/* * map_partition_varattnos - maps varattno of any Vars in expr from the * attno's of 'from_rel' to the attno's of 'to_rel' partition, each of which * may be either a leaf partition or a partitioned table, but both of which * must be from the same partitioning hierarchy. * * Even though all of the same column names must be present in all relations * in the hierarchy, and they must also have the same types, the attnos may * be different. * * If found_whole_row is not NULL, *found_whole_row returns whether a * whole-row variable was found in the input expression. * * Note: this will work on any node tree, so really the argument and result * should be declared "Node *". But a substantial majority of the callers * are working on Lists, so it's less messy to do the casts internally. */ List * map_partition_varattnos(List *expr, int fromrel_varno, Relation to_rel, Relation from_rel, bool *found_whole_row) { bool my_found_whole_row = false; if (expr != NIL) { AttrNumber *part_attnos; part_attnos = convert_tuples_by_name_map(RelationGetDescr(to_rel), RelationGetDescr(from_rel), gettext_noop("could not convert row type")); expr = (List *) map_variable_attnos((Node *) expr, fromrel_varno, 0, part_attnos, RelationGetDescr(from_rel)->natts, RelationGetForm(to_rel)->reltype, &my_found_whole_row); } if (found_whole_row) *found_whole_row = my_found_whole_row; return expr; }
/* * Print a relation name into the StringInfo provided by caller. */ static void print_relname(StringInfo s, Relation rel) { Form_pg_class class_form = RelationGetForm(rel); appendStringInfoString(s, quote_qualified_identifier( get_namespace_name( get_rel_namespace(RelationGetRelid(rel))), NameStr(class_form->relname))); }
/* * Check if relation can be in given publication and throws appropriate * error if not. */ static void check_publication_add_relation(Relation targetrel) { /* Give more specific error for partitioned tables */ if (RelationGetForm(targetrel)->relkind == RELKIND_PARTITIONED_TABLE) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("\"%s\" is a partitioned table", RelationGetRelationName(targetrel)), errdetail("Adding partitioned tables to publications is not supported."), errhint("You can add the table partitions individually."))); /* Must be table */ if (RelationGetForm(targetrel)->relkind != RELKIND_RELATION) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("\"%s\" is not a table", RelationGetRelationName(targetrel)), errdetail("Only tables can be added to publications."))); /* Can't be system table */ if (IsCatalogRelation(targetrel)) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("\"%s\" is a system table", RelationGetRelationName(targetrel)), errdetail("System tables cannot be added to publications."))); /* UNLOGGED and TEMP relations cannot be part of publication. */ if (!RelationNeedsWAL(targetrel)) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("table \"%s\" cannot be replicated", RelationGetRelationName(targetrel)), errdetail("Temporary and unlogged relations cannot be replicated."))); }
/* ---------------------------------------------------------------- * caql_UpdateIndexes() * For caql_beginscan/caql_endscan block: * open the index once with CatalogOpenIndexes() * do CatalogIndexInsert() for each tuple heap_insert or heap_update * close the index with CatalogCloseIndexes() at caql_endscan() * * For all other cases (eg caql_getfirst) just do * CatalogUpdateIndexes(), * ---------------------------------------------------------------- */ static void caql_UpdateIndexes(cqContext *pCtx, Relation rel, HeapTuple tup) { if (RelationGetForm(rel)->relhasindex) /* check from ExecOpenIndices */ { if (!pCtx->cq_bScanBlock) /* not in beginscan/endscan block */ CatalogUpdateIndexes(rel, tup); else { /* open the index if necessary, then insert a tuple */ if (!pCtx->cq_indstate) pCtx->cq_indstate = CatalogOpenIndexes(rel); CatalogIndexInsert(pCtx->cq_indstate, tup); /* index is closed on caql_endscan() */ } } }
/* * get_relation_info - * Retrieves catalog information for a given relation. * * Given the Oid of the relation, return the following info into fields * of the RelOptInfo struct: * * min_attr lowest valid AttrNumber * max_attr highest valid AttrNumber * indexlist list of IndexOptInfos for relation's indexes * pages number of pages * tuples number of tuples * * Also, initialize the attr_needed[] and attr_widths[] arrays. In most * cases these are left as zeroes, but sometimes we need to compute attr * widths here, and we may as well cache the results for costsize.c. * * If inhparent is true, all we need to do is set up the attr arrays: * the RelOptInfo actually represents the appendrel formed by an inheritance * tree, and so the parent rel's physical size and index information isn't * important for it. */ void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel) { Index varno = rel->relid; Relation relation; bool hasindex; List *indexinfos = NIL; /* * We need not lock the relation since it was already locked, either by * the rewriter or when expand_inherited_rtentry() added it to the query's * rangetable. */ relation = heap_open(relationObjectId, NoLock); rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1; rel->max_attr = RelationGetNumberOfAttributes(relation); rel->reltablespace = RelationGetForm(relation)->reltablespace; Assert(rel->max_attr >= rel->min_attr); rel->attr_needed = (Relids *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids)); rel->attr_widths = (int32 *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32)); /* * Estimate relation size --- unless it's an inheritance parent, in which * case the size will be computed later in set_append_rel_pathlist, and we * must leave it zero for now to avoid bollixing the total_table_pages * calculation. */ if (!inhparent) estimate_rel_size(relation, rel->attr_widths - rel->min_attr, &rel->pages, &rel->tuples); /* * Make list of indexes. Ignore indexes on system catalogs if told to. * Don't bother with indexes for an inheritance parent, either. */ if (inhparent || (IgnoreSystemIndexes && IsSystemClass(relation->rd_rel))) hasindex = false; else hasindex = relation->rd_rel->relhasindex; if (hasindex) { List *indexoidlist; ListCell *l; LOCKMODE lmode; indexoidlist = RelationGetIndexList(relation); /* * For each index, we get the same type of lock that the executor will * need, and do not release it. This saves a couple of trips to the * shared lock manager while not creating any real loss of * concurrency, because no schema changes could be happening on the * index while we hold lock on the parent rel, and neither lock type * blocks any other kind of index operation. */ if (rel->relid == root->parse->resultRelation) lmode = RowExclusiveLock; else lmode = AccessShareLock; foreach(l, indexoidlist) { Oid indexoid = lfirst_oid(l); Relation indexRelation; Form_pg_index index; IndexOptInfo *info; int ncolumns; int i; /* * Extract info from the relation descriptor for the index. */ indexRelation = index_open(indexoid, lmode); index = indexRelation->rd_index; /* * Ignore invalid indexes, since they can't safely be used for * queries. Note that this is OK because the data structure we * are constructing is only used by the planner --- the executor * still needs to insert into "invalid" indexes! */ if (!index->indisvalid) { index_close(indexRelation, NoLock); continue; } /* * If the index is valid, but cannot yet be used, ignore it; but * mark the plan we are generating as transient. See * src/backend/access/heap/README.HOT for discussion. */ if (index->indcheckxmin && !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data), TransactionXmin)) { root->glob->transientPlan = true; index_close(indexRelation, NoLock); continue; } info = makeNode(IndexOptInfo); info->indexoid = index->indexrelid; info->reltablespace = RelationGetForm(indexRelation)->reltablespace; info->rel = rel; info->ncolumns = ncolumns = index->indnatts; /* * Allocate per-column info arrays. To save a few palloc cycles * we allocate all the Oid-type arrays in one request. Note that * the opfamily array needs an extra, terminating zero at the end. * We pre-zero the ordering info in case the index is unordered. */ info->indexkeys = (int *) palloc(sizeof(int) * ncolumns); info->opfamily = (Oid *) palloc0(sizeof(Oid) * (4 * ncolumns + 1)); info->opcintype = info->opfamily + (ncolumns + 1); info->fwdsortop = info->opcintype + ncolumns; info->revsortop = info->fwdsortop + ncolumns; info->nulls_first = (bool *) palloc0(sizeof(bool) * ncolumns); for (i = 0; i < ncolumns; i++) { info->indexkeys[i] = index->indkey.values[i]; info->opfamily[i] = indexRelation->rd_opfamily[i]; info->opcintype[i] = indexRelation->rd_opcintype[i]; } info->relam = indexRelation->rd_rel->relam; info->amcostestimate = indexRelation->rd_am->amcostestimate; info->amoptionalkey = indexRelation->rd_am->amoptionalkey; info->amsearchnulls = indexRelation->rd_am->amsearchnulls; info->amhasgettuple = OidIsValid(indexRelation->rd_am->amgettuple); info->amhasgetbitmap = OidIsValid(indexRelation->rd_am->amgetbitmap); /* * Fetch the ordering operators associated with the index, if any. * We expect that all ordering-capable indexes use btree's * strategy numbers for the ordering operators. */ if (indexRelation->rd_am->amcanorder) { int nstrat = indexRelation->rd_am->amstrategies; for (i = 0; i < ncolumns; i++) { int16 opt = indexRelation->rd_indoption[i]; int fwdstrat; int revstrat; if (opt & INDOPTION_DESC) { fwdstrat = BTGreaterStrategyNumber; revstrat = BTLessStrategyNumber; } else { fwdstrat = BTLessStrategyNumber; revstrat = BTGreaterStrategyNumber; } /* * Index AM must have a fixed set of strategies for it to * make sense to specify amcanorder, so we need not allow * the case amstrategies == 0. */ if (fwdstrat > 0) { Assert(fwdstrat <= nstrat); info->fwdsortop[i] = indexRelation->rd_operator[i * nstrat + fwdstrat - 1]; } if (revstrat > 0) { Assert(revstrat <= nstrat); info->revsortop[i] = indexRelation->rd_operator[i * nstrat + revstrat - 1]; } info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0; } } /* * Fetch the index expressions and predicate, if any. We must * modify the copies we obtain from the relcache to have the * correct varno for the parent relation, so that they match up * correctly against qual clauses. */ info->indexprs = RelationGetIndexExpressions(indexRelation); info->indpred = RelationGetIndexPredicate(indexRelation); if (info->indexprs && varno != 1) ChangeVarNodes((Node *) info->indexprs, 1, varno, 0); if (info->indpred && varno != 1) ChangeVarNodes((Node *) info->indpred, 1, varno, 0); info->predOK = false; /* set later in indxpath.c */ info->unique = index->indisunique; /* * Estimate the index size. If it's not a partial index, we lock * the number-of-tuples estimate to equal the parent table; if it * is partial then we have to use the same methods as we would for * a table, except we can be sure that the index is not larger * than the table. */ if (info->indpred == NIL) { info->pages = RelationGetNumberOfBlocks(indexRelation); info->tuples = rel->tuples; } else { estimate_rel_size(indexRelation, NULL, &info->pages, &info->tuples); if (info->tuples > rel->tuples) info->tuples = rel->tuples; } index_close(indexRelation, NoLock); indexinfos = lcons(info, indexinfos); } list_free(indexoidlist); }
/* * get_relation_info - * Retrieves catalog information for a given relation. * * Given the Oid of the relation, return the following info into fields * of the RelOptInfo struct: * * min_attr lowest valid AttrNumber * max_attr highest valid AttrNumber * indexlist list of IndexOptInfos for relation's indexes * pages number of pages * tuples number of tuples * * Also, initialize the attr_needed[] and attr_widths[] arrays. In most * cases these are left as zeroes, but sometimes we need to compute attr * widths here, and we may as well cache the results for costsize.c. * * If inhparent is true, all we need to do is set up the attr arrays: * the RelOptInfo actually represents the appendrel formed by an inheritance * tree, and so the parent rel's physical size and index information isn't * important for it. */ void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel) { Index varno = rel->relid; Relation relation; bool hasindex; List *indexinfos = NIL; /* * We need not lock the relation since it was already locked, either by * the rewriter or when expand_inherited_rtentry() added it to the query's * rangetable. */ relation = heap_open(relationObjectId, NoLock); /* Temporary and unlogged relations are inaccessible during recovery. */ if (!RelationNeedsWAL(relation) && RecoveryInProgress()) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot access temporary or unlogged relations during recovery"))); rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1; rel->max_attr = RelationGetNumberOfAttributes(relation); rel->reltablespace = RelationGetForm(relation)->reltablespace; Assert(rel->max_attr >= rel->min_attr); rel->attr_needed = (Relids *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids)); rel->attr_widths = (int32 *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32)); /* * Estimate relation size --- unless it's an inheritance parent, in which * case the size will be computed later in set_append_rel_pathlist, and we * must leave it zero for now to avoid bollixing the total_table_pages * calculation. */ if (!inhparent) estimate_rel_size(relation, rel->attr_widths - rel->min_attr, &rel->pages, &rel->tuples, &rel->allvisfrac); /* * Make list of indexes. Ignore indexes on system catalogs if told to. * Don't bother with indexes for an inheritance parent, either. */ if (inhparent || (IgnoreSystemIndexes && IsSystemClass(relation->rd_rel))) hasindex = false; else hasindex = relation->rd_rel->relhasindex; if (hasindex) { List *indexoidlist; ListCell *l; LOCKMODE lmode; indexoidlist = RelationGetIndexList(relation); /* * For each index, we get the same type of lock that the executor will * need, and do not release it. This saves a couple of trips to the * shared lock manager while not creating any real loss of * concurrency, because no schema changes could be happening on the * index while we hold lock on the parent rel, and neither lock type * blocks any other kind of index operation. */ if (rel->relid == root->parse->resultRelation) lmode = RowExclusiveLock; else lmode = AccessShareLock; foreach(l, indexoidlist) { Oid indexoid = lfirst_oid(l); Relation indexRelation; Form_pg_index index; IndexOptInfo *info; int ncolumns; int i; /* * Extract info from the relation descriptor for the index. */ indexRelation = index_open(indexoid, lmode); index = indexRelation->rd_index; /* * Ignore invalid indexes, since they can't safely be used for * queries. Note that this is OK because the data structure we * are constructing is only used by the planner --- the executor * still needs to insert into "invalid" indexes! */ if (!index->indisvalid) { index_close(indexRelation, NoLock); continue; } /* * If the index is valid, but cannot yet be used, ignore it; but * mark the plan we are generating as transient. See * src/backend/access/heap/README.HOT for discussion. */ if (index->indcheckxmin && !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data), TransactionXmin)) { root->glob->transientPlan = true; index_close(indexRelation, NoLock); continue; } info = makeNode(IndexOptInfo); info->indexoid = index->indexrelid; info->reltablespace = RelationGetForm(indexRelation)->reltablespace; info->rel = rel; info->ncolumns = ncolumns = index->indnatts; info->indexkeys = (int *) palloc(sizeof(int) * ncolumns); info->indexcollations = (Oid *) palloc(sizeof(Oid) * ncolumns); info->opfamily = (Oid *) palloc(sizeof(Oid) * ncolumns); info->opcintype = (Oid *) palloc(sizeof(Oid) * ncolumns); for (i = 0; i < ncolumns; i++) { info->indexkeys[i] = index->indkey.values[i]; info->indexcollations[i] = indexRelation->rd_indcollation[i]; info->opfamily[i] = indexRelation->rd_opfamily[i]; info->opcintype[i] = indexRelation->rd_opcintype[i]; } info->relam = indexRelation->rd_rel->relam; info->amcostestimate = indexRelation->rd_am->amcostestimate; info->canreturn = index_can_return(indexRelation); info->amcanorderbyop = indexRelation->rd_am->amcanorderbyop; info->amoptionalkey = indexRelation->rd_am->amoptionalkey; info->amsearcharray = indexRelation->rd_am->amsearcharray; info->amsearchnulls = indexRelation->rd_am->amsearchnulls; info->amhasgettuple = OidIsValid(indexRelation->rd_am->amgettuple); info->amhasgetbitmap = OidIsValid(indexRelation->rd_am->amgetbitmap); /* * Fetch the ordering information for the index, if any. */ if (info->relam == BTREE_AM_OID) { /* * If it's a btree index, we can use its opfamily OIDs * directly as the sort ordering opfamily OIDs. */ Assert(indexRelation->rd_am->amcanorder); info->sortopfamily = info->opfamily; info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns); info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns); for (i = 0; i < ncolumns; i++) { int16 opt = indexRelation->rd_indoption[i]; info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0; info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0; } } else if (indexRelation->rd_am->amcanorder) { /* * Otherwise, identify the corresponding btree opfamilies by * trying to map this index's "<" operators into btree. Since * "<" uniquely defines the behavior of a sort order, this is * a sufficient test. * * XXX This method is rather slow and also requires the * undesirable assumption that the other index AM numbers its * strategies the same as btree. It'd be better to have a way * to explicitly declare the corresponding btree opfamily for * each opfamily of the other index type. But given the lack * of current or foreseeable amcanorder index types, it's not * worth expending more effort on now. */ info->sortopfamily = (Oid *) palloc(sizeof(Oid) * ncolumns); info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns); info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns); for (i = 0; i < ncolumns; i++) { int16 opt = indexRelation->rd_indoption[i]; Oid ltopr; Oid btopfamily; Oid btopcintype; int16 btstrategy; info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0; info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0; ltopr = get_opfamily_member(info->opfamily[i], info->opcintype[i], info->opcintype[i], BTLessStrategyNumber); if (OidIsValid(ltopr) && get_ordering_op_properties(ltopr, &btopfamily, &btopcintype, &btstrategy) && btopcintype == info->opcintype[i] && btstrategy == BTLessStrategyNumber) { /* Successful mapping */ info->sortopfamily[i] = btopfamily; } else { /* Fail ... quietly treat index as unordered */ info->sortopfamily = NULL; info->reverse_sort = NULL; info->nulls_first = NULL; break; } } } else { info->sortopfamily = NULL; info->reverse_sort = NULL; info->nulls_first = NULL; } /* * Fetch the index expressions and predicate, if any. We must * modify the copies we obtain from the relcache to have the * correct varno for the parent relation, so that they match up * correctly against qual clauses. */ info->indexprs = RelationGetIndexExpressions(indexRelation); info->indpred = RelationGetIndexPredicate(indexRelation); if (info->indexprs && varno != 1) ChangeVarNodes((Node *) info->indexprs, 1, varno, 0); if (info->indpred && varno != 1) ChangeVarNodes((Node *) info->indpred, 1, varno, 0); /* Build targetlist using the completed indexprs data */ info->indextlist = build_index_tlist(root, info, relation); info->predOK = false; /* set later in indxpath.c */ info->unique = index->indisunique; info->immediate = index->indimmediate; info->hypothetical = false; /* * Estimate the index size. If it's not a partial index, we lock * the number-of-tuples estimate to equal the parent table; if it * is partial then we have to use the same methods as we would for * a table, except we can be sure that the index is not larger * than the table. */ if (info->indpred == NIL) { info->pages = RelationGetNumberOfBlocks(indexRelation); info->tuples = rel->tuples; } else { double allvisfrac; /* dummy */ estimate_rel_size(indexRelation, NULL, &info->pages, &info->tuples, &allvisfrac); if (info->tuples > rel->tuples) info->tuples = rel->tuples; } index_close(indexRelation, NoLock); indexinfos = lcons(info, indexinfos); } list_free(indexoidlist); }
/* ---------------------------------------------------------------- * ExecOpenIndices * * Find the indices associated with a result relation, open them, * and save information about them in the result ResultRelInfo. * * At entry, caller has already opened and locked * resultRelInfo->ri_RelationDesc. * ---------------------------------------------------------------- */ void ExecOpenIndices(ResultRelInfo *resultRelInfo, bool speculative) { Relation resultRelation = resultRelInfo->ri_RelationDesc; List *indexoidlist; ListCell *l; int len, i; RelationPtr relationDescs; IndexInfo **indexInfoArray; resultRelInfo->ri_NumIndices = 0; /* fast path if no indexes */ if (!RelationGetForm(resultRelation)->relhasindex) return; /* * Get cached list of index OIDs */ indexoidlist = RelationGetIndexList(resultRelation); len = list_length(indexoidlist); if (len == 0) return; /* * allocate space for result arrays */ relationDescs = (RelationPtr) palloc(len * sizeof(Relation)); indexInfoArray = (IndexInfo **) palloc(len * sizeof(IndexInfo *)); resultRelInfo->ri_NumIndices = len; resultRelInfo->ri_IndexRelationDescs = relationDescs; resultRelInfo->ri_IndexRelationInfo = indexInfoArray; /* * For each index, open the index relation and save pg_index info. We * acquire RowExclusiveLock, signifying we will update the index. * * Note: we do this even if the index is not indisready; it's not worth * the trouble to optimize for the case where it isn't. */ i = 0; foreach(l, indexoidlist) { Oid indexOid = lfirst_oid(l); Relation indexDesc; IndexInfo *ii; indexDesc = index_open(indexOid, RowExclusiveLock); /* extract index key information from the index's pg_index info */ ii = BuildIndexInfo(indexDesc); /* * If the indexes are to be used for speculative insertion, add extra * information required by unique index entries. */ if (speculative && ii->ii_Unique) BuildSpeculativeIndexInfo(indexDesc, ii); relationDescs[i] = indexDesc; indexInfoArray[i] = ii; i++; }
static void pg_decode_change(LogicalDecodingContext* ctx, ReorderBufferTXN* txn, Relation relation, ReorderBufferChange* change) { DecodingJsonData* data; Form_pg_class class_form; TupleDesc tupdesc; HeapTuple tuple; MemoryContext old; data = ctx->output_plugin_private; data->xact_wrote_changes = true; class_form = RelationGetForm(relation); tupdesc = RelationGetDescr(relation); old = MemoryContextSwitchTo(data->context); OutputPluginPrepareWrite(ctx, true); appendStringInfoString(ctx->out, "{\"type\":\"table\""); appendStringInfo( ctx->out, ",\"schema\":\"%s\"", get_namespace_name( get_rel_namespace( RelationGetRelid(relation) ) ) ); appendStringInfo(ctx->out, ",\"name\":\"%s\"", NameStr(class_form->relname)); appendStringInfo( ctx->out, ",\"change\":\"%s\"", change->action == REORDER_BUFFER_CHANGE_INSERT ? "INSERT" : change->action == REORDER_BUFFER_CHANGE_UPDATE ? "UPDATE" : change->action == REORDER_BUFFER_CHANGE_DELETE ? "DELETE" : "FIXME" ); if (change->action == REORDER_BUFFER_CHANGE_UPDATE || change->action == REORDER_BUFFER_CHANGE_DELETE) { appendStringInfoString(ctx->out, ",\"key\":{"); RelationGetIndexList(relation); if (OidIsValid(relation->rd_replidindex)) { int i; Relation index = index_open(relation->rd_replidindex, ShareLock); tuple = change->data.tp.oldtuple ? &change->data.tp.oldtuple->tuple : &change->data.tp.newtuple->tuple; for (i = 0; i < index->rd_index->indnatts; i++) { int j = index->rd_index->indkey.values[i]; Form_pg_attribute attr = tupdesc->attrs[j - 1]; if (i > 0) appendStringInfoChar(ctx->out, ','); appendStringInfo(ctx->out, "\"%s\":", NameStr(attr->attname)); print_value(ctx->out, tupdesc, tuple, j - 1); } index_close(index, NoLock); } else { appendStringInfoString(ctx->out, "\"***FIXME***\""); } appendStringInfoChar(ctx->out, '}'); } if (change->action == REORDER_BUFFER_CHANGE_UPDATE || change->action == REORDER_BUFFER_CHANGE_INSERT) { appendStringInfoString(ctx->out, ",\"data\":{"); tuple_to_stringinfo(ctx->out, tupdesc, &change->data.tp.newtuple->tuple, false); appendStringInfoChar(ctx->out, '}'); } appendStringInfoChar(ctx->out, '}'); MemoryContextSwitchTo(old); MemoryContextReset(data->context); OutputPluginWrite(ctx, true); }
static void CatalogCacheInitializeCache(CatCache *cache) { Relation relation; MemoryContext oldcxt; TupleDesc tupdesc; int i; CatalogCacheInitializeCache_DEBUG1; relation = heap_open(cache->cc_reloid, AccessShareLock); /* * switch to the cache context so our allocations do not vanish at the end * of a transaction */ Assert(CacheMemoryContext != NULL); oldcxt = MemoryContextSwitchTo(CacheMemoryContext); /* * copy the relcache's tuple descriptor to permanent cache storage */ tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation)); /* * save the relation's name and relisshared flag, too (cc_relname is used * only for debugging purposes) */ cache->cc_relname = pstrdup(RelationGetRelationName(relation)); cache->cc_relisshared = RelationGetForm(relation)->relisshared; /* * return to the caller's memory context and close the rel */ MemoryContextSwitchTo(oldcxt); heap_close(relation, AccessShareLock); CACHE3_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys", cache->cc_relname, cache->cc_nkeys); /* * initialize cache's key information */ for (i = 0; i < cache->cc_nkeys; ++i) { Oid keytype; RegProcedure eqfunc; CatalogCacheInitializeCache_DEBUG2; if (cache->cc_key[i] > 0) keytype = tupdesc->attrs[cache->cc_key[i] - 1]->atttypid; else { if (cache->cc_key[i] != ObjectIdAttributeNumber) elog(FATAL, "only sys attr supported in caches is OID"); keytype = OIDOID; } GetCCHashEqFuncs(keytype, &cache->cc_hashfunc[i], &eqfunc); cache->cc_isname[i] = (keytype == NAMEOID); /* * Do equality-function lookup (we assume this won't need a catalog * lookup for any supported type) */ fmgr_info_cxt(eqfunc, &cache->cc_skey[i].sk_func, CacheMemoryContext); /* Initialize sk_attno suitably for HeapKeyTest() and heap scans */ cache->cc_skey[i].sk_attno = cache->cc_key[i]; /* Fill in sk_strategy as well --- always standard equality */ cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber; cache->cc_skey[i].sk_subtype = InvalidOid; /* Currently, there are no catcaches on collation-aware data types */ cache->cc_skey[i].sk_collation = InvalidOid; CACHE4_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p", cache->cc_relname, i, cache); } /* * mark this cache fully initialized */ cache->cc_tupdesc = tupdesc; }
/* * ConstructTupleDescriptor * * Build an index tuple descriptor for a new index */ static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, Oid *classObjectId) { int numatts = indexInfo->ii_NumIndexAttrs; List *indexprs = indexInfo->ii_Expressions; TupleDesc heapTupDesc; TupleDesc indexTupDesc; int natts; /* #atts in heap rel --- for error checks */ int i; heapTupDesc = RelationGetDescr(heapRelation); natts = RelationGetForm(heapRelation)->relnatts; /* * allocate the new tuple descriptor */ indexTupDesc = CreateTemplateTupleDesc(numatts, false); /* * For simple index columns, we copy the pg_attribute row from the * parent relation and modify it as necessary. For expressions we * have to cons up a pg_attribute row the hard way. */ for (i = 0; i < numatts; i++) { AttrNumber atnum = indexInfo->ii_KeyAttrNumbers[i]; Form_pg_attribute to; HeapTuple tuple; Form_pg_type typeTup; Oid keyType; indexTupDesc->attrs[i] = to = (Form_pg_attribute) palloc0(ATTRIBUTE_TUPLE_SIZE); if (atnum != 0) { /* Simple index column */ Form_pg_attribute from; if (atnum < 0) { /* * here we are indexing on a system attribute (-1...-n) */ from = SystemAttributeDefinition(atnum, heapRelation->rd_rel->relhasoids); } else { /* * here we are indexing on a normal attribute (1...n) */ if (atnum > natts) /* safety check */ elog(ERROR, "invalid column number %d", atnum); from = heapTupDesc->attrs[AttrNumberGetAttrOffset(atnum)]; } /* * now that we've determined the "from", let's copy the tuple * desc data... */ memcpy(to, from, ATTRIBUTE_TUPLE_SIZE); /* * Fix the stuff that should not be the same as the underlying * attr */ to->attnum = i + 1; to->attstattarget = 0; to->attcacheoff = -1; to->attnotnull = false; to->atthasdef = false; to->attislocal = true; to->attinhcount = 0; } else { /* Expressional index */ Node *indexkey; if (indexprs == NIL) /* shouldn't happen */ elog(ERROR, "too few entries in indexprs list"); indexkey = (Node *) lfirst(indexprs); indexprs = lnext(indexprs); /* * Make the attribute's name "pg_expresssion_nnn" (maybe think * of something better later) */ sprintf(NameStr(to->attname), "pg_expression_%d", i + 1); /* * Lookup the expression type in pg_type for the type length * etc. */ keyType = exprType(indexkey); tuple = SearchSysCache(TYPEOID, ObjectIdGetDatum(keyType), 0, 0, 0); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for type %u", keyType); typeTup = (Form_pg_type) GETSTRUCT(tuple); /* * Assign some of the attributes values. Leave the rest as 0. */ to->attnum = i + 1; to->atttypid = keyType; to->attlen = typeTup->typlen; to->attbyval = typeTup->typbyval; to->attstorage = typeTup->typstorage; to->attalign = typeTup->typalign; to->attcacheoff = -1; to->atttypmod = -1; to->attislocal = true; ReleaseSysCache(tuple); } /* * We do not yet have the correct relation OID for the index, so * just set it invalid for now. InitializeAttributeOids() will * fix it later. */ to->attrelid = InvalidOid; /* * Check the opclass to see if it provides a keytype (overriding * the attribute type). */ tuple = SearchSysCache(CLAOID, ObjectIdGetDatum(classObjectId[i]), 0, 0, 0); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for opclass %u", classObjectId[i]); keyType = ((Form_pg_opclass) GETSTRUCT(tuple))->opckeytype; ReleaseSysCache(tuple); if (OidIsValid(keyType) && keyType != to->atttypid) { /* index value and heap value have different types */ tuple = SearchSysCache(TYPEOID, ObjectIdGetDatum(keyType), 0, 0, 0); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for type %u", keyType); typeTup = (Form_pg_type) GETSTRUCT(tuple); to->atttypid = keyType; to->atttypmod = -1; to->attlen = typeTup->typlen; to->attbyval = typeTup->typbyval; to->attalign = typeTup->typalign; to->attstorage = typeTup->typstorage; ReleaseSysCache(tuple); } } return indexTupDesc; }
static void CatalogCacheInitializeCache(CatCache *cache) { Relation relation; MemoryContext oldcxt; TupleDesc tupdesc; int i; CatalogCacheInitializeCache_DEBUG2; /* * Open the relation without locking --- we only need the tupdesc, * which we assume will never change ... */ relation = heap_openr(cache->cc_relname, NoLock); Assert(RelationIsValid(relation)); /* * switch to the cache context so our allocations do not vanish at the * end of a transaction */ Assert(CacheMemoryContext != NULL); oldcxt = MemoryContextSwitchTo(CacheMemoryContext); /* * copy the relcache's tuple descriptor to permanent cache storage */ tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation)); /* * get the relation's OID and relisshared flag, too */ cache->cc_reloid = RelationGetRelid(relation); cache->cc_relisshared = RelationGetForm(relation)->relisshared; /* * return to the caller's memory context and close the rel */ MemoryContextSwitchTo(oldcxt); heap_close(relation, NoLock); CACHE3_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys", cache->cc_relname, cache->cc_nkeys); /* * initialize cache's key information */ for (i = 0; i < cache->cc_nkeys; ++i) { Oid keytype; CatalogCacheInitializeCache_DEBUG2; if (cache->cc_key[i] > 0) keytype = tupdesc->attrs[cache->cc_key[i] - 1]->atttypid; else { if (cache->cc_key[i] != ObjectIdAttributeNumber) elog(FATAL, "only sys attr supported in caches is OID"); keytype = OIDOID; } GetCCHashEqFuncs(keytype, &cache->cc_hashfunc[i], &cache->cc_skey[i].sk_procedure); cache->cc_isname[i] = (keytype == NAMEOID); /* * Do equality-function lookup (we assume this won't need a * catalog lookup for any supported type) */ fmgr_info_cxt(cache->cc_skey[i].sk_procedure, &cache->cc_skey[i].sk_func, CacheMemoryContext); /* Initialize sk_attno suitably for HeapKeyTest() and heap scans */ cache->cc_skey[i].sk_attno = cache->cc_key[i]; CACHE4_elog(DEBUG2, "CatalogCacheInit %s %d %p", cache->cc_relname, i, cache); } /* * mark this cache fully initialized */ cache->cc_tupdesc = tupdesc; }