// Set inertial navigation aiding mode void NavEKF2_core::setAidingMode() { // Save the previous status so we can detect when it has changed PV_AidingModePrev = PV_AidingMode; // Determine if we should change aiding mode switch (PV_AidingMode) { case AID_NONE: { // Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete // and IMU gyro bias estimates have stabilised bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus(); // If GPS usage has been prohiited then we use flow aiding provided optical flow data is present // GPS aiding is the preferred option unless excluded by the user bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && filterIsStable && !gpsInhibit); bool canUseRangeBeacon = readyToUseRangeBeacon() && filterIsStable; if(canUseGPS || canUseRangeBeacon) { PV_AidingMode = AID_ABSOLUTE; } else if (optFlowDataPresent() && filterIsStable) { PV_AidingMode = AID_RELATIVE; } } break; case AID_RELATIVE: { // Check if the optical flow sensor has timed out bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000); // Check if the fusion has timed out (flow measurements have been rejected for too long) bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000); // Enable switch to absolute position mode if GPS is available // If GPS is not available and flow fusion has timed out, then fall-back to no-aiding if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit) { PV_AidingMode = AID_ABSOLUTE; } else if (flowSensorTimeout || flowFusionTimeout) { PV_AidingMode = AID_NONE; } } break; case AID_ABSOLUTE: { // Find the minimum time without data required to trigger any check uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms)); // Check if optical flow data is being used bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms); // Check if airspeed data is being used bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms); // Check if range beacon data is being used bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms); // Check if GPS is being used bool gpsPosUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms); bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms); // Check if attitude drift has been constrained by a measurement source bool attAiding = gpsPosUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed; // check if velocity drift has been constrained by a measurement source bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed; // check if position drift has been constrained by a measurement source bool posAiding = gpsPosUsed || rngBcnUsed; // Check if the loss of attitude aiding has become critical bool attAidLossCritical = false; if (!attAiding) { attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) && (imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) && (imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) && (imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) && (imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms); } // Check if the loss of position accuracy has become critical bool posAidLossCritical = false; if (!posAiding ) { uint16_t maxLossTime_ms; if (!velAiding) { maxLossTime_ms = frontend->posRetryTimeNoVel_ms; } else { maxLossTime_ms = frontend->posRetryTimeUseVel_ms; } posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) && (imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms); } if (attAidLossCritical) { // if the loss of attitude data is critical, then put the filter into a constant position mode PV_AidingMode = AID_NONE; posTimeout = true; velTimeout = true; rngBcnTimeout = true; tasTimeout = true; gpsNotAvailable = true; } else if (posAidLossCritical) { // if the loss of position is critical, declare all sources of position aiding as being timed out posTimeout = true; velTimeout = true; rngBcnTimeout = true; gpsNotAvailable = true; } } break; default: break; } // check to see if we are starting or stopping aiding and set states and modes as required if (PV_AidingMode != PV_AidingModePrev) { // set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped. switch (PV_AidingMode) { case AID_NONE: // We have ceased aiding GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF2 IMU%u has stopped aiding",(unsigned)imu_index); // When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors posTimeout = true; velTimeout = true; // Reset the normalised innovation to avoid false failing bad fusion tests velTestRatio = 0.0f; posTestRatio = 0.0f; // store the current position to be used to keep reporting the last known position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // initialise filtered altitude used to provide a takeoff reference to current baro on disarm // this reduces the time required for the baro noise filter to settle before the filtered baro data can be used meaHgtAtTakeOff = baroDataDelayed.hgt; // reset the vertical position state to faster recover from baro errors experienced during touchdown stateStruct.position.z = -meaHgtAtTakeOff; break; case AID_RELATIVE: // We have commenced aiding, but GPS usage has been prohibited so use optical flow only GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using optical flow",(unsigned)imu_index); posTimeout = true; velTimeout = true; // Reset the last valid flow measurement time flowValidMeaTime_ms = imuSampleTime_ms; // Reset the last valid flow fusion time prevFlowFuseTime_ms = imuSampleTime_ms; break; case AID_ABSOLUTE: { bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit); bool canUseRangeBeacon = readyToUseRangeBeacon(); // We have commenced aiding and GPS usage is allowed if (canUseGPS) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using GPS",(unsigned)imu_index); } posTimeout = false; velTimeout = false; // We have commenced aiding and range beacon usage is allowed if (canUseRangeBeacon) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using range beacons",(unsigned)imu_index); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffset); } // reset the last fusion accepted times to prevent unwanted activation of timeout logic lastPosPassTime_ms = imuSampleTime_ms; lastVelPassTime_ms = imuSampleTime_ms; lastRngBcnPassTime_ms = imuSampleTime_ms; } break; default: break; } // Always reset the position and velocity when changing mode ResetVelocity(); ResetPosition(); } }
// fuse selected position, velocity and height measurements void NavEKF2_core::FuseVelPosNED() { // start performance timer hal.util->perf_begin(_perf_FuseVelPosNED); // health is set bad until test passed velHealth = false; posHealth = false; hgtHealth = false; // declare variables used to check measurement errors Vector3f velInnov; // declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations float posErr; Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only Vector6 observation; float SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // set the GPS data timeout depending on whether airspeed data is present uint32_t gpsRetryTime; if (useAirspeed()) gpsRetryTime = frontend->gpsRetryTimeUseTAS_ms; else gpsRetryTime = frontend->gpsRetryTimeNoTAS_ms; // form the observation vector observation[0] = gpsDataDelayed.vel.x; observation[1] = gpsDataDelayed.vel.y; observation[2] = gpsDataDelayed.vel.z; observation[3] = gpsDataDelayed.pos.x; observation[4] = gpsDataDelayed.pos.y; observation[5] = -hgtMea; // calculate additional error in GPS position caused by manoeuvring posErr = frontend->gpsPosVarAccScale * accNavMag; // estimate the GPS Velocity, GPS horiz position and height measurement variances. // if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity // otherwise we scale it using manoeuvre acceleration // Use different errors if flying without GPS using synthetic position and velocity data if (PV_AidingMode == AID_NONE && inFlight) { // Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use) // This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres R_OBS[0] = sq(10.0f); R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; // Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres R_OBS[3] = sq(25.0f); R_OBS[4] = R_OBS[3]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f)); } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); R_OBS[4] = R_OBS[3]; } R_OBS[5] = posDownObsNoise; // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data and an independant height source is being used, check to see if the GPS vertical velocity and altimeter // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) { // calculate innovations for height and vertical GPS vel measurements float hgtErr = stateStruct.position.z - observation[5]; float velDErr = stateStruct.velocity.z - observation[2]; // check if they are the same sign and both more than 3-sigma out of bounds if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { badIMUdata = true; } else { badIMUdata = false; } } // calculate innovations and check GPS data validity using an innovation consistency check // test position measurements if (fusePosData) { // test horizontal position measurements innovVelPos[3] = stateStruct.position.x - observation[3]; innovVelPos[4] = stateStruct.position.y - observation[4]; varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; // apply an innovation consistency threshold test, but don't fail if bad IMU data float maxPosInnov2 = sq(max(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; posHealth = ((posTestRatio < 1.0f) || badIMUdata); // declare a timeout condition if we have been too long without data or not aiding posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use position data if healthy, timed out, or in constant position mode if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) { posHealth = true; // only reset the failed time and do glitch timeout checks if we are doing full aiding if (PV_AidingMode == AID_ABSOLUTE) { lastPosPassTime_ms = imuSampleTime_ms; // if timed out or outside the specified uncertainty radius, reset to the GPS if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) { // reset the position to the current GPS position ResetPosition(); // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS data on this time step fusePosData = false; fuseVelData = false; // Reset the position variances and corresponding covariances to a value that will pass the checks zeroRows(P,6,7); zeroCols(P,6,7); P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax)); P[7][7] = P[6][6]; // Reset the normalised innovation to avoid failing the bad fusion tests posTestRatio = 0.0f; velTestRatio = 0.0f; } } } else { posHealth = false; } } // test velocity measurements if (fuseVelData) { // test velocity measurements uint8_t imax = 2; // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) { imax = 1; } float innovVelSumSq = 0; // sum of squares of velocity innovations float varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { // velocity states start at index 3 stateIndex = i + 3; // calculate innovations using blended and single IMU predicted states velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended // calculate innovation variance varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; // sum the innovation and innovation variances innovVelSumSq += sq(velInnov[i]); varVelSum += varInnovVelPos[i]; } // apply an innovation consistency threshold test, but don't fail if bad IMU data // calculate the test ratio velTestRatio = innovVelSumSq / (varVelSum * sq(max(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f))); // fail if the ratio is greater than 1 velHealth = ((velTestRatio < 1.0f) || badIMUdata); // declare a timeout if we have not fused velocity data for too long or not aiding velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use velocity data if healthy, timed out, or in constant position mode if (velHealth || velTimeout) { velHealth = true; // restart the timeout count lastVelPassTime_ms = imuSampleTime_ms; // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity if (PV_AidingMode == AID_ABSOLUTE && velTimeout) { // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS velocity data on this time step fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } else { velHealth = false; } } // test height measurements if (fuseHgtData) { // calculate height innovations innovVelPos[5] = stateStruct.position.z - observation[5]; varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; // calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(max(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]); // fail if the ratio is > 1, but don't fail if bad IMU data hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); // Fuse height data if healthy or timed out or in constant position mode if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) { // Calculate a filtered value to be used by pre-flight health checks // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution if (onGround) { float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f; const float hgtInnovFiltTC = 2.0f; float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f); hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha; } else { hgtInnovFiltState = 0.0f; } // if timed out, reset the height if (hgtTimeout) { ResetHeight(); hgtTimeout = false; } // If we have got this far then declare the height data as healthy and reset the timeout counter hgtHealth = true; lastHgtPassTime_ms = imuSampleTime_ms; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData && velHealth) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel) { fuseData[2] = true; } tiltErrVec.zero(); } if (fusePosData && posHealth) { fuseData[3] = true; fuseData[4] = true; tiltErrVec.zero(); } if (fuseHgtData && hgtHealth) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 3 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 5) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; const float gndMaxBaroErr = 4.0f; const float gndBaroInnovFloor = -0.5f; if(getTouchdownExpected()) { // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=15; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = 0.0f; } } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { Kfusion[22] = 0.0f; Kfusion[23] = 0.0f; } // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion stateStruct.angErr.zero(); // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } // the first 3 states represent the angular misalignment vector. This is // is used to correct the estimated quaternion stateStruct.quat.rotate(stateStruct.angErr); // sum the attitude error from velocity and position fusion only // used as a metric for convergence monitoring if (obsIndex != 5) { tiltErrVec += stateStruct.angErr; } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } } } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. ForceSymmetry(); ConstrainVariances(); // stop performance timer hal.util->perf_end(_perf_FuseVelPosNED); }
// Set inertial navigation aiding mode void NavEKF2_core::setAidingMode() { // Determine when to commence aiding for inertial navigation // Save the previous status so we can detect when it has changed prevIsAiding = isAiding; // Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete bool filterIsStable = tiltAlignComplete && yawAlignComplete; // If GPS useage has been prohiited then we use flow aiding provided optical flow data is present bool useFlowAiding = (frontend._fusionModeGPS == 3) && optFlowDataPresent(); // Start aiding if we have a source of aiding data and the filter attitude algnment is complete // Latch to on. Aiding can be turned off by setting both isAiding = ((readyToUseGPS() || useFlowAiding) && filterIsStable) || isAiding; // check to see if we are starting or stopping aiding and set states and modes as required if (isAiding != prevIsAiding) { // We have transitioned either into or out of aiding // zero stored velocities used to do dead-reckoning heldVelNE.zero(); // reset the flag that indicates takeoff for use by optical flow navigation takeOffDetected = false; // set various useage modes based on the condition when we start aiding. These are then held until aiding is stopped. if (!isAiding) { // We have ceased aiding // When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors PV_AidingMode = AID_NONE; posTimeout = true; velTimeout = true; // store the current position to be used to keep reporting the last known position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // initialise filtered altitude used to provide a takeoff reference to current baro on disarm // this reduces the time required for the baro noise filter to settle before the filtered baro data can be used meaHgtAtTakeOff = baroDataDelayed.hgt; // reset the vertical position state to faster recover from baro errors experienced during touchdown stateStruct.position.z = -meaHgtAtTakeOff; } else if (frontend._fusionModeGPS == 3) { // We have commenced aiding, but GPS useage has been prohibited so use optical flow only hal.console->printf("EKF is using optical flow\n"); PV_AidingMode = AID_RELATIVE; // we have optical flow data and can estimate all vehicle states posTimeout = true; velTimeout = true; // Reset the last valid flow measurement time flowValidMeaTime_ms = imuSampleTime_ms; // Reset the last valid flow fusion time prevFlowFuseTime_ms = imuSampleTime_ms; } else { // We have commenced aiding and GPS useage is allowed hal.console->printf("EKF is using GPS\n"); PV_AidingMode = AID_ABSOLUTE; // we have GPS data and can estimate all vehicle states posTimeout = false; velTimeout = false; // we need to reset the GPS timers to prevent GPS timeout logic being invoked on entry into GPS aiding // this is becasue the EKF can be interrupted for an arbitrary amount of time during vehicle arming checks lastTimeGpsReceived_ms = imuSampleTime_ms; secondLastGpsTime_ms = imuSampleTime_ms; // reset the last valid position fix time to prevent unwanted activation of GPS glitch logic lastPosPassTime_ms = imuSampleTime_ms; } // Reset all position, velocity and covariance ResetVelocity(); ResetPosition(); CovarianceInit(); } // Always turn aiding off when the vehicle is disarmed if (!isAiding) { PV_AidingMode = AID_NONE; posTimeout = true; velTimeout = true; } }
// select fusion of optical flow measurements void NavEKF2_core::SelectFlowFusion() { // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz // If so, don't fuse measurements on this time step to reduce frame over-runs // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) { optFlowFusionDelayed = true; return; } else { optFlowFusionDelayed = false; } // start performance timer hal.util->perf_begin(_perf_FuseOptFlow); // Perform Data Checks // Check if the optical flow data is still valid flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000); // Check if the optical flow sensor has timed out bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000); // Check if the fusion has timed out (flow measurements have been rejected for too long) bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000); // check is the terrain offset estimate is still valid gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000); // Perform tilt check bool tiltOK = (Tnb_flow.c.z > frontend.DCM33FlowMin); // Constrain measurements to zero if we are using optical flow and are on the ground if (frontend._fusionModeGPS == 3 && !takeOffDetected && isAiding) { ofDataDelayed.flowRadXYcomp.zero(); ofDataDelayed.flowRadXY.zero(); flowDataValid = true; } // If the flow measurements have been rejected for too long and we are relying on them, then revert to constant position mode if ((flowSensorTimeout || flowFusionTimeout) && PV_AidingMode == AID_RELATIVE) { PV_AidingMode = AID_NONE; // reset the velocity ResetVelocity(); // store the current position to be used to as a sythetic position measurement lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // reset the position ResetPosition(); } // if we do have valid flow measurements, fuse data into a 1-state EKF to estimate terrain height // we don't do terrain height estimation in optical flow only mode as the ground becomes our zero height reference if ((newDataFlow || newDataRng) && tiltOK) { // fuse range data into the terrain estimator if available fuseRngData = newDataRng; // fuse optical flow data into the terrain estimator if available and if there is no range data (range data is better) fuseOptFlowData = (newDataFlow && !fuseRngData); // Estimate the terrain offset (runs a one state EKF) EstimateTerrainOffset(); // Indicate we have used the range data newDataRng = false; } // Fuse optical flow data into the main filter if not excessively tilted and we are in the correct mode if (newDataFlow && tiltOK && PV_AidingMode == AID_RELATIVE) { // Set the flow noise used by the fusion processes R_LOS = sq(max(frontend._flowNoise, 0.05f)); // ensure that the covariance prediction is up to date before fusing data if (!covPredStep) CovariancePrediction(); // Fuse the optical flow X and Y axis data into the main filter sequentially FuseOptFlow(); // reset flag to indicate that no new flow data is available for fusion newDataFlow = false; } // stop the performance timer hal.util->perf_end(_perf_FuseOptFlow); }
// check for new valid GPS data and update stored measurement if available void NavEKF2_core::readGpsData() { // check for new GPS data // do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) { if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // report GPS fix status gpsCheckStatus.bad_fix = false; // store fix time from previous read secondLastGpsTime_ms = lastTimeGpsReceived_ms; // get current fix time lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms(); // estimate when the GPS fix was valid, allowing for GPS processing and other delays // ideally we should be using a timing signal from the GPS receiver to set this time gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend->_gpsDelay_ms; // Correct for the average intersampling delay due to the filter updaterate gpsDataNew.time_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms); // read the NED velocity from the GPS gpsDataNew.vel = _ahrs->get_gps().velocity(); // Use the speed accuracy from the GPS if available, otherwise set it to zero. // Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); gpsSpdAccuracy *= (1.0f - alpha); float gpsSpdAccRaw; if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) { gpsSpdAccuracy = 0.0f; } else { gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw); } // check if we have enough GPS satellites and increase the gps noise scaler if we don't if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.0f; } else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.4f; } else { // <= 4 satellites or in constant position mode gpsNoiseScaler = 2.0f; } // Check if GPS can output vertical velocity and set GPS fusion mode accordingly if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0) { useGpsVertVel = true; } else { useGpsVertVel = false; } // Monitor quality of the GPS velocity data before and after alignment using separate checks if (PV_AidingMode != AID_ABSOLUTE) { // Pre-alignment checks gpsGoodToAlign = calcGpsGoodToAlign(); } else { // Post-alignment checks calcGpsGoodForFlight(); } // Read the GPS locaton in WGS-84 lat,long,height coordinates const struct Location &gpsloc = _ahrs->get_gps().location(); // Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed if (gpsGoodToAlign && !validOrigin) { setOrigin(); // Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly alignMagStateDeclination(); // Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum' EKF_origin.alt = gpsloc.alt - baroDataNew.hgt; } // convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin if (validOrigin) { gpsDataNew.pos = location_diff(EKF_origin, gpsloc); gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt); storedGPS.push(gpsDataNew); // declare GPS available for use gpsNotAvailable = false; } // Commence GPS aiding when able to if (readyToUseGPS() && PV_AidingMode != AID_ABSOLUTE) { PV_AidingMode = AID_ABSOLUTE; // Initialise EKF position and velocity states to last GPS measurement ResetPosition(); ResetVelocity(); } } else { // report GPS fix status gpsCheckStatus.bad_fix = true; } } // We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon // If that happens we need to put the filter into a constant position mode, reset the velocity states to zero // and use the last estimated position as a synthetic GPS position // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS is not available and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (PV_AidingMode == AID_ABSOLUTE && !useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // we can do optical flow only nav frontend->_fusionModeGPS = 3; PV_AidingMode = AID_RELATIVE; } else { // store the current position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // put the filter into constant position mode PV_AidingMode = AID_NONE; // Reset the velocity and position states ResetVelocity(); ResetPosition(); // Reset the normalised innovation to avoid false failing bad fusion tests velTestRatio = 0.0f; posTestRatio = 0.0f; } } } }
// Set inertial navigation aiding mode void NavEKF2_core::setAidingMode() { // Save the previous status so we can detect when it has changed PV_AidingModePrev = PV_AidingMode; // Determine if we should change aiding mode if (PV_AidingMode == AID_NONE) { // Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete // and IMU gyro bias estimates have stabilised bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus(); // If GPS usage has been prohiited then we use flow aiding provided optical flow data is present // GPS aiding is the perferred option unless excluded by the user if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && filterIsStable && !gpsInhibit) { PV_AidingMode = AID_ABSOLUTE; } else if (optFlowDataPresent() && filterIsStable) { PV_AidingMode = AID_RELATIVE; } } else if (PV_AidingMode == AID_RELATIVE) { // Check if the optical flow sensor has timed out bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000); // Check if the fusion has timed out (flow measurements have been rejected for too long) bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000); // Enable switch to absolute position mode if GPS is available // If GPS is not available and flow fusion has timed out, then fall-back to no-aiding if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit) { PV_AidingMode = AID_ABSOLUTE; } else if (flowSensorTimeout || flowFusionTimeout) { PV_AidingMode = AID_NONE; } } else if (PV_AidingMode == AID_ABSOLUTE) { // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS is not available and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (!useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // attempt optical flow navigation PV_AidingMode = AID_RELATIVE; } else { // put the filter into constant position mode PV_AidingMode = AID_NONE; } } } else if (gpsInhibit) { // put the filter into constant position mode in response to an exernal request PV_AidingMode = AID_NONE; } } // check to see if we are starting or stopping aiding and set states and modes as required if (PV_AidingMode != PV_AidingModePrev) { // set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped. if (PV_AidingMode == AID_NONE) { // We have ceased aiding GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF2 IMU%u has stopped aiding",(unsigned)imu_index); // When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors posTimeout = true; velTimeout = true; // Reset the normalised innovation to avoid false failing bad fusion tests velTestRatio = 0.0f; posTestRatio = 0.0f; // store the current position to be used to keep reporting the last known position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // initialise filtered altitude used to provide a takeoff reference to current baro on disarm // this reduces the time required for the baro noise filter to settle before the filtered baro data can be used meaHgtAtTakeOff = baroDataDelayed.hgt; // reset the vertical position state to faster recover from baro errors experienced during touchdown stateStruct.position.z = -meaHgtAtTakeOff; } else if (PV_AidingMode == AID_RELATIVE) { // We have commenced aiding, but GPS usage has been prohibited so use optical flow only GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using optical flow",(unsigned)imu_index); posTimeout = true; velTimeout = true; // Reset the last valid flow measurement time flowValidMeaTime_ms = imuSampleTime_ms; // Reset the last valid flow fusion time prevFlowFuseTime_ms = imuSampleTime_ms; } else if (PV_AidingMode == AID_ABSOLUTE) { // We have commenced aiding and GPS usage is allowed GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using GPS",(unsigned)imu_index); posTimeout = false; velTimeout = false; // we need to reset the GPS timers to prevent GPS timeout logic being invoked on entry into GPS aiding // this is because the EKF can be interrupted for an arbitrary amount of time during vehicle arming checks lastTimeGpsReceived_ms = imuSampleTime_ms; secondLastGpsTime_ms = imuSampleTime_ms; // reset the last valid position fix time to prevent unwanted activation of GPS glitch logic lastPosPassTime_ms = imuSampleTime_ms; } // Always reset the position and velocity when changing mode ResetVelocity(); ResetPosition(); } }
// check for new valid GPS data and update stored measurement if available void NavEKF2_core::readGpsData() { // check for new GPS data if (_ahrs->get_gps().last_message_time_ms() != lastTimeGpsReceived_ms) { if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // report GPS fix status gpsCheckStatus.bad_fix = false; // store fix time from previous read secondLastGpsTime_ms = lastTimeGpsReceived_ms; // get current fix time lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms(); // estimate when the GPS fix was valid, allowing for GPS processing and other delays // ideally we should be using a timing signal from the GPS receiver to set this time gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms; // Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame // This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms); // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms); // read the NED velocity from the GPS gpsDataNew.vel = _ahrs->get_gps().velocity(); // Use the speed accuracy from the GPS if available, otherwise set it to zero. // Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); gpsSpdAccuracy *= (1.0f - alpha); float gpsSpdAccRaw; if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) { gpsSpdAccuracy = 0.0f; } else { gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw); } // check if we have enough GPS satellites and increase the gps noise scaler if we don't if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.0f; } else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.4f; } else { // <= 4 satellites or in constant position mode gpsNoiseScaler = 2.0f; } // Check if GPS can output vertical velocity and set GPS fusion mode accordingly if (_ahrs->get_gps().have_vertical_velocity() && frontend._fusionModeGPS == 0) { useGpsVertVel = true; } else { useGpsVertVel = false; } // Monitor quality of the GPS velocity data before and after alignment using separate checks if (PV_AidingMode != AID_ABSOLUTE) { // Pre-alignment checks gpsQualGood = calcGpsGoodToAlign(); } else { // Post-alignment checks calcGpsGoodForFlight(); } // read latitutde and longitude from GPS and convert to local NE position relative to the stored origin // If we don't have an origin, then set it to the current GPS coordinates const struct Location &gpsloc = _ahrs->get_gps().location(); if (validOrigin) { gpsDataNew.pos = location_diff(EKF_origin, gpsloc); } else if (gpsQualGood) { // Set the NE origin to the current GPS position setOrigin(); // Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly alignMagStateDeclination(); // Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum' EKF_origin.alt = gpsloc.alt - baroDataNew.hgt; // We are by definition at the origin at the instant of alignment so set NE position to zero gpsDataNew.pos.zero(); // If GPS useage isn't explicitly prohibited, we switch to absolute position mode if (isAiding && frontend._fusionModeGPS != 3) { PV_AidingMode = AID_ABSOLUTE; // Initialise EKF position and velocity states ResetPosition(); ResetVelocity(); } } // calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually decayGpsOffset(); // save measurement to buffer to be fused later StoreGPS(); // declare GPS available for use gpsNotAvailable = false; } else { // report GPS fix status gpsCheckStatus.bad_fix = true; } } // We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon // If that happens we need to put the filter into a constant position mode, reset the velocity states to zero // and use the last estimated position as a synthetic GPS position // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend.gpsRetryTimeUseTAS_ms : frontend.gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend.gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS i snota vailable and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are currently reliying on GPS for navigation, then we need to switch to a non-GPS mode of operation if (PV_AidingMode == AID_ABSOLUTE) { // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (!useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // we can do optical flow only nav frontend._fusionModeGPS = 3; PV_AidingMode = AID_RELATIVE; } else { // store the current position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // put the filter into constant position mode PV_AidingMode = AID_NONE; // reset all glitch states gpsPosGlitchOffsetNE.zero(); gpsVelGlitchOffset.zero(); // Reset the velocity and position states ResetVelocity(); ResetPosition(); // Reset the normalised innovation to avoid false failing the bad position fusion test velTestRatio = 0.0f; posTestRatio = 0.0f; } } } } // If not aiding we synthesise the GPS measurements at the last known position if (PV_AidingMode == AID_NONE) { if (imuSampleTime_ms - gpsDataNew.time_ms > 200) { gpsDataNew.pos.x = lastKnownPositionNE.x; gpsDataNew.pos.y = lastKnownPositionNE.y; gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms; // Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame // This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms); // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms); // save measurement to buffer to be fused later StoreGPS(); } } }
virtual void ProcessEvent( EFlowEvent event,SActivationInfo* pActInfo ) { switch (event) { case eFE_Activate: { m_lastTime = gEnv->pTimer->GetFrameStartTime(); m_bActive = !GetPortBool(pActInfo, 1); pActInfo->pGraph->SetRegularlyUpdated( pActInfo->myID, m_bActive ); if (!m_bActive) { ResetVelocity(pActInfo); } } break; case eFE_Initialize: { if (pActInfo->pEntity) m_localRot = pActInfo->pEntity->GetRotation(); else m_localRot.SetIdentity(); m_worldRot.SetIdentity(); m_lastTime = gEnv->pTimer->GetFrameStartTime(); m_bActive = !GetPortBool(pActInfo, 1); pActInfo->pGraph->SetRegularlyUpdated( pActInfo->myID, m_bActive ); break; } case eFE_Update: { if (m_bActive && pActInfo->pEntity) { CTimeValue time = gEnv->pTimer->GetFrameStartTime(); float timeDifference = (time - m_lastTime).GetSeconds(); m_lastTime = time; IEntity* pEntity = pActInfo->pEntity; const bool bUseWorld = GetPortInt(pActInfo, 2) == 0 ? true : false; Vec3 speed = GetPortVec3(pActInfo, 0); speed *= timeDifference; Quat deltaRot (Ang3(DEG2RAD(speed))); Quat finalRot; if (bUseWorld == false) { finalRot = pEntity->GetRotation(); finalRot *= deltaRot; } else { m_worldRot *= deltaRot; finalRot = m_worldRot; finalRot *= m_localRot; } finalRot.NormalizeSafe(); IPhysicalEntity* piPhysEnt = pEntity->GetPhysics(); if (piPhysEnt && piPhysEnt->GetType() != PE_STATIC) { if (timeDifference > 0.0001f) { pe_action_set_velocity asv; asv.w = Quat::log(deltaRot) * (2.f / timeDifference); asv.bRotationAroundPivot = 1; pEntity->GetPhysics()->Action(&asv); } } else { pEntity->SetRotation(finalRot); } Ang3 currentAng = Ang3(finalRot); ActivateOutput(pActInfo, 1, Vec3(currentAng)); currentAng = RAD2DEG(currentAng); ActivateOutput(pActInfo, 0, Vec3(currentAng)); } break; } } }