Пример #1
0
	RationalNumber operator ^ (const RationalNumber& B) const throw(std::invalid_argument)
	{
		if (!isFraction() || !B.isInteger())
		{
			return RationalNumber(powl(getRealNumber(), B.getRealNumber()));
		}
		RationalNumber S(1, 1);
		RationalNumber A = *this;
		long long n = B.numerator;
		if (n < 0)
		{
			A = RationalNumber(1, 1) / A;
			n = -n;
		}
		while (n)
		{
			if (n & 1)
			{
				S = S * A;
			}
			A = A * A;
			n >>= 1;
		}
		return S;
	}
Пример #2
0
	RationalNumber operator * (const RationalNumber& B) const
	{
		if (!isFraction() || !B.isFraction())
		{
			return RationalNumber(getRealNumber() * B.getRealNumber());
		}
		return RationalNumber(numerator * B.numerator, denominator * B.denominator);
	}
Пример #3
0
	RationalNumber operator / (const RationalNumber& B) const throw(std::domain_error)
	{
		if (!isFraction() || !B.isFraction())
		{
			return RationalNumber(getRealNumber() / B.getRealNumber());
		}
		if (B.numerator == 0)
		{
			throw std::domain_error("Division by zero!");
		}
		return RationalNumber(numerator * B.denominator, denominator * B.numerator);
	}
int rncCount(RationalNumberCollection *c, RationalNumber rn) {

    // Wenn rn ungültig -> return 0
    if (!rnIsValid(rn)) {
        return 0;
    }

    // Länge der Collection bestimmen
    int len = rncTotalUniqueCount(*(&c));

    // Wenn Collection leer ist -> return 0
    if (len == 0) {
        return 0;
    }

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // rn kürzen
    rn = rnShorten(rn);

    // Falls Bruch bereits vorhanden, ermittel Vorkommen des Bruchs
    int i = rncSearch(*(&c), rn, 0, len-1);
    if (i >= 0) {
        return ptr[i][1].numerator;
    }

    return 0;

}
int rncSearch(RationalNumberCollection *c, RationalNumber rn, int min, int max) {

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Wenn Collection leer
    if (max < min) {
        return -1;
    }

    // Mitte der Collection ermitteln
    int mid = (min + max) / 2;

    // Wenn rn in der unteren Teil-Collection
    if (rnLessThan(rn,ptr[mid][0])) {
        return rncSearch(*(&c), rn, min, mid-1);
    }
    // Wenn rn in der oberen Teil-Collection
    else if (rnLessThan(ptr[mid][0],rn)) {
        return rncSearch(*(&c), rn, mid+1, max);
    }
    // rn wurde gefunden
    else {
        return mid;
    }
}
void rncInit(RationalNumberCollection *c) {

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Allen Arrayelementen eine RationalNumber mit Zähler- und Nennerwerten von 0 eintragen,
    // mit Ausnahme des Zähler-Denominators. Diese bekommen eine 1 spendiert, die für
    // Rechenoperationen nötig ist.
    RationalNumber rn = { 0, 0 };
    RationalNumber counter = { 0, 1 };
    for (int i=0; i<MAXSIZE; i++) {
        ptr[i][0] = rn;
        ptr[i][1] = counter;
    }

    // Setze totalUniqueCount auf 0
    c->totalUniqueCount = 0;

    // Setze totalCount auf 0
    c->totalCount = 0;

    // Setze sum auf 0/1
    c->sum = counter;

    // Setze average auf 0/1
    c->average = counter;

    // Setze median auf 0/1
    c->median = counter;

}
Пример #7
0
RationalNumber RationalNumber::subtract (const RationalNumber &other){
    int commonDenominator = Denominator * other.getDenominator();
    int numerator1 = Numerator * other.getDenominator();
    int numerator2 = other.getNumerator() * Denominator;
    int difference = numerator1 - numerator2;
    
    return RationalNumber (difference, commonDenominator);
}
Пример #8
0
RationalNumber RationalNumber::add(const RationalNumber &other){
    int commonDenominator = Denominator * other.getDenominator();
    int numerator1 = Numerator * other.getDenominator();
    int numerator2 = other.getNumerator() * Denominator;
    int sum = numerator1 + numerator2;
    
    return RationalNumber (sum, commonDenominator);
}
Пример #9
0
// call by value
RationalNumber RationalNumber::operator-(const RationalNumber& other) const {
	if (other.isNaN())
		return RationalNumber(*this);

	RationalNumber r(*this);
	r -= other;
	r.normalize();
	return r;
}
void rncAdd(RationalNumberCollection *c, RationalNumber rn) {

    // Wenn rn ungültig -> return
    if (!rnIsValid(rn)) {
        return;
    }

    // Länge der Collection ermitteln
    int len = rncTotalUniqueCount(*(&c));

    // rn kürzen
    rn = rnShorten(rn);

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Falls Bruch bereits vorhanden
    int i = rncSearch(*(&c), rn, 0, len-1);
    if (i >= 0) {
        // Erhöhe Counter des Bruchs
        ptr[i][1].numerator++;
        // Erhöhe totalCount der Collection
        c->totalCount++;
        // Erhöhe sum der Collection
        c->sum = rnShorten(rnAdd(c->sum,rn));
        // Berechne average der Collection
        rncCalcAverage(*(&c));
        return;
    }

    // Falls nocht nicht alle Elemente des Arrays belegt sind
    if (len < MAXSIZE) {
        // Trage den Bruch ein und erhöhe den Counter des Bruchs
        ptr[len][0] = rn;
        ptr[len][1].numerator++;
        // Erhöhe totalUniqueCount der Collection
        c->totalUniqueCount++;
        // Erhöhe totalCount der Collection
        c->totalCount++;
        // Erhöhe sum der Collection
        c->sum = rnShorten(rnAdd(c->sum,rn));
        // Berechne average der Collection
        rncCalcAverage(*(&c));
    }

    // Collection sortieren wenn Länge der Collection > 0
    if (len > 0) {
        rncSort(*(&c), len+1);
    }

    // Berechne median der Collection
    rncCalcMedian(*(&c));

}
Пример #11
0
// call by value
RationalNumber RationalNumber::operator+(const RationalNumber& other) const {
	if (other.isNaN())
		return RationalNumber(*this);
	/*
	 RationalNumber result(nomi() * other.deno() + other.nomi() * deno(),
	 deno() * other.deno());
	 return result;
	 */
	RationalNumber r(*this);
	r += other;
	r.normalize();
	return r;
}
void rncRemove(RationalNumberCollection *c, RationalNumber rn) {

    // Wenn rn ungültig -> return
    if (!rnIsValid(rn)) {
        return;
    }

    // Länge der Collection ermitteln
    int len = rncTotalUniqueCount(*(&c));

    // Wenn Collection leer -> return
    if (len == 0) {
        return;
    }

    // rn kürzen
    rn = rnShorten(rn);

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Falls Bruch bereits vorhanden
    int i = rncSearch(*(&c), rn, 0, len-1);
    if (i >= 0) {
        // Veringere Counter des Bruchs
        ptr[i][1].numerator--;
        // Veringere totalCount der Collection
        c->totalCount--;
        // Verringere sum der Collection
        c->sum = rnShorten(rnSubtract(c->sum,rn));
        // Wenn Counter anschließend == 0, entferne Bruch aus Collection
        if (ptr[i][1].numerator == 0) {
            ptr[i][0].numerator = 0;
            ptr[i][0].denominator = 0;
            // Verringere totalUniqueCount der Collection
            c->totalUniqueCount--;
            // Collection sortieren wenn Bruch nicht letzter Bruch in der Collection war
            if (len > 1) {
               rncSort(*(&c), len);
            }
            // Berechne median der Collection
            rncCalcMedian(*(&c));
        }
        // Berechne average der Collection
        rncCalcAverage(*(&c));
    }

}
Пример #13
0
V3R SymmetryOperation::getReducedVector(const Kernel::IntMatrix &matrix,
                                        const V3R &vector) const {
  Kernel::IntMatrix translationMatrix(3, 3, false);

  for (size_t i = 0; i < order(); ++i) {
    Kernel::IntMatrix tempMatrix(3, 3, true);

    for (size_t j = 0; j < i; ++j) {
      tempMatrix *= matrix;
    }

    translationMatrix += tempMatrix;
  }

  return (translationMatrix * vector) *
         RationalNumber(1, static_cast<int>(order()));
}
void rncCalcMedian(RationalNumberCollection *c) {

    // Länge der Collection bestimmen
    int len = rncTotalUniqueCount(*(&c));

    // Wenn Collection leer
    if (len == 0) {
        RationalNumber result = { 0, 1 };
        c->median = result;
    }

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Wenn Länge der Collection == 1
    if (len == 1) {
        c->median = ptr[0][0];
    }

    // Wenn Länge der Collection == 2
    if (len == 2) {
        RationalNumber r = { 2, 1 };
        c->median = rnShorten(rnDivide(rnAdd(ptr[0][0], ptr[1][0]), r));
    }

    // Wenn Länge der Collection gerade
    if (len%2 == 0) {
        RationalNumber r = { 2, 1 };
        int lowerMedian = (len / 2) - 1;
        int upperMedian = len / 2;
        c->median = rnShorten(rnDivide(rnAdd(ptr[lowerMedian][0], ptr[upperMedian][0]), r));
    }
    // Wenn Länge der Collection ungerade
    else {
        int median = len / 2;
        c->median = ptr[median][0];
    }

}
/// Determines the symbol from the translation vector using a map.
std::string SymmetryElementMirrorGenerator::determineSymbol(
    const SymmetryOperation &operation) const {
  V3R rawTranslation = determineTranslation(operation);

  V3R translation;
  for (size_t i = 0; i < 3; ++i) {
    translation[i] = rawTranslation[i] > RationalNumber(1, 2)
                         ? rawTranslation[i] - 1
                         : rawTranslation[i];
  }

  std::string symbol = g_glideSymbolMap[translation.getPositiveVector()];

  /* Some space groups have "unconventional glides" for which there is no
   * proper symbol, so the general symbol "g" is used for these cases.
   * Examples can be found in No. 227 (Fd-3m).
   */
  if (symbol == "") {
    return "g";
  }

  return symbol;
}
void rncCalcAverage(RationalNumberCollection *c) {

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Alle Brüche in der Collection zählen und sie summieren
    int i = 0;
    RationalNumber count =  { 0, 1 };
    RationalNumber result = { 0, 1 };
    while(ptr[i][1].numerator > 0) {
        result = rnAdd(result, rnMultiply(ptr[i][0], ptr[i][1]));
        count.numerator += ptr[i][1].numerator;
        i++;
    }

    // Wenn keine Brüche gespeichert
    if (count.numerator == 0) {
        count.numerator = 1;
    }

    // Gekürzte RationalNumber zurückgeben
    c->average = rnShorten(rnDivide(result, count));

}
Пример #17
0
//return the quotient of this and a
RationalNumber RationalNumber::operator/(RationalNumber a)
{
	return RationalNumber(numerator * a.denominator, denominator * a.numerator);
}
Пример #18
0
//returns the difference of this and a
RationalNumber RationalNumber::operator-(RationalNumber a)
{
	int num = numerator * a.denominator - a.numerator * denominator;
	int denom = a.denominator * denominator;
	return RationalNumber(num, denom);
}
Пример #19
0
//definition for overload method operator /
RationalNumber RationalNumber::operator/(RationalNumber rn)
{
  return RationalNumber(numerator*rn.denominator, denominator*rn.numerator);
}
Пример #20
0
RationalNumber RationalNumber:: reciprocal(){
    return RationalNumber(Denominator, Numerator);
}
Пример #21
0
RationalNumber RationalNumber::multiply(const RationalNumber &other){
    int numer = Numerator * other.getNumerator();
    int denom = Denominator * other.getDenominator();
    
    return  RationalNumber (numer, denom);
}
void rncSort(RationalNumberCollection *c, int len) {

    // Temporäre Collection erstellen
    RationalNumberCollection temp;
    rncInit(&temp);

    // Zeiger auf Collection
    RationalNumber (*ptr)[2] = c->rn;

    // Zeiger auf temporäre Collection
    RationalNumber (*tempptr)[2] = temp.rn;

    // Variablen zum Speichern von Indexpositionen
    int tempIndex = 0;
    int minIndex = 0;

    // Solange sich Brüche in der Collection c befinden
    while (minIndex != -1) {

        minIndex = -1;

        // Suche kleinsten Bruch aus der Collection c
        int minCount;
        for (int i=0; i<len; i++) {
            if (ptr[i][1].numerator == 0) {
                continue;
            }
            if (minIndex == -1 || rnLessThan(ptr[i][0],ptr[minIndex][0])) {
                minIndex = i;
                minCount = ptr[i][1].numerator;
            }
        }

        // Wenn kleinsten Bruch gefunden
        if (minIndex != -1) {

            // Übertrage den gefunden kleinsten Bruch und dessen Vorkommen in die Collection temp
            tempptr[tempIndex][0] = ptr[minIndex][0];
            tempptr[tempIndex][1].numerator = minCount;

            // Erhöhe den totalUniqueCount der Collection temp
            temp.totalUniqueCount++;

            // Entferne den gefunden kleinsten Bruch und dessen Vorkommen aus der Collection c
            ptr[minIndex][0].numerator = 0;
            ptr[minIndex][0].denominator = 0;
            ptr[minIndex][1].numerator = 0;

            // Zeige auf den nächsten Index der Collection temp
            tempIndex++;

        }

    }

    // Übertrage alle Brüche und ihre Vorkommen der Collection temp in die Collection c
    int tempLen = rncTotalUniqueCount(&temp);
    for (int j=0; j<tempLen; j++) {
        ptr[j][0] = tempptr[j][0];
        ptr[j][1].numerator = tempptr[j][1].numerator;
    }

}