Пример #1
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	portTickType lastSysTime;
	portTickType thisSysTime;
	UAVObjEvent ev;


	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	AttitudeRawData attitudeRaw;
	SystemSettingsData systemSettings;
	FlightStatusData flightStatus;

	SettingsUpdatedCb((UAVObjEvent *) NULL);

	// Main task loop
	lastSysTime = xTaskGetTickCount();
	ZeroPids();
	while(1) {
		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);

		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}

		// Check how long since last update
		thisSysTime = xTaskGetTickCount();
		if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
			dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
		lastSysTime = thisSysTime;

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		AttitudeRawGet(&attitudeRaw);
		RateDesiredGet(&rateDesired);
		SystemSettingsGet(&systemSettings);

#if defined(PIOS_QUATERNION_STABILIZATION)
		// Quaternion calculation of error in each axis.  Uses more memory.
		float rpy_desired[3];
		float q_desired[4];
		float q_error[4];
		float local_error[3];

		// Essentially zero errors for anything in rate or none
		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[0] = stabDesired.Roll;
		else
			rpy_desired[0] = attitudeActual.Roll;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[1] = stabDesired.Pitch;
		else
			rpy_desired[1] = attitudeActual.Pitch;

		if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
			rpy_desired[2] = stabDesired.Yaw;
		else
			rpy_desired[2] = attitudeActual.Yaw;

		RPY2Quaternion(rpy_desired, q_desired);
		quat_inverse(q_desired);
		quat_mult(q_desired, &attitudeActual.q1, q_error);
		quat_inverse(q_error);
		Quaternion2RPY(q_error, local_error);

#else
		// Simpler algorithm for CC, less memory
		float local_error[3] = {stabDesired.Roll - attitudeActual.Roll,
			stabDesired.Pitch - attitudeActual.Pitch,
			stabDesired.Yaw - attitudeActual.Yaw};
		local_error[2] = fmod(local_error[2] + 180, 360) - 180;
#endif


		for(uint8_t i = 0; i < MAX_AXES; i++) {
			gyro_filtered[i] = gyro_filtered[i] * gyro_alpha + attitudeRaw.gyros[i] * (1 - gyro_alpha);
		}

		float *attitudeDesiredAxis = &stabDesired.Roll;
		float *actuatorDesiredAxis = &actuatorDesired.Roll;
		float *rateDesiredAxis = &rateDesired.Roll;

		//Calculate desired rate
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					rateDesiredAxis[i] = attitudeDesiredAxis[i];
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float weak_leveling = local_error[i] * weak_leveling_kp;

					if(weak_leveling > weak_leveling_max)
						weak_leveling = weak_leveling_max;
					if(weak_leveling < -weak_leveling_max)
						weak_leveling = -weak_leveling_max;

					rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;

					axis_lock_accum[i] = 0;
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i]);
					axis_lock_accum[i] = 0;
					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = attitudeDesiredAxis[i];
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply attitude lock (almost) on no gyro change
						axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
						if(axis_lock_accum[i] > max_axis_lock)
							axis_lock_accum[i] = max_axis_lock;
						else if(axis_lock_accum[i] < -max_axis_lock)
							axis_lock_accum[i] = -max_axis_lock;

						rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i]);
					}
					break;
			}
		}

		uint8_t shouldUpdate = 1;
		RateDesiredSet(&rateDesired);
		ActuatorDesiredGet(&actuatorDesired);
		//Calculate desired command
		for(int8_t ct=0; ct< MAX_AXES; ct++)
		{
			if(rateDesiredAxis[ct] > settings.MaximumRate[ct])
				rateDesiredAxis[ct] = settings.MaximumRate[ct];
			else if(rateDesiredAxis[ct] < -settings.MaximumRate[ct])
				rateDesiredAxis[ct] = -settings.MaximumRate[ct];

			switch(stabDesired.StabilizationMode[ct])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					float command = ApplyPid(&pids[PID_RATE_ROLL + ct],  rateDesiredAxis[ct] - gyro_filtered[ct]);
					actuatorDesiredAxis[ct] = bound(command);
					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					switch (ct)
				{
					case ROLL:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case PITCH:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
					case YAW:
						actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
						shouldUpdate = 1;
						break;
				}
					break;

			}
		}

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;

		if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL)
			shouldUpdate = 0;

		if(shouldUpdate)
		{
			actuatorDesired.Throttle = stabDesired.Throttle;
			if(dT > 15)
				actuatorDesired.NumLongUpdates++;
			ActuatorDesiredSet(&actuatorDesired);
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0) ||
		   !shouldUpdate)
		{
			ZeroPids();
		}


		// Clear alarms
		AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}
Пример #2
0
/**
 * Module task
 */
static void manualControlTask(void *parameters)
{
	ManualControlSettingsData settings;
	StabilizationSettingsData stabSettings;
	ManualControlCommandData cmd;
	ActuatorDesiredData actuator;
	AttitudeDesiredData attitude;
	RateDesiredData rate;
	portTickType lastSysTime;
	

	float flightMode;

	uint8_t disconnected_count = 0;
	uint8_t connected_count = 0;
	enum { CONNECTED, DISCONNECTED } connection_state = DISCONNECTED;

	// Make sure unarmed on power up
	ManualControlCommandGet(&cmd);
	cmd.Armed = MANUALCONTROLCOMMAND_ARMED_FALSE;
	ManualControlCommandSet(&cmd);
	armState = ARM_STATE_DISARMED;

	// Main task loop
	lastSysTime = xTaskGetTickCount();
	while (1) {
		float scaledChannel[MANUALCONTROLCOMMAND_CHANNEL_NUMELEM];

		// Wait until next update
		vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS);
		PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL);
		
		// Read settings
		ManualControlSettingsGet(&settings);
		StabilizationSettingsGet(&stabSettings);

		if (ManualControlCommandReadOnly(&cmd)) {
			FlightTelemetryStatsData flightTelemStats;
			FlightTelemetryStatsGet(&flightTelemStats);
			if(flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { 
				/* trying to fly via GCS and lost connection.  fall back to transmitter */
				UAVObjMetadata metadata;
				UAVObjGetMetadata(&cmd, &metadata);
				metadata.access = ACCESS_READWRITE;
				UAVObjSetMetadata(&cmd, &metadata);				
			}
		}
			
		if (!ManualControlCommandReadOnly(&cmd)) {

			// Check settings, if error raise alarm
			if (settings.Roll >= MANUALCONTROLSETTINGS_ROLL_NONE ||
				settings.Pitch >= MANUALCONTROLSETTINGS_PITCH_NONE ||
				settings.Yaw >= MANUALCONTROLSETTINGS_YAW_NONE ||
				settings.Throttle >= MANUALCONTROLSETTINGS_THROTTLE_NONE ||
				settings.FlightMode >= MANUALCONTROLSETTINGS_FLIGHTMODE_NONE) {
				AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
				cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
				cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
				ManualControlCommandSet(&cmd);
				continue;
			}
			// Read channel values in us
			// TODO: settings.InputMode is currently ignored because PIOS will not allow runtime
			// selection of PWM and PPM. The configuration is currently done at compile time in
			// the pios_config.h file.
			for (int n = 0; n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) {
#if defined(PIOS_INCLUDE_PWM)
				cmd.Channel[n] = PIOS_PWM_Get(n);
#elif defined(PIOS_INCLUDE_PPM)
				cmd.Channel[n] = PIOS_PPM_Get(n);
#elif defined(PIOS_INCLUDE_SPEKTRUM)
				cmd.Channel[n] = PIOS_SPEKTRUM_Get(n);
#endif
				scaledChannel[n] = scaleChannel(cmd.Channel[n], settings.ChannelMax[n],	settings.ChannelMin[n], settings.ChannelNeutral[n]);
			}

			// Scale channels to -1 -> +1 range
			cmd.Roll 		= scaledChannel[settings.Roll];
			cmd.Pitch 		= scaledChannel[settings.Pitch];
			cmd.Yaw 		= scaledChannel[settings.Yaw];
			cmd.Throttle 	= scaledChannel[settings.Throttle];
			flightMode 		= scaledChannel[settings.FlightMode];

			if (settings.Accessory1 != MANUALCONTROLSETTINGS_ACCESSORY1_NONE)
				cmd.Accessory1 = scaledChannel[settings.Accessory1];
			else
				cmd.Accessory1 = 0;

			if (settings.Accessory2 != MANUALCONTROLSETTINGS_ACCESSORY2_NONE)
				cmd.Accessory2 = scaledChannel[settings.Accessory2];
			else
				cmd.Accessory2 = 0;

			if (settings.Accessory3 != MANUALCONTROLSETTINGS_ACCESSORY3_NONE)
				cmd.Accessory3 = scaledChannel[settings.Accessory3];
			else
				cmd.Accessory3 = 0;

			if (flightMode < -FLIGHT_MODE_LIMIT) {
				// Position 1
				for(int i = 0; i < 3; i++) {
					cmd.StabilizationSettings[i] = settings.Pos1StabilizationSettings[i];	// See assumptions1
				}
				cmd.FlightMode = settings.Pos1FlightMode;	// See assumptions2
			} else if (flightMode > FLIGHT_MODE_LIMIT) {
				// Position 3
				for(int i = 0; i < 3; i++) {
					cmd.StabilizationSettings[i] = settings.Pos3StabilizationSettings[i];	// See assumptions5
				}
				cmd.FlightMode = settings.Pos3FlightMode;	// See assumptions6
			} else {
				// Position 2
				for(int i = 0; i < 3; i++) {
					cmd.StabilizationSettings[i] = settings.Pos2StabilizationSettings[i];	// See assumptions3
				}
				cmd.FlightMode = settings.Pos2FlightMode;	// See assumptions4
			}
			// Update the ManualControlCommand object
			ManualControlCommandSet(&cmd);
			// This seems silly to set then get, but the reason is if the GCS is
			// the control input, the set command will be blocked by the read only
			// setting and the get command will pull the right values from telemetry
		} else
			ManualControlCommandGet(&cmd);	/* Under GCS control */
		

		// Implement hysteresis loop on connection status
		// Must check both Max and Min in case they reversed
		if (!ManualControlCommandReadOnly(&cmd) &&
			cmd.Channel[settings.Throttle] < settings.ChannelMax[settings.Throttle] - CONNECTION_OFFSET &&
			cmd.Channel[settings.Throttle] < settings.ChannelMin[settings.Throttle] - CONNECTION_OFFSET) {
			if (disconnected_count++ > 10) {
				connection_state = DISCONNECTED;
				connected_count = 0;
				disconnected_count = 0;
			} else
				disconnected_count++;
		} else {
			if (connected_count++ > 10) {
				connection_state = CONNECTED;
				connected_count = 0;
				disconnected_count = 0;
			} else
				connected_count++;
		}

		if (connection_state == DISCONNECTED) {
			cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
			cmd.Throttle = -1;	// Shut down engine with no control
			cmd.Roll = 0;
			cmd.Yaw = 0;
			cmd.Pitch = 0;
			//cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO; // don't do until AUTO implemented and functioning
			AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
			ManualControlCommandSet(&cmd);
		} else {
			cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE;
			AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL);
			ManualControlCommandSet(&cmd);
		} 

		// Arming and Disarming mechanism
		if (cmd.Throttle < 0) {
			// Throttle is low, in this condition the arming state could change

			uint8_t newCmdArmed = cmd.Armed;
			static portTickType armedDisarmStart;

			// Look for state changes and write in newArmState
			if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_NONE) {
				// No channel assigned to arming -> arm immediately when throttle is low
				newCmdArmed = MANUALCONTROLCOMMAND_ARMED_TRUE;
			} else {
				float armStickLevel;
				uint8_t channel = settings.Arming/2;    // 0=Channel1, 1=Channel1_Rev, 2=Channel2, ....
				bool reverse = (settings.Arming%2)==1;
				bool manualArm = false;
				bool manualDisarm = false;

				if (connection_state == CONNECTED) {
					// Should use RC input only if RX is connected
					armStickLevel = scaledChannel[channel];
					if (reverse)
						armStickLevel =-armStickLevel;

					if (armStickLevel <= -0.90)
						manualArm = true;
					else if (armStickLevel >= +0.90)
						manualDisarm = true;
				}

				switch(armState) {
				case ARM_STATE_DISARMED:
					newCmdArmed = MANUALCONTROLCOMMAND_ARMED_FALSE;
					if (manualArm) {
						armedDisarmStart = lastSysTime;
						armState = ARM_STATE_ARMING_MANUAL;
					}
					break;

				case ARM_STATE_ARMING_MANUAL:
					if (manualArm) {
						if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
							armState = ARM_STATE_ARMED;
					}
					else
						armState = ARM_STATE_DISARMED;
					break;

				case ARM_STATE_ARMED:
					// When we get here, the throttle is low,
					// we go immediately to disarming due to timeout, also when the disarming mechanism is not enabled
					armedDisarmStart = lastSysTime;
					armState = ARM_STATE_DISARMING_TIMEOUT;
					newCmdArmed = MANUALCONTROLCOMMAND_ARMED_TRUE;
					break;

				case ARM_STATE_DISARMING_TIMEOUT:
					// We get here when armed while throttle low, even when the arming timeout is not enabled
					if (settings.ArmedTimeout != 0)
						if (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings.ArmedTimeout)
							armState = ARM_STATE_DISARMED;
					// Switch to disarming due to manual control when needed
					if (manualDisarm) {
						armedDisarmStart = lastSysTime;
						armState = ARM_STATE_DISARMING_MANUAL;
					}
					break;

				case ARM_STATE_DISARMING_MANUAL:
					if (manualDisarm) {
						if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
							armState = ARM_STATE_DISARMED;
					}
					else
						armState = ARM_STATE_ARMED;
					break;
				}
			}
			// Update cmd object when needed
			if (newCmdArmed != cmd.Armed) {
				cmd.Armed = newCmdArmed;
				ManualControlCommandSet(&cmd);
			}
		} else {
			// The throttle is not low, in case we where arming or disarming, abort
			switch(armState) {
				case ARM_STATE_DISARMING_MANUAL:
				case ARM_STATE_DISARMING_TIMEOUT:
					armState = ARM_STATE_ARMED;
					break;
				case ARM_STATE_ARMING_MANUAL:
					armState = ARM_STATE_DISARMED;
					break;
				default:
					// Nothing needs to be done in the other states
					break;
			}
		}
		// End of arming/disarming



		// Depending on the mode update the Stabilization or Actuator objects
		if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) {
			actuator.Roll = cmd.Roll;
			actuator.Pitch = cmd.Pitch;
			actuator.Yaw = cmd.Yaw;
			actuator.Throttle = cmd.Throttle;
			ActuatorDesiredSet(&actuator);
		} else if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) {
			attitude.Roll = cmd.Roll * stabSettings.RollMax;
			attitude.Pitch = cmd.Pitch * stabSettings.PitchMax;
			attitude.Yaw = fmod(cmd.Yaw * 180.0, 360);
			attitude.Throttle =  (cmd.Throttle < 0) ? -1 : cmd.Throttle;
			rate.Roll = cmd.Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL];
			rate.Pitch = cmd.Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH];
			rate.Yaw = cmd.Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW];

			AttitudeDesiredSet(&attitude);
			RateDesiredSet(&rate);
		}
	}
}
Пример #3
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	UAVObjEvent ev;
	
	uint32_t timeval = PIOS_DELAY_GetRaw();
	
	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	GyrosData gyrosData;
	FlightStatusData flightStatus;

	float *stabDesiredAxis = &stabDesired.Roll;
	float *actuatorDesiredAxis = &actuatorDesired.Roll;
	float *rateDesiredAxis = &rateDesired.Roll;
	float horizonRateFraction = 0.0f;

	// Force refresh of all settings immediately before entering main task loop
	SettingsUpdatedCb((UAVObjEvent *) NULL);
	
	// Settings for system identification
	uint32_t iteration = 0;
	const uint32_t SYSTEM_IDENT_PERIOD = 75;
	uint32_t system_ident_timeval = PIOS_DELAY_GetRaw();

	float dT_filtered = 0;

	// Main task loop
	zero_pids();
	while(1) {
		iteration++;

		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
		
		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if (PIOS_Queue_Receive(queue, &ev, FAILSAFE_TIMEOUT_MS) != true)
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}
		
		calculate_pids();

		float dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
		timeval = PIOS_DELAY_GetRaw();
		
		// exponential moving averaging (EMA) of dT to reduce jitter; ~200points
		// to have more or less equivalent noise reduction to a normal N point moving averaging:  alpha = 2 / (N + 1)
		// run it only at the beginning for the first samples, to reduce CPU load, and the value should converge to a constant value

		if (iteration < 100) {
			dT_filtered = dT;
		} else if (iteration < 2000) {
			dT_filtered = 0.01f * dT + (1.0f - 0.01f) * dT_filtered;
		} else if (iteration == 2000) {
			gyro_filter_updated = true;
		}

		if (gyro_filter_updated) {
			if (settings.GyroCutoff < 1.0f) {
				gyro_alpha = 0;
			} else {
				gyro_alpha = expf(-2.0f * (float)(M_PI) *
						settings.GyroCutoff * dT_filtered);
			}

			// Compute time constant for vbar decay term
			if (settings.VbarTau < 0.001f) {
				vbar_decay = 0;
			} else {
				vbar_decay = expf(-dT_filtered / settings.VbarTau);
			}

			gyro_filter_updated = false;
		}

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		GyrosGet(&gyrosData);
		ActuatorDesiredGet(&actuatorDesired);
#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredGet(&rateDesired);
#endif

		struct TrimmedAttitudeSetpoint {
			float Roll;
			float Pitch;
			float Yaw;
		} trimmedAttitudeSetpoint;
		
		// Mux in level trim values, and saturate the trimmed attitude setpoint.
		trimmedAttitudeSetpoint.Roll = bound_min_max(
			stabDesired.Roll + trimAngles.Roll,
			-settings.RollMax + trimAngles.Roll,
			 settings.RollMax + trimAngles.Roll);
		trimmedAttitudeSetpoint.Pitch = bound_min_max(
			stabDesired.Pitch + trimAngles.Pitch,
			-settings.PitchMax + trimAngles.Pitch,
			 settings.PitchMax + trimAngles.Pitch);
		trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw;

		// For horizon mode we need to compute the desire attitude from an unscaled value and apply the
		// trim offset. Also track the stick with the most deflection to choose rate blending.
		horizonRateFraction = 0.0f;
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Roll = bound_min_max(
				stabDesired.Roll * settings.RollMax + trimAngles.Roll,
				-settings.RollMax + trimAngles.Roll,
				 settings.RollMax + trimAngles.Roll);
			horizonRateFraction = fabsf(stabDesired.Roll);
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Pitch = bound_min_max(
				stabDesired.Pitch * settings.PitchMax + trimAngles.Pitch,
				-settings.PitchMax + trimAngles.Pitch,
				 settings.PitchMax + trimAngles.Pitch);
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Pitch));
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw * settings.YawMax;
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Yaw));
		}

		// For weak leveling mode the attitude setpoint is the trim value (drifts back towards "0")
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Roll = trimAngles.Roll;
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Pitch = trimAngles.Pitch;
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Yaw = 0;
		}

		// Note we divide by the maximum limit here so the fraction ranges from 0 to 1 depending on
		// how much is requested.
		horizonRateFraction = bound_sym(horizonRateFraction, HORIZON_MODE_MAX_BLEND) / HORIZON_MODE_MAX_BLEND;

		// Calculate the errors in each axis. The local error is used in the following modes:
		//  ATTITUDE, HORIZON, WEAKLEVELING
		float local_attitude_error[3];
		local_attitude_error[0] = trimmedAttitudeSetpoint.Roll - attitudeActual.Roll;
		local_attitude_error[1] = trimmedAttitudeSetpoint.Pitch - attitudeActual.Pitch;
		local_attitude_error[2] = trimmedAttitudeSetpoint.Yaw - attitudeActual.Yaw;
		
		// Wrap yaw error to [-180,180]
		local_attitude_error[2] = circular_modulus_deg(local_attitude_error[2]);

		static float gyro_filtered[3];
		gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
		gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
		gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);

		// A flag to track which stabilization mode each axis is in
		static uint8_t previous_mode[MAX_AXES] = {255,255,255};
		bool error = false;

		//Run the selected stabilization algorithm on each axis:
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			// Check whether this axis mode needs to be reinitialized
			bool reinit = (stabDesired.StabilizationMode[i] != previous_mode[i]);
			// The unscaled input (-1,1)
			float *raw_input = &stabDesired.Roll;
			previous_mode[i] = stabDesired.StabilizationMode[i];
			// Apply the selected control law
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					if(reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

			case STABILIZATIONDESIRED_STABILIZATIONMODE_ACROPLUS:
					// this implementation is based on the Openpilot/Librepilot Acro+ flightmode
					// and our existing rate & MWRate flightmodes
					if(reinit)
							pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// The factor for gyro suppression / mixing raw stick input into the output; scaled by raw stick input
					float factor = fabsf(raw_input[i]) * settings.AcroInsanityFactor / 100;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(raw_input[i] * settings.ManualRate[i], settings.ManualRate[i]);

					// Zero integral for aggressive maneuvers, like it is done for MWRate
					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
											(i == 0 && fabsf(raw_input[i]) > 0.2f)) {
							pids[PID_GROUP_RATE + i].iAccumulator = 0;
							pids[PID_GROUP_RATE + i].i = 0;
							}

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i], rateDesiredAxis[i], gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = factor * raw_input[i] + (1.0f - factor) * actuatorDesiredAxis[i];
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i], 1.0f);

					break;
			case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
					// Store for debugging output
					rateDesiredAxis[i] = stabDesiredAxis[i];

					// Run a virtual flybar stabilization algorithm on this axis
					stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &pids[PID_GROUP_VBAR + i], &settings);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					float weak_leveling = local_attitude_error[i] * weak_leveling_kp;
					weak_leveling = bound_sym(weak_leveling, weak_leveling_max);

					// Compute desired rate as input biased towards leveling
					rateDesiredAxis[i] = stabDesiredAxis[i] + weak_leveling;
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					if (fabsf(stabDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Reset accumulator
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply lock (almost) on no gyro change
						axis_lock_accum[i] += (stabDesiredAxis[i] - gyro_filtered[i]) * dT;
						axis_lock_accum[i] = bound_sym(axis_lock_accum[i], max_axis_lock);

						// Compute the inner loop
						float tmpRateDesired = pid_apply(&pids[PID_GROUP_ATT + i], axis_lock_accum[i], dT);
						rateDesiredAxis[i] = bound_sym(tmpRateDesired, settings.MaximumRate[i]);
					}

					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON:
					if(reinit) {
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Do not allow outer loop integral to wind up in this mode since the controller
					// is often disengaged.
					pids[PID_GROUP_ATT + i].iAccumulator = 0;

					// Compute the outer loop for the attitude control
					float rateDesiredAttitude = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					// Compute the desire rate for a rate control
					float rateDesiredRate = raw_input[i] * settings.ManualRate[i];

					// Blend from one rate to another. The maximum of all stick positions is used for the
					// amount so that when one axis goes completely to rate the other one does too. This
					// prevents doing flips while one axis tries to stay in attitude mode.
					rateDesiredAxis[i] = rateDesiredAttitude * (1.0f-horizonRateFraction) + rateDesiredRate * horizonRateFraction;
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_MWRATE:
				{
					if(reinit) {
						pids[PID_GROUP_MWR + i].iAccumulator = 0;
					}

					/*
					 Conversion from MultiWii PID settings to our units.
						Kp = Kp_mw * 4 / 80 / 500
						Kd = Kd_mw * looptime * 1e-6 * 4 * 3 / 32 / 500
						Ki = Ki_mw * 4 / 125 / 64 / (looptime * 1e-6) / 500

						These values will just be approximate and should help
						you get started.
					*/

					// The unscaled input (-1,1) - note in MW this is from (-500,500)
					float *raw_input = &stabDesired.Roll;

					// dynamic PIDs are scaled both by throttle and stick position
					float scale = (i == 0 || i == 1) ? mwrate_settings.RollPitchRate : mwrate_settings.YawRate;
					float pid_scale = (100.0f - scale * fabsf(raw_input[i])) / 100.0f;
					float dynP8 = pids[PID_GROUP_MWR + i].p * pid_scale;
					float dynD8 = pids[PID_GROUP_MWR + i].d * pid_scale;
					// these terms are used by the integral loop this proportional term is scaled by throttle (this is different than MW
					// that does not apply scale 
					float cfgP8 = pids[PID_GROUP_MWR + i].p;
					float cfgI8 = pids[PID_GROUP_MWR + i].i;

					// Dynamically adjust PID settings
					struct pid mw_pid;
					mw_pid.p = 0;      // use zero Kp here because of strange setpoint. applied later.
					mw_pid.d = dynD8;
					mw_pid.i = cfgI8;
					mw_pid.iLim = pids[PID_GROUP_MWR + i].iLim;
					mw_pid.iAccumulator = pids[PID_GROUP_MWR + i].iAccumulator;
					mw_pid.lastErr = pids[PID_GROUP_MWR + i].lastErr;
					mw_pid.lastDer = pids[PID_GROUP_MWR + i].lastDer;

					// Zero integral for aggressive maneuvers
 					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
 					    (i == 0 && fabsf(raw_input[i]) > 0.2f)) {
						mw_pid.iAccumulator = 0;
						mw_pid.i = 0;
					}

					// Apply controller as if we want zero change, then add stick input afterwards
					actuatorDesiredAxis[i] = pid_apply_setpoint(&mw_pid,  raw_input[i] / cfgP8,  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] += raw_input[i];             // apply input
					actuatorDesiredAxis[i] -= dynP8 * gyro_filtered[i]; // apply Kp term
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					// Store PID accumulators for next cycle
					pids[PID_GROUP_MWR + i].iAccumulator = mw_pid.iAccumulator;
					pids[PID_GROUP_MWR + i].lastErr = mw_pid.lastErr;
					pids[PID_GROUP_MWR + i].lastDer = mw_pid.lastDer;
				}
					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					static uint32_t ident_iteration = 0;
					static float ident_offsets[3] = {0};

					if (PIOS_DELAY_DiffuS(system_ident_timeval) / 1000.0f > SYSTEM_IDENT_PERIOD && SystemIdentHandle()) {
						ident_iteration++;
						system_ident_timeval = PIOS_DELAY_GetRaw();

						SystemIdentData systemIdent;
						SystemIdentGet(&systemIdent);

						const float SCALE_BIAS = 7.1f;
						float roll_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_ROLL]);
						float pitch_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_PITCH]);
						float yaw_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_YAW]);

						if (roll_scale > 0.25f)
							roll_scale = 0.25f;
						if (pitch_scale > 0.25f)
							pitch_scale = 0.25f;
						if (yaw_scale > 0.25f)
							yaw_scale = 0.2f;

						switch(ident_iteration & 0x07) {
							case 0:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 1:
								ident_offsets[0] = roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 2:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 3:
								ident_offsets[0] = -roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 4:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 5:
								ident_offsets[0] = 0;
								ident_offsets[1] = pitch_scale;
								ident_offsets[2] = 0;
								break;
							case 6:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 7:
								ident_offsets[0] = 0;
								ident_offsets[1] = -pitch_scale;
								ident_offsets[2] = 0;
								break;
						}
					}

					if (i == ROLL || i == PITCH) {
						// Compute the outer loop
						rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
						rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

						// Compute the inner loop
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);
					} else {
						// Get the desired rate. yaw is always in rate mode in system ident.
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Compute the inner loop only for yaw
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);						
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_COORDINATEDFLIGHT:
					switch (i) {
						case YAW:
							if (reinit) {
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}

							//If we are not in roll attitude mode, trigger an error
							if (stabDesired.StabilizationMode[ROLL] != STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
							{
								error = true;
								break ;
							}

							if (fabsf(stabDesired.Yaw) < COORDINATED_FLIGHT_MAX_YAW_THRESHOLD) { //If yaw is within the deadband...
								if (fabsf(stabDesired.Roll) > COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting more roll than the threshold
									float accelsDataY;
									AccelsyGet(&accelsDataY);

									//Reset integral if we have changed roll to opposite direction from rudder. This implies that we have changed desired turning direction.
									if ((stabDesired.Roll > 0 && actuatorDesiredAxis[YAW] < 0) ||
											(stabDesired.Roll < 0 && actuatorDesiredAxis[YAW] > 0)){
										pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
									}

									// Coordinate flight can simply be seen as ensuring that there is no lateral acceleration in the
									// body frame. As such, we use the (noisy) accelerometer data as our measurement. Ideally, at
									// some point in the future we will estimate acceleration and then we can use the estimated value
									// instead of the measured value.
									float errorSlip = -accelsDataY;

									float command = pid_apply(&pids[PID_COORDINATED_FLIGHT_YAW], errorSlip, dT);
									actuatorDesiredAxis[YAW] = bound_sym(command ,1.0);

									// Reset axis-lock integrals
									pids[PID_RATE_YAW].iAccumulator = 0;
									axis_lock_accum[YAW] = 0;
								} else if (fabsf(stabDesired.Roll) <= COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting less roll than the threshold
									// Axis lock on no gyro change
									axis_lock_accum[YAW] += (0 - gyro_filtered[YAW]) * dT;

									rateDesiredAxis[YAW] = pid_apply(&pids[PID_ATT_YAW], axis_lock_accum[YAW], dT);
									rateDesiredAxis[YAW] = bound_sym(rateDesiredAxis[YAW], settings.MaximumRate[YAW]);

									actuatorDesiredAxis[YAW] = pid_apply_setpoint(&pids[PID_RATE_YAW],  rateDesiredAxis[YAW],  gyro_filtered[YAW], dT);
									actuatorDesiredAxis[YAW] = bound_sym(actuatorDesiredAxis[YAW],1.0f);

									// Reset coordinated-flight integral
									pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								}
							} else { //... yaw is outside the deadband. Pass the manual input directly to the actuator.
								actuatorDesiredAxis[YAW] = bound_sym(stabDesiredAxis[YAW], 1.0);

								// Reset all integrals
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}
							break;
						case ROLL:
						case PITCH:
						default:
							//Coordinated Flight has no effect in these modes. Trigger a configuration error.
							error = true;
							break;
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_POI:
					// The sanity check enforces this is only selectable for Yaw
					// for a gimbal you can select pitch too.
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					float error;
					float angle;
					if (CameraDesiredHandle()) {
						switch(i) {
						case PITCH:
							CameraDesiredDeclinationGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Pitch);
							break;
						case ROLL:
						{
							uint8_t roll_fraction = 0;
#ifdef GIMBAL
							if (BrushlessGimbalSettingsHandle()) {
								BrushlessGimbalSettingsRollFractionGet(&roll_fraction);
							}
#endif /* GIMBAL */

							// For ROLL POI mode we track the FC roll angle (scaled) to
							// allow keeping some motion
							CameraDesiredRollGet(&angle);
							angle *= roll_fraction / 100.0f;
							error = circular_modulus_deg(angle - attitudeActual.Roll);
						}
							break;
						case YAW:
							CameraDesiredBearingGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Yaw);
							break;
						default:
							error = true;
						}
					} else
						error = true;

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], error, dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.PoiMaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					actuatorDesiredAxis[i] = bound_sym(stabDesiredAxis[i],1.0f);
					break;
				default:
					error = true;
					break;
			}
		}

		if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE)
			stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT);

#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredSet(&rateDesired);
#endif

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;
		actuatorDesired.Throttle = stabDesired.Throttle;

		if(flightStatus.FlightMode != FLIGHTSTATUS_FLIGHTMODE_MANUAL) {
			ActuatorDesiredSet(&actuatorDesired);
		} else {
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0))
		{
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		// Clear or set alarms.  Done like this to prevent toggling each cycle
		// and hammering system alarms
		if (error)
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_ERROR);
		else
			AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}