i == -1) continue; where[i] = tmp_where[i]; /* Make sure to update the vertex information */ if (htable[i] == 0) { /* make sure you do the update */ htable[i] = 1; update[nlupd++] = i; } /* Put the vertices adjacent to i into the update array */ for (j=xadj[i]; j<xadj[i+1]; j++) { k = ladjncy[j]; if (htable[k] == 0) { htable[k] = 1; if (k<nvtxs) update[nlupd++] = k; else supdate[nsupd++] = k; } } nmoves++; nswaps++; /* check number of zero-gain moves */ for (k=0; k<rinfo[i].ndegrees; k++) if (rinfo[i].degrees[k].edge == to) break; if (rinfo[i].id == rinfo[i].degrees[k].ewgt) nzgswaps++; if (graph->pexadj[i+1]-graph->pexadj[i] > 0) changed[nchanged++] = i; } /* Tell interested pe's the new where[] info for the interface vertices */ CommChangedInterfaceData(ctrl, graph, nchanged, changed, where, swchanges, rwchanges, wspace->pv4); IFSET(ctrl->dbglvl, DBG_RMOVEINFO, rprintf(ctrl, "\t[%d %d], [%.4f], [%d %d %d]\n", pass, c, badmaxpwgt[0], GlobalSESum(ctrl, nmoves), GlobalSESum(ctrl, nsupd), GlobalSESum(ctrl, nlupd))); /*------------------------------------------------------------- / Time to communicate with processors to send the vertices / whose degrees need to be update. /-------------------------------------------------------------*/ /* Issue the receives first */ for (i=0; i<nnbrs; i++) { MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->rreq+i); } /* Issue the sends next. This needs some preporcessing */ for (i=0; i<nsupd; i++) { htable[supdate[i]] = 0; supdate[i] = graph->imap[supdate[i]]; } iidxsort(nsupd, supdate); for (j=i=0; i<nnbrs; i++) { yourlastvtx = vtxdist[peind[i]+1]; for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i); j = k; } /* OK, now get into the loop waiting for the send/recv operations to finish */ MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses); for (i=0; i<nnbrs; i++) MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i); MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses); /*------------------------------------------------------------- / Place the recieved to-be updated vertices into update[] /-------------------------------------------------------------*/ for (i=0; i<nnbrs; i++) { pe_updates = rupdate+sendptr[i]; for (j=0; j<nupds_pe[i]; j++) { k = pe_updates[j]; if (htable[k-firstvtx] == 0) { htable[k-firstvtx] = 1; update[nlupd++] = k-firstvtx; } } } /*------------------------------------------------------------- / Update the rinfo of the vertices in the update[] array /-------------------------------------------------------------*/ for (ii=0; ii<nlupd; ii++) { i = update[ii]; ASSERT(ctrl, htable[i] == 1); htable[i] = 0; mydomain = where[i]; myrinfo = rinfo+i; tmp_myrinfo = tmp_rinfo+i; my_edegrees = myrinfo->degrees; your_edegrees = tmp_myrinfo->degrees; graph->lmincut -= myrinfo->ed; myrinfo->ndegrees = 0; myrinfo->id = 0; myrinfo->ed = 0; for (j=xadj[i]; j<xadj[i+1]; j++) { yourdomain = where[ladjncy[j]]; if (mydomain != yourdomain) { myrinfo->ed += adjwgt[j]; for (k=0; k<myrinfo->ndegrees; k++) { if (my_edegrees[k].edge == yourdomain) { my_edegrees[k].ewgt += adjwgt[j]; your_edegrees[k].ewgt += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { my_edegrees[k].edge = yourdomain; my_edegrees[k].ewgt = adjwgt[j]; your_edegrees[k].edge = yourdomain; your_edegrees[k].ewgt = adjwgt[j]; myrinfo->ndegrees++; } ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]); ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]); } else { myrinfo->id += adjwgt[j]; } } graph->lmincut += myrinfo->ed; tmp_myrinfo->id = myrinfo->id; tmp_myrinfo->ed = myrinfo->ed; tmp_myrinfo->ndegrees = myrinfo->ndegrees; } /* finally, sum-up the partition weights */ MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon, MPI_DOUBLE, MPI_SUM, ctrl->comm); } graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2; if (graph->mincut == oldcut) break; } /* gnswaps = GlobalSESum(ctrl, nswaps); gnzgswaps = GlobalSESum(ctrl, nzgswaps); if (mype == 0) printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps); */ GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM); GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM); GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM); GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr)); }
/************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocGeneral2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts, float lbfactor) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, newcut, mincutorder; int qsizes[MAXNCON][2]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); qsizes[i][0] = qsizes[i][1] = 0; } for (i=0; i<nvtxs; i++) { qnum[i] = samax(ncon, nvwgt+i*ncon); qsizes[qnum[i]][where[i]]++; } /* printf("Weight Distribution: \t"); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (from=0; from<2; from++) { for (j=0; j<ncon; j++) { if (qsizes[j][from] == 0) { for (i=0; i<nvtxs; i++) { if (where[i] != from) continue; k = samax2(ncon, nvwgt+i*ncon); if (k == j && qsizes[qnum[i]][from] > qsizes[j][from] && nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) { qsizes[qnum[i]][from]--; qsizes[j][from]++; qnum[i] = j; } } } } } /* printf("Weight Distribution (after):\t "); for (i=0; i<ncon; i++) printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); printf("\n"); */ for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); minbal = origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); newcut = mincut = graph->mincut; mincutorder = -1; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert all nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { if (minbal < lbfactor) break; SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); newcut -= (ed[higain]-id[higain]); newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts); if (newbal < minbal || (newbal == minbal && (newcut < mincut || (newcut == mincut && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) { mincut = newcut; minbal = newbal; mincutorder = nswaps; for (i=0; i<ncon; i++) mindiff[i] = fabs(tpwgts[0]-npwgts[i]); } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", %.3f LB: %.3f\n", minbal, newbal); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } } /**************************************************************** * Roll back computations *****************************************************************/ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Greedy_KWayEdgeBalanceMConn(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses) { int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain, nmoves; int from, me, to, oldcut, vwgt, maxndoms, nadd; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts; idxtype *phtable, *pmat, *pmatptr, *ndoms; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; pmat = ctrl->wspace.pmat; phtable = idxwspacemalloc(ctrl, nparts); ndoms = idxwspacemalloc(ctrl, nparts); ComputeSubDomainGraph(graph, nparts, pmat, ndoms); /* Setup the weight intervals of the various subdomains */ minwgt = idxwspacemalloc(ctrl, nparts); maxwgt = idxwspacemalloc(ctrl, nparts); itpwgts = idxwspacemalloc(ctrl, nparts); tvwgt = idxsum(nparts, pwgts); ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt)); for (i=0; i<nparts; i++) { itpwgts[i] = tpwgts[i]*tvwgt; maxwgt[i] = tpwgts[i]*tvwgt*ubfactor; minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor); } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d [B]\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); /* Check to see if things are out of balance, given the tolerance */ for (i=0; i<nparts; i++) { if (pwgts[i] > maxwgt[i]) break; } if (i == nparts) /* Things are balanced. Return right away */ break; PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } maxndoms = ndoms[idxamax(nparts, ndoms)]; for (nmoves=0;;) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; vwgt = graph->vwgt[i]; if (pwgts[from]-vwgt < minwgt[from]) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; /* Determine the valid domains */ for (j=0; j<myndegrees; j++) { to = myedegrees[j].pid; phtable[to] = 1; pmatptr = pmat + to*nparts; for (nadd=0, k=0; k<myndegrees; k++) { if (k == j) continue; l = myedegrees[k].pid; if (pmatptr[l] == 0) { if (ndoms[l] > maxndoms-1) { phtable[to] = 0; nadd = maxndoms; break; } nadd++; } } if (ndoms[to]+nadd > maxndoms) phtable[to] = 0; } for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; if (!phtable[to]) continue; if (pwgts[to]+vwgt <= maxwgt[to] || itpwgts[from]*(pwgts[to]+vwgt) <= itpwgts[to]*pwgts[from]) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (!phtable[to]) continue; if (itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]) k = j; } to = myedegrees[k].pid; if (pwgts[from] < maxwgt[from] && pwgts[to] > minwgt[to] && myedegrees[k].ed-myrinfo->id < 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update pmat to reflect the move of 'i' */ pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed); pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed); if (pmat[from*nparts+to] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[to*nparts+from] == 0) { ndoms[to]--; if (ndoms[to]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed == 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed > 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed == 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */ if (me != from && me != to) { pmat[me*nparts+from] -= adjwgt[j]; pmat[from*nparts+me] -= adjwgt[j]; if (pmat[me*nparts+from] == 0) { ndoms[me]--; if (ndoms[me]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[from*nparts+me] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[me*nparts+to] == 0) { ndoms[me]++; if (ndoms[me] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms); maxndoms = ndoms[me]; } } if (pmat[to*nparts+me] == 0) { ndoms[to]++; if (ndoms[to] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms); maxndoms = ndoms[to]; } } pmat[me*nparts+to] += adjwgt[j]; pmat[to*nparts+me] += adjwgt[j]; } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (myrinfo->ed > 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && myrinfo->ed > 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %6d, %d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, graph->mincut,idxsum(nparts, ndoms))); } PQueueFree(ctrl, &queue); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }
/************************************************************************* * This function performs k-way refinement **************************************************************************/ void Greedy_KWayEdgeRefine(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses) { int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain; int from, me, to, oldcut, vwgt; idxtype *xadj, *adjncy, *adjwgt; idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts; EDegreeType *myedegrees; RInfoType *myrinfo; PQueueType queue; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; bndind = graph->bndind; bndptr = graph->bndptr; where = graph->where; pwgts = graph->pwgts; /* Setup the weight intervals of the various subdomains */ minwgt = idxwspacemalloc(ctrl, nparts); maxwgt = idxwspacemalloc(ctrl, nparts); itpwgts = idxwspacemalloc(ctrl, nparts); tvwgt = idxsum(nparts, pwgts); ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt)); for (i=0; i<nparts; i++) { itpwgts[i] = tpwgts[i]*tvwgt; maxwgt[i] = tpwgts[i]*tvwgt*ubfactor; minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor); } perm = idxwspacemalloc(ctrl, nvtxs); moved = idxwspacemalloc(ctrl, nvtxs); PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]); IFSET(ctrl->dbglvl, DBG_REFINE, printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd, graph->mincut)); for (pass=0; pass<npasses; pass++) { ASSERT(ComputeCut(graph, where) == graph->mincut); PQueueReset(&queue); idxset(nvtxs, -1, moved); oldcut = graph->mincut; nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id); moved[i] = 2; } for (iii=0;; iii++) { if ((i = PQueueGetMax(&queue)) == -1) break; moved[i] = 1; myrinfo = graph->rinfo+i; from = where[i]; vwgt = graph->vwgt[i]; if (pwgts[from]-vwgt < minwgt[from]) continue; /* This cannot be moved! */ myedegrees = myrinfo->edegrees; myndegrees = myrinfo->ndegrees; j = myrinfo->id; for (k=0; k<myndegrees; k++) { to = myedegrees[k].pid; gain = myedegrees[k].ed-j; /* j = myrinfo->id. Allow good nodes to move */ if (pwgts[to]+vwgt <= maxwgt[to]+gain && gain >= 0) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if ((myedegrees[j].ed > myedegrees[k].ed && pwgts[to]+vwgt <= maxwgt[to]) || (myedegrees[j].ed == myedegrees[k].ed && itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid])) k = j; } to = myedegrees[k].pid; j = 0; if (myedegrees[k].ed-myrinfo->id > 0) j = 1; else if (myedegrees[k].ed-myrinfo->id == 0) { if ((iii&7) == 0 || pwgts[from] >= maxwgt[from] || itpwgts[from]*(pwgts[to]+vwgt) < itpwgts[to]*pwgts[from]) j = 1; } if (j == 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed < myrinfo->id) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (gain >= 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && gain >= 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Cut: %6d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, graph->mincut)); if (graph->mincut == oldcut) break; } PQueueFree(ctrl, &queue); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); }