/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZeroobj) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* calculate the maximal number of branching nodes until heuristic is aborted */ nnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward zeroobj if it succeeded often */ nnodes = (SCIP_Longint)(nnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nnodes -= heurdata->usednodes; nnodes = MIN(nnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping zeroobj: nnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes, heurdata->minnodes); return SCIP_OKAY; } /* do not run zeroobj, if the problem does not have an objective function anyway */ if( SCIPgetNObjVars(scip) == 0 ) { SCIPdebugMessage("skipping zeroobj: pure feasibility problem anyway\n"); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; SCIP_CALL( SCIPapplyZeroobj(scip, heur, result, heurdata->minimprove, nnodes) ); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpIntobj) { /*lint --e{715}*/ *result = SCIP_DIDNOTRUN; /* only call separator, if we are not close to terminating */ if( SCIPisStopped(scip) ) return SCIP_OKAY; /* only call separator, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call separator, if there are fractional variables */ if( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; SCIP_CALL( separateCuts(scip, sepa, NULL, result) ); return SCIP_OKAY; }
/** perform randomized rounding of the given solution. Domain propagation is optionally applied after every rounding * step */ static SCIP_RETCODE performRandRounding( SCIP* scip, /**< SCIP main data structure */ SCIP_HEURDATA* heurdata, /**< heuristic data */ SCIP_SOL* sol, /**< solution to round */ SCIP_VAR** cands, /**< candidate variables */ int ncands, /**< number of candidates */ SCIP_Bool propagate, /**< should the rounding be propagated? */ SCIP_RESULT* result /**< pointer to store the result of the heuristic call */ ) { int c; SCIP_Bool stored; SCIP_VAR** permutedcands; SCIP_Bool cutoff; assert(heurdata != NULL); /* start probing tree before rounding begins */ if( propagate ) { SCIP_CALL( SCIPstartProbing(scip) ); SCIPenableVarHistory(scip); } /* copy and permute the candidate array */ SCIP_CALL( SCIPduplicateBufferArray(scip, &permutedcands, cands, ncands) ); assert(permutedcands != NULL); SCIPpermuteArray((void **)permutedcands, 0, ncands, &heurdata->randseed); cutoff = FALSE; /* loop over candidates and perform randomized rounding and optionally probing. */ for (c = 0; c < ncands && !cutoff; ++c) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Longint ndomreds; SCIP_Real lb; SCIP_Real ub; SCIP_Real ceilval; SCIP_Real floorval; /* get next variable from permuted candidate array */ var = permutedcands[c]; oldsolval = SCIPgetSolVal(scip, sol, var); lb = SCIPvarGetLbLocal(var); ub = SCIPvarGetUbLocal(var); assert( ! SCIPisFeasIntegral(scip, oldsolval) ); assert( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ); mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); ceilval = SCIPfeasCeil(scip, oldsolval); floorval = SCIPfeasFloor(scip, oldsolval); SCIPdebugMessage("rand rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n", SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup); /* abort if rounded ceil and floor value lie outside the variable domain. Otherwise, check if * bounds allow only one rounding direction, anyway */ if( lb > ceilval + 0.5 || ub < floorval - 0.5 ) { cutoff = TRUE; break; } else if( SCIPisFeasEQ(scip, lb, ceilval) ) { /* only rounding up possible */ assert(SCIPisFeasGE(scip, ub, ceilval)); newsolval = ceilval; } else if( SCIPisFeasEQ(scip, ub, floorval) ) { /* only rounding down possible */ assert(SCIPisFeasLE(scip,lb, floorval)); newsolval = floorval; } else if( !heurdata->usesimplerounding || !(mayroundup || mayrounddown) ) { /* the standard randomized rounding */ SCIP_Real randnumber; randnumber = SCIPgetRandomReal(0.0, 1.0, &heurdata->randseed); if( randnumber <= oldsolval - floorval ) newsolval = ceilval; else newsolval = floorval; } /* choose rounding direction, if possible, or use the only direction guaranteed to be feasible */ else if( mayrounddown && mayroundup ) { /* we can round in both directions: round in objective function direction */ if ( SCIPvarGetObj(var) >= 0.0 ) newsolval = floorval; else newsolval = ceilval; } else if( mayrounddown ) newsolval = floorval; else { assert(mayroundup); newsolval = ceilval; } assert(SCIPisFeasLE(scip, lb, newsolval)); assert(SCIPisFeasGE(scip, ub, newsolval)); /* if propagation is enabled, fix the candidate variable to its rounded value and propagate the solution */ if( propagate ) { SCIP_Bool lbadjust; SCIP_Bool ubadjust; lbadjust = SCIPisGT(scip, newsolval, lb); ubadjust = SCIPisLT(scip, newsolval, ub); assert( lbadjust || ubadjust || SCIPisFeasEQ(scip, lb, ub)); /* enter a new probing node if the variable was not already fixed before */ if( lbadjust || ubadjust ) { SCIP_RETCODE retcode; if( SCIPisStopped(scip) ) break; retcode = SCIPnewProbingNode(scip); if( retcode == SCIP_MAXDEPTHLEVEL ) break; SCIP_CALL( retcode ); /* tighten the bounds to fix the variable for the probing node */ if( lbadjust ) { SCIP_CALL( SCIPchgVarLbProbing(scip, var, newsolval) ); } if( ubadjust ) { SCIP_CALL( SCIPchgVarUbProbing(scip, var, newsolval) ); } /* call propagation routines for the reduced problem */ SCIP_CALL( SCIPpropagateProbing(scip, heurdata->maxproprounds, &cutoff, &ndomreds) ); } } /* store new solution value */ SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) ); } /* if no cutoff was detected, the solution is a candidate to be checked for feasibility */ if( !cutoff && ! SCIPisStopped(scip) ) { if( SCIPallColsInLP(scip) ) { /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because all fractional * variables were already moved in feasible direction to the next integer */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); } else { /* if there are variables which are not present in the LP, e.g., for * column generation, we need to check their bounds */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &stored) ); } if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif *result = SCIP_FOUNDSOL; } } assert( !propagate || SCIPinProbing(scip) ); /* exit probing mode and free locally allocated memory */ if( propagate ) { SCIP_CALL( SCIPendProbing(scip) ); } SCIPfreeBufferArray(scip, &permutedcands); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Real oldobjval; SCIP_Real frac; SCIP_Real bestfrac; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; SCIP_Real actscore; SCIP_Real downscore; SCIP_Real upscore; SCIP_Real bestactscore; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip), SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound)); /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; cutoff = FALSE; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { divedepth++; SCIP_CALL( SCIPnewProbingNode(scip) ); /* choose variable fixing: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, round variable with least number of locks in corresponding direction * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - round variable with least number of locks in opposite of its feasible rounding direction */ bestcand = -1; bestactscore = -1.0; bestfrac = SCIP_INVALID; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the fractionality * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ if( mayrounddown && mayroundup ) roundup = (frac > 0.5); else roundup = mayrounddown; if( roundup ) frac = 1.0 - frac; actscore = getNActiveConsScore(scip, var, &downscore, &upscore); /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate */ assert(0.0 < frac && frac < 1.0); if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded */ actscore = getNActiveConsScore(scip, var, &downscore, &upscore); roundup = (downscore < upscore); if( roundup ) frac = 1.0 - frac; /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ assert(0.0 < frac && frac < 1.0); if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } assert(bestfrac < SCIP_INVALID); } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } assert(bestcand != -1); var = lpcands[bestcand]; backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); assert(backtracked); break; } /* apply rounding of best candidate */ if( bestcandroundup == !backtracked ) { /* round variable up */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var)); SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); } else { /* round variable down */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand])); SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) ); } /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) ); if( !cutoff ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status, objective value, and fractional variables, that should be integral */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); SCIP_CALL( SCIPnewProbingNode(scip) ); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new objective value */ oldobjval = objval; objval = SCIPgetLPObjval(scip); /* update pseudo cost values */ if( SCIPisGT(scip, objval, oldobjval) ) { if( bestcandroundup ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } else { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } } /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n", SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real primsol; SCIP_Real frac; SCIP_Real pscostquot; SCIP_Real bestpscostquot; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Real objscale; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int* roundings; int nvars; int varidx; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MIN(maxdivedepth, 10*maxdepth); *result = SCIP_DIDNOTFIND; /* get temporary memory for remembering the current soft roundings */ SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) ); BMSclearMemoryArray(roundings, nvars); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth); /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10 && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_RETCODE retcode; divedepth++; /* choose variable for objective change: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, change objective value of variable with largest rel. difference of pseudo cost values * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - change objective value of variable with largest rel. difference of pseudo cost values */ bestcand = -1; bestpscostquot = -1.0; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); primsol = lpcandssol[c]; frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the pseudo cost values * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ roundup = FALSE; if( mayrounddown && mayroundup ) calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); else if( mayrounddown ) calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup); else calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate */ if( pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */ calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } var = lpcands[bestcand]; /* check, if the best candidate was already subject to soft rounding */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] == +1 ) { /* variable was already soft rounded upwards: hard round it downwards */ SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else if( roundings[varidx] == -1 ) { /* variable was already soft rounded downwards: hard round it upwards */ SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else { assert(roundings[varidx] == 0); /* apply soft rounding of best candidate via a change in the objective value */ objscale = divedepth * 1000.0; oldobj = SCIPgetVarObjDive(scip, var); if( bestcandroundup ) { /* soft round variable up: make objective value (more) negative */ if( oldobj < 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MIN(newobj, -objscale); /* remember, that this variable was soft rounded upwards */ roundings[varidx] = +1; } else { /* soft round variable down: make objective value (more) positive */ if( oldobj > 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MAX(newobj, objscale); /* remember, that this variable was soft rounded downwards */ roundings[varidx] = -1; } SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj); } /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status and fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory for remembering the current soft roundings */ SCIPfreeBufferArray(scip, &roundings); SCIPdebugMessage("objpscostdiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of presolver */ static SCIP_DECL_PRESOLEXEC(presolExecDualagg) { /*lint --e{715}*/ SCIPMILPMATRIX* matrix; SCIP_Bool initialized; SCIP_Bool complete; assert(result != NULL); *result = SCIP_DIDNOTRUN; if( (SCIPgetStage(scip) != SCIP_STAGE_PRESOLVING) || SCIPinProbing(scip) || SCIPisNLPEnabled(scip) ) return SCIP_OKAY; if( SCIPisStopped(scip) || SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; if( SCIPgetNBinVars(scip) == 0 ) return SCIP_OKAY; if( !SCIPallowDualReds(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; matrix = NULL; SCIP_CALL( SCIPmatrixCreate(scip, &matrix, &initialized, &complete) ); /* we only work on pure MIPs currently */ if( initialized && complete ) { AGGRTYPE* aggtypes; SCIP_VAR** binvars; int nvaragg; int ncols; ncols = SCIPmatrixGetNColumns(matrix); nvaragg = 0; SCIP_CALL( SCIPallocBufferArray(scip, &aggtypes, ncols) ); BMSclearMemoryArray(aggtypes, ncols); SCIP_CALL( SCIPallocBufferArray(scip, &binvars, ncols) ); SCIPdebug( BMSclearMemoryArray(binvars, ncols) ); /* search for aggregations */ SCIP_CALL( findUplockAggregations(scip, matrix, &nvaragg, aggtypes, binvars) ); SCIP_CALL( findDownlockAggregations(scip, matrix, &nvaragg, aggtypes, binvars) ); /* apply aggregations, if we found any */ if( nvaragg > 0 ) { int v; for( v = 0; v < ncols; v++ ) { if( aggtypes[v] != NOAGG ) { SCIP_Bool infeasible; SCIP_Bool redundant; SCIP_Bool aggregated; SCIP_Real ub; SCIP_Real lb; ub = SCIPmatrixGetColUb(matrix, v); lb = SCIPmatrixGetColLb(matrix, v); /* aggregate variable */ assert(binvars[v] != NULL); if( aggtypes[v] == BIN0UBOUND ) { SCIP_CALL( SCIPaggregateVars(scip, SCIPmatrixGetVar(matrix, v), binvars[v], 1.0, ub-lb, ub, &infeasible, &redundant, &aggregated) ); } else { assert(aggtypes[v] == BIN0LBOUND); SCIP_CALL( SCIPaggregateVars(scip, SCIPmatrixGetVar(matrix, v), binvars[v], 1.0, lb-ub, lb, &infeasible, &redundant, &aggregated) ); } /* infeasible aggregation */ if( infeasible ) { SCIPdebugMessage(" -> infeasible aggregation\n"); *result = SCIP_CUTOFF; return SCIP_OKAY; } if( aggregated ) (*naggrvars)++; } } /* set result pointer */ if( (*naggrvars) > 0 ) *result = SCIP_SUCCESS; } SCIPfreeBufferArray(scip, &binvars); SCIPfreeBufferArray(scip, &aggtypes); } SCIPmatrixFree(scip, &matrix); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }
/** separate 2-cuts */ static SCIP_RETCODE sep_2cut( SCIP* scip, /**< SCIP data structure */ SCIP_CONSHDLR* conshdlr, /**< constraint handler */ SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */ SCIP_CONSDATA* consdata, /**< constraint data */ int maxcuts, /**< maximal number of cuts */ int* ncuts /**< pointer to store number of cuts */ ) { const SCIP_Bool nested_cut = conshdlrdata->nestedcut; const SCIP_Bool back_cut = conshdlrdata->backcut; const SCIP_Bool creep_flow = conshdlrdata->creepflow; const SCIP_Bool disjunct_cut = conshdlrdata->disjunctcut; const SCIP_Bool flowsep = conshdlrdata->flowsep; GRAPH* g; SCIP_Real* xval; SCIP_Real* cost; PATH* path; int* w; int* capa; int* term; int terms = 0; int tsave; int i; int k; int layer; int count = 0; int rerun = FALSE; int nedges; int nnodes; SCIP_Bool addedcut; assert(scip != NULL); assert(conshdlr != NULL); assert(conshdlrdata != NULL); g = consdata->graph; assert(g != NULL); nedges = g->edges; nnodes = g->knots; addedcut = FALSE; xval = SCIPprobdataGetXval(scip, NULL); assert(xval != NULL); SCIP_CALL( SCIPallocBufferArray(scip, &capa, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &cost, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &w, nnodes) ); SCIP_CALL( SCIPallocBufferArray(scip, &term, g->terms) ); SCIP_CALL( SCIPallocBufferArray(scip, &path, nnodes) ); for( layer = 0; layer < g->layers; layer++ ) { /* For 2-terminal nets no cuts are necessary if flows are given */ if( flowsep && (g->locals[layer] == 2) ) continue; for( i = 0; i < nedges; i++ ) cost[i] = SCIPisFeasLT(scip, xval[layer * nedges + i], 1.0) ? 1.0 : 0.0; for( i = 0; i < nnodes; i++ ) { w[i] = 0; g->mark[i] = TRUE; } graph_path_exec(scip, g, FSP_MODE, g->source[layer], cost, path); /* search all terminals not connected to the root by the LP solution */ for( i = 0, count = 0; i < nnodes; i++ ) { if( (g->term[i] == layer) && (i != g->source[layer]) ) { if( SCIPisPositive(scip, path[i].dist) ) term[terms++] = i; else count++; } } SCIPdebugMessage("Cut Pretest: %d eliminations\n", count); count = 0; tsave = terms; /* from source to terminal */ if( !nested_cut || disjunct_cut ) set_capacity(g, layer, creep_flow, 0, capa, xval); while( terms > 0 ) { if( SCIPisStopped(scip) && terms % 100 == 0 ) break; /* look for reachable terminal */ i = graph_next_term(terms, term, w); terms--; assert(g->term[i] == layer); assert(g->source[layer] != i); if( nested_cut && !disjunct_cut ) set_capacity(g, layer, creep_flow, 0, capa, xval); do { graph_mincut_exec(g, g->source[layer], i, capa, w, rerun); rerun = TRUE; /* cut */ for( k = 0; k < nnodes; k++ ) g->mark[k] = (w[k] != 0); SCIP_CALL( cut_add(scip, conshdlr, g, layer, xval, capa, nested_cut || disjunct_cut, ncuts, &addedcut) ); if( addedcut ) { count++; if( *ncuts >= maxcuts ) goto TERMINATE; } else break; } while( nested_cut ); /* Nested Cut is CONSTANT ! */ } /* back cuts enabled? */ if( back_cut ) { if( !nested_cut || disjunct_cut ) set_capacity(g, layer, creep_flow, 1, capa, xval); terms = tsave; while( terms > 0 ) { /* look for reachable terminal */ i = graph_next_term(terms, term, w); terms--; assert(g->term[i] == layer); assert(g->source[layer] != i); if( nested_cut && !disjunct_cut ) set_capacity(g, layer, creep_flow, 1, capa, xval); rerun = FALSE; do { graph_mincut_exec(g, i, g->source[layer], capa, w, rerun); rerun = TRUE; for( k = 0; k < nnodes; k++ ) g->mark[k] = (w[k] != 0) ? 1 : 0; SCIP_CALL( cut_add(scip, conshdlr, g, layer, xval, capa, nested_cut || disjunct_cut, ncuts, &addedcut) ); if( addedcut ) { count++; if( *ncuts >= maxcuts ) goto TERMINATE; } else break; #if 0 if (nested_cut || disjunct_cut) for(k = p->beg[p->rcnt - 1]; k < p->nzcnt; k++) capa[p->ind[k] % nedges + (((p->ind[k] % nedges) % 2) ? -1 : 1)] = FLOW_FACTOR; #endif } while( nested_cut ); /* Nested Cut is CONSTANT ! */ rerun = FALSE; } } } TERMINATE: SCIPfreeBufferArray(scip, &path); SCIPfreeBufferArray(scip, &term); SCIPfreeBufferArray(scip, &w); SCIPfreeBufferArray(scip, &cost); SCIPfreeBufferArray(scip, &capa); SCIPdebugMessage("2-cut Separator: %d Inequalities added\n", count); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpGomory) { /*lint --e{715}*/ SCIP_SEPADATA* sepadata; SCIP_VAR** vars; SCIP_COL** cols; SCIP_ROW** rows; SCIP_Real* binvrow; SCIP_Real* cutcoefs; SCIP_Real maxscale; SCIP_Real minfrac; SCIP_Real maxfrac; SCIP_Longint maxdnom; SCIP_Bool cutoff; int* basisind; int naddedcuts; int nvars; int ncols; int nrows; int ncalls; int depth; int maxdepth; int maxsepacuts; int c; int i; assert(sepa != NULL); assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); depth = SCIPgetDepth(scip); ncalls = SCIPsepaGetNCallsAtNode(sepa); minfrac = sepadata->away; maxfrac = 1.0 - sepadata->away; /* only call separator, if we are not close to terminating */ if( SCIPisStopped(scip) ) return SCIP_OKAY; /* only call the gomory cut separator a given number of times at each node */ if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* only call separator, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call separator, if the LP solution is basic */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* only call separator, if there are fractional variables */ if( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; /* get variables data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); if( ncols == 0 || nrows == 0 ) return SCIP_OKAY; #if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */ if( ncols >= 50*nrows ) return SCIP_OKAY; if( ncols >= 5*nrows ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } #endif /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to * scale resulting cut to integral values to avoid numerical instabilities */ /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */ maxdepth = SCIPgetMaxDepth(scip); if( depth == 0 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/4 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/2 ) { maxdnom = 100; maxscale = 100.0; } else { maxdnom = 10; maxscale = 10.0; } /* allocate temporary memory */ SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* get the maximal number of cuts allowed in a separation round */ if( depth == 0 ) maxsepacuts = sepadata->maxsepacutsroot; else maxsepacuts = sepadata->maxsepacuts; SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n", ncols, nrows, maxdnom, maxscale, maxsepacuts); cutoff = FALSE; naddedcuts = 0; /* for all basic columns belonging to integer variables, try to generate a gomory cut */ for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i ) { SCIP_Bool tryrow; tryrow = FALSE; c = basisind[i]; if( c >= 0 ) { SCIP_VAR* var; assert(c < ncols); var = SCIPcolGetVar(cols[c]); if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS ) { SCIP_Real primsol; primsol = SCIPcolGetPrimsol(cols[c]); assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/ if( SCIPfeasFrac(scip, primsol) >= minfrac ) { SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol); tryrow = TRUE; } } } else if( sepadata->separaterows ) { SCIP_ROW* row; assert(0 <= -c-1 && -c-1 < nrows); row = rows[-c-1]; if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) ) { SCIP_Real primsol; primsol = SCIPgetRowActivity(scip, row); if( SCIPfeasFrac(scip, primsol) >= minfrac ) { SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol); tryrow = TRUE; } } } if( tryrow ) { SCIP_Real cutrhs; SCIP_Real cutact; SCIP_Bool success; SCIP_Bool cutislocal; /* get the row of B^-1 for this basic integer variable with fractional solution value */ SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) ); cutact = 0.0; cutrhs = SCIPinfinity(scip); /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */ SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac, binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) ); assert(ALLOWLOCAL || !cutislocal); /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory * cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which * leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better. */ SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs); /* if successful, convert dense cut into sparse row, and add the row as a cut */ if( success && SCIPisFeasGT(scip, cutact, cutrhs) ) { SCIP_ROW* cut; char cutname[SCIP_MAXSTRLEN]; int v; /* construct cut name */ if( c >= 0 ) (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c); else (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1); /* create empty cut */ SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) ); /* cache the row extension and only flush them if the cut gets added */ SCIP_CALL( SCIPcacheRowExtensions(scip, cut) ); /* collect all non-zero coefficients */ for( v = 0; v < nvars; ++v ) { if( !SCIPisZero(scip, cutcoefs[v]) ) { SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) ); } } if( SCIProwGetNNonz(cut) == 0 ) { assert(SCIPisFeasNegative(scip, cutrhs)); SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs); cutoff = TRUE; } else if( SCIProwGetNNonz(cut) == 1 ) { /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically */ SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) ); naddedcuts++; } else { /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound * changes); the latter cuts will be handeled internally in sepastore. */ if( SCIPisCutEfficacious(scip, NULL, cut) ) { assert(success == TRUE); SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n", c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]), cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut)); if( sepadata->makeintegral ) { /* try to scale the cut to integral values */ SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); if( sepadata->forcecuts ) success = TRUE; /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is * useless so we are not taking it at all */ if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) ) success = FALSE; /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we * currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to * 5), we might want to add that cut (even it does not have integral coefficients). To be able to * do that we need to add a rank to the data structure of a row. The rank of original rows are * zero and for aggregated rows it is the maximum over all used rows plus one. */ } if( success ) { SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut), SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut)); /* flush all changes before adding the cut */ SCIP_CALL( SCIPflushRowExtensions(scip, cut) ); /* add global cuts which are not implicit bound changes to the cut pool */ if( !cutislocal ) { if( sepadata->delayedcuts ) { SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) ); } else { SCIP_CALL( SCIPaddPoolCut(scip, cut) ); } } else { /* local cuts we add to the sepastore */ SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) ); } naddedcuts++; } } } /* release the row */ SCIP_CALL( SCIPreleaseRow(scip, &cut) ); } } } /* free temporary memory */ SCIPfreeBufferArray(scip, &binvrow); SCIPfreeBufferArray(scip, &basisind); SCIPfreeBufferArray(scip, &cutcoefs); SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts); sepadata->lastncutsfound = SCIPgetNCutsFound(scip); /* evalute the result of the separation */ if( cutoff ) *result = SCIP_CUTOFF; else if ( naddedcuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** LP solution separation method for disjunctive cuts */ static SCIP_DECL_SEPAEXECLP(sepaExeclpDisjunctive) { SCIP_SEPADATA* sepadata; SCIP_CONSHDLR* conshdlr; SCIP_DIGRAPH* conflictgraph; SCIP_ROW** rows; SCIP_COL** cols; SCIP_Real* cutcoefs = NULL; SCIP_Real* simplexcoefs1 = NULL; SCIP_Real* simplexcoefs2 = NULL; SCIP_Real* coef = NULL; SCIP_Real* binvrow = NULL; SCIP_Real* rowsmaxval = NULL; SCIP_Real* violationarray = NULL; int* fixings1 = NULL; int* fixings2 = NULL; int* basisind = NULL; int* basisrow = NULL; int* varrank = NULL; int* edgearray = NULL; int nedges; int ndisjcuts; int nrelevantedges; int nsos1vars; int nconss; int maxcuts; int ncalls; int depth; int ncols; int nrows; int ind; int j; int i; assert( sepa != NULL ); assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 ); assert( scip != NULL ); assert( result != NULL ); *result = SCIP_DIDNOTRUN; /* only generate disjunctive cuts if we are not close to terminating */ if ( SCIPisStopped(scip) ) return SCIP_OKAY; /* only generate disjunctive cuts if an optimal LP solution is at hand */ if ( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only generate disjunctive cuts if the LP solution is basic */ if ( ! SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* return if LP has no columns or no rows */ if ( ncols == 0 || nrows == 0 ) return SCIP_OKAY; assert( cols != NULL ); assert( rows != NULL ); /* get sepa data */ sepadata = SCIPsepaGetData(sepa); assert( sepadata != NULL ); /* get constraint handler */ conshdlr = sepadata->conshdlr; if ( conshdlr == NULL ) return SCIP_OKAY; /* get number of constraints */ nconss = SCIPconshdlrGetNConss(conshdlr); if ( nconss == 0 ) return SCIP_OKAY; /* check for maxdepth < depth, maxinvcutsroot = 0 and maxinvcuts = 0 */ depth = SCIPgetDepth(scip); if ( ( sepadata->maxdepth >= 0 && sepadata->maxdepth < depth ) || ( depth == 0 && sepadata->maxinvcutsroot == 0 ) || ( depth > 0 && sepadata->maxinvcuts == 0 ) ) return SCIP_OKAY; /* only call the cut separator a given number of times at each node */ ncalls = SCIPsepaGetNCallsAtNode(sepa); if ( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* get conflict graph and number of conflict graph edges (note that the digraph arcs were added in both directions) */ conflictgraph = SCIPgetConflictgraphSOS1(conshdlr); nedges = (int)SCIPceil(scip, (SCIP_Real)SCIPdigraphGetNArcs(conflictgraph)/2); /* if too many conflict graph edges, the separator can be slow: delay it until no other cuts have been found */ if ( sepadata->maxconfsdelay >= 0 && nedges >= sepadata->maxconfsdelay ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if ( ncutsfound > sepadata->lastncutsfound || ! SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } /* check basis status */ for (j = 0; j < ncols; ++j) { if ( SCIPcolGetBasisStatus(cols[j]) == SCIP_BASESTAT_ZERO ) return SCIP_OKAY; } /* get number of SOS1 variables */ nsos1vars = SCIPgetNSOS1Vars(conshdlr); /* allocate buffer arrays */ SCIP_CALL( SCIPallocBufferArray(scip, &edgearray, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &fixings1, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &fixings2, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &violationarray, nedges) ); /* get all violated conflicts {i, j} in the conflict graph and sort them based on the degree of a violation value */ nrelevantedges = 0; for (j = 0; j < nsos1vars; ++j) { SCIP_VAR* var; var = SCIPnodeGetVarSOS1(conflictgraph, j); if ( SCIPvarIsActive(var) && ! SCIPisFeasZero(scip, SCIPcolGetPrimsol(SCIPvarGetCol(var))) && SCIPcolGetBasisStatus(SCIPvarGetCol(var)) == SCIP_BASESTAT_BASIC ) { int* succ; int nsucc; /* get successors and number of successors */ nsucc = SCIPdigraphGetNSuccessors(conflictgraph, j); succ = SCIPdigraphGetSuccessors(conflictgraph, j); for (i = 0; i < nsucc; ++i) { SCIP_VAR* varsucc; int succind; succind = succ[i]; varsucc = SCIPnodeGetVarSOS1(conflictgraph, succind); if ( SCIPvarIsActive(varsucc) && succind < j && ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, NULL, varsucc) ) && SCIPcolGetBasisStatus(SCIPvarGetCol(varsucc)) == SCIP_BASESTAT_BASIC ) { fixings1[nrelevantedges] = j; fixings2[nrelevantedges] = succind; edgearray[nrelevantedges] = nrelevantedges; violationarray[nrelevantedges++] = SCIPgetSolVal(scip, NULL, var) * SCIPgetSolVal(scip, NULL, varsucc); } } } } /* sort violation score values */ if ( nrelevantedges > 0) SCIPsortDownRealInt(violationarray, edgearray, nrelevantedges); else { SCIPfreeBufferArrayNull(scip, &violationarray); SCIPfreeBufferArrayNull(scip, &fixings2); SCIPfreeBufferArrayNull(scip, &fixings1); SCIPfreeBufferArrayNull(scip, &edgearray); return SCIP_OKAY; } SCIPfreeBufferArrayNull(scip, &violationarray); /* compute maximal number of cuts */ if ( SCIPgetDepth(scip) == 0 ) maxcuts = MIN(sepadata->maxinvcutsroot, nrelevantedges); else maxcuts = MIN(sepadata->maxinvcuts, nrelevantedges); assert( maxcuts > 0 ); /* allocate buffer arrays */ SCIP_CALL( SCIPallocBufferArray(scip, &varrank, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &rowsmaxval, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisrow, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &coef, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs1, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs2, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, ncols) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* create vector "basisrow" with basisrow[column of non-slack basis variable] = corresponding row of B^-1; * compute maximum absolute value of nonbasic row coefficients */ for (j = 0; j < nrows; ++j) { SCIP_COL** rowcols; SCIP_Real* rowvals; SCIP_ROW* row; SCIP_Real val; SCIP_Real max = 0.0; int nnonz; /* fill basisrow vector */ ind = basisind[j]; if ( ind >= 0 ) basisrow[ind] = j; /* compute maximum absolute value of nonbasic row coefficients */ row = rows[j]; assert( row != NULL ); rowvals = SCIProwGetVals(row); nnonz = SCIProwGetNNonz(row); rowcols = SCIProwGetCols(row); for (i = 0; i < nnonz; ++i) { if ( SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_LOWER || SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_UPPER ) { val = REALABS(rowvals[i]); if ( SCIPisFeasGT(scip, val, max) ) max = REALABS(val); } } /* handle slack variable coefficient and save maximum value */ rowsmaxval[j] = MAX(max, 1.0); } /* initialize variable ranks with -1 */ for (j = 0; j < ncols; ++j) varrank[j] = -1; /* free buffer array */ SCIPfreeBufferArrayNull(scip, &basisind); /* for the most promising disjunctions: try to generate disjunctive cuts */ ndisjcuts = 0; for (i = 0; i < maxcuts; ++i) { SCIP_Bool madeintegral; SCIP_Real cutlhs1; SCIP_Real cutlhs2; SCIP_Real bound1; SCIP_Real bound2; SCIP_ROW* row = NULL; SCIP_VAR* var; SCIP_COL* col; int nonbasicnumber; int cutrank = 0; int edgenumber; int rownnonz; edgenumber = edgearray[i]; /* determine first simplex row */ var = SCIPnodeGetVarSOS1(conflictgraph, fixings1[edgenumber]); col = SCIPvarGetCol(var); ind = SCIPcolGetLPPos(col); assert( ind >= 0 ); assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC ); /* get the 'ind'th row of B^-1 and B^-1 \cdot A */ SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) ); SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) ); /* get the simplex-coefficients of the non-basic variables */ SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs1, &nonbasicnumber) ); /* get rank of variable if not known already */ if ( varrank[ind] < 0 ) varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows); cutrank = MAX(cutrank, varrank[ind]); /* get right hand side and bound of simplex talbeau row */ cutlhs1 = SCIPcolGetPrimsol(col); if ( SCIPisFeasPositive(scip, cutlhs1) ) bound1 = SCIPcolGetUb(col); else bound1 = SCIPcolGetLb(col); /* determine second simplex row */ var = SCIPnodeGetVarSOS1(conflictgraph, fixings2[edgenumber]); col = SCIPvarGetCol(var); ind = SCIPcolGetLPPos(col); assert( ind >= 0 ); assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC ); /* get the 'ind'th row of B^-1 and B^-1 \cdot A */ SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) ); SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) ); /* get the simplex-coefficients of the non-basic variables */ SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs2, &nonbasicnumber) ); /* get rank of variable if not known already */ if ( varrank[ind] < 0 ) varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows); cutrank = MAX(cutrank, varrank[ind]); /* get right hand side and bound of simplex talbeau row */ cutlhs2 = SCIPcolGetPrimsol(col); if ( SCIPisFeasPositive(scip, cutlhs2) ) bound2 = SCIPcolGetUb(col); else bound2 = SCIPcolGetLb(col); /* add coefficients to cut */ SCIP_CALL( generateDisjCutSOS1(scip, sepa, rows, nrows, cols, ncols, ndisjcuts, TRUE, sepadata->strengthen, cutlhs1, cutlhs2, bound1, bound2, simplexcoefs1, simplexcoefs2, cutcoefs, &row, &madeintegral) ); if ( row == NULL ) continue; /* raise cutrank for present cut */ ++cutrank; /* check if there are numerical evidences */ if ( ( madeintegral && ( sepadata->maxrankintegral == -1 || cutrank <= sepadata->maxrankintegral ) ) || ( ! madeintegral && ( sepadata->maxrank == -1 || cutrank <= sepadata->maxrank ) ) ) { /* possibly add cut to LP if it is useful; in case the lhs of the cut is minus infinity (due to scaling) the cut is useless */ rownnonz = SCIProwGetNNonz(row); if ( rownnonz > 0 && ! SCIPisInfinity(scip, -SCIProwGetLhs(row)) && ! SCIProwIsInLP(row) && SCIPisCutEfficacious(scip, NULL, row) ) { SCIP_Bool infeasible; /* set cut rank */ SCIProwChgRank(row, cutrank); /* add cut */ SCIP_CALL( SCIPaddCut(scip, NULL, row, FALSE, &infeasible) ); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); if ( infeasible ) { *result = SCIP_CUTOFF; break; } ++ndisjcuts; } } /* release row */ SCIP_CALL( SCIPreleaseRow(scip, &row) ); } /* save total number of cuts found so far */ sepadata->lastncutsfound = SCIPgetNCutsFound(scip); /* evaluate the result of the separation */ if ( *result != SCIP_CUTOFF ) { if ( ndisjcuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; } SCIPdebugMessage("Number of found disjunctive cuts: %d.\n", ndisjcuts); /* free buffer arrays */ SCIPfreeBufferArrayNull(scip, &cutcoefs); SCIPfreeBufferArrayNull(scip, &simplexcoefs2); SCIPfreeBufferArrayNull(scip, &simplexcoefs1); SCIPfreeBufferArrayNull(scip, &coef); SCIPfreeBufferArrayNull(scip, &binvrow); SCIPfreeBufferArrayNull(scip, &basisrow); SCIPfreeBufferArrayNull(scip, &fixings2); SCIPfreeBufferArrayNull(scip, &fixings1); SCIPfreeBufferArrayNull(scip, &edgearray); SCIPfreeBufferArrayNull(scip, &rowsmaxval); SCIPfreeBufferArrayNull(scip, &varrank); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpStrongcg) { /*lint --e{715}*/ SCIP_SEPADATA* sepadata; SCIP_VAR** vars; SCIP_COL** cols; SCIP_ROW** rows; SCIP_Real* varsolvals; SCIP_Real* binvrow; SCIP_Real* cutcoefs; SCIP_Real cutrhs; SCIP_Real cutact; SCIP_Real maxscale; SCIP_Longint maxdnom; int* basisind; int* inds; int ninds; int nvars; int ncols; int nrows; int ncalls; int depth; int maxdepth; int maxsepacuts; int ncuts; int c; int i; int cutrank; SCIP_Bool success; SCIP_Bool cutislocal; char normtype; assert(sepa != NULL); assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); depth = SCIPgetDepth(scip); ncalls = SCIPsepaGetNCallsAtNode(sepa); /* only call separator, if we are not close to terminating */ if( SCIPisStopped(scip) ) return SCIP_OKAY; /* only call the strong CG cut separator a given number of times at each node */ if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* only call separator, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call separator, if the LP solution is basic */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* only call separator, if there are fractional variables */ if( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; /* get variables data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); if( ncols == 0 || nrows == 0 ) return SCIP_OKAY; #if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */ if( ncols >= 50*nrows ) return SCIP_OKAY; if( ncols >= 5*nrows ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } #endif /* get the type of norm to use for efficacy calculations */ SCIP_CALL( SCIPgetCharParam(scip, "separating/efficacynorm", &normtype) ); /* set the maximal denominator in rational representation of strong CG cut and the maximal scale factor to * scale resulting cut to integral values to avoid numerical instabilities */ /**@todo find better but still stable strong CG cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */ maxdepth = SCIPgetMaxDepth(scip); if( depth == 0 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/4 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/2 ) { maxdnom = 100; maxscale = 100.0; } else { maxdnom = 10; maxscale = 10.0; } *result = SCIP_DIDNOTFIND; /* allocate temporary memory */ SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &inds, nrows) ); varsolvals = NULL; /* allocate this later, if needed */ /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* get the maximal number of cuts allowed in a separation round */ if( depth == 0 ) maxsepacuts = sepadata->maxsepacutsroot; else maxsepacuts = sepadata->maxsepacuts; SCIPdebugMessage("searching strong CG cuts: %d cols, %d rows, maxdnom=%" SCIP_LONGINT_FORMAT ", maxscale=%g, maxcuts=%d\n", ncols, nrows, maxdnom, maxscale, maxsepacuts); /* for all basic columns belonging to integer variables, try to generate a strong CG cut */ ncuts = 0; for( i = 0; i < nrows && ncuts < maxsepacuts && !SCIPisStopped(scip) && *result != SCIP_CUTOFF; ++i ) { SCIP_Bool tryrow; tryrow = FALSE; c = basisind[i]; if( c >= 0 ) { SCIP_VAR* var; assert(c < ncols); var = SCIPcolGetVar(cols[c]); if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS ) { SCIP_Real primsol; primsol = SCIPcolGetPrimsol(cols[c]); assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/ if( SCIPfeasFrac(scip, primsol) >= MINFRAC ) { SCIPdebugMessage("trying strong CG cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol); tryrow = TRUE; } } } #ifdef SEPARATEROWS else { SCIP_ROW* row; assert(0 <= -c-1 && -c-1 < nrows); row = rows[-c-1]; if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) ) { SCIP_Real primsol; primsol = SCIPgetRowActivity(scip, row); if( SCIPfeasFrac(scip, primsol) >= MINFRAC ) { SCIPdebugMessage("trying strong CG cut for row <%s> [%g]\n", SCIProwGetName(row), primsol); tryrow = TRUE; } } } #endif if( tryrow ) { /* get the row of B^-1 for this basic integer variable with fractional solution value */ SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow, inds, &ninds) ); #ifdef SCIP_DEBUG /* initialize variables, that might not have been initialized in SCIPcalcMIR if success == FALSE */ cutact = 0.0; cutrhs = SCIPinfinity(scip); #endif /* create a strong CG cut out of the weighted LP rows using the B^-1 row as weights */ SCIP_CALL( SCIPcalcStrongCG(scip, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, MINFRAC, MAXFRAC, binvrow, inds, ninds, 1.0, cutcoefs, &cutrhs, &cutact, &success, &cutislocal, &cutrank) ); assert(ALLOWLOCAL || !cutislocal); SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs); /* if successful, convert dense cut into sparse row, and add the row as a cut */ if( success && SCIPisFeasGT(scip, cutact, cutrhs) ) { SCIP_VAR** cutvars; SCIP_Real* cutvals; SCIP_Real cutnorm; int cutlen; /* if this is the first successful cut, get the LP solution for all COLUMN variables */ if( varsolvals == NULL ) { int v; SCIP_CALL( SCIPallocBufferArray(scip, &varsolvals, nvars) ); for( v = 0; v < nvars; ++v ) { if( SCIPvarGetStatus(vars[v]) == SCIP_VARSTATUS_COLUMN ) varsolvals[v] = SCIPvarGetLPSol(vars[v]); } } assert(varsolvals != NULL); /* get temporary memory for storing the cut as sparse row */ SCIP_CALL( SCIPallocBufferArray(scip, &cutvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &cutvals, nvars) ); /* store the cut as sparse row, calculate activity and norm of cut */ SCIP_CALL( storeCutInArrays(scip, nvars, vars, cutcoefs, varsolvals, normtype, cutvars, cutvals, &cutlen, &cutact, &cutnorm) ); SCIPdebugMessage(" -> strong CG cut for <%s>: act=%f, rhs=%f, norm=%f, eff=%f, rank=%d\n", c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]), cutact, cutrhs, cutnorm, (cutact - cutrhs)/cutnorm, cutrank); if( SCIPisPositive(scip, cutnorm) && SCIPisEfficacious(scip, (cutact - cutrhs)/cutnorm) ) { SCIP_ROW* cut; char cutname[SCIP_MAXSTRLEN]; /* create the cut */ if( c >= 0 ) (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_x%d", SCIPgetNLPs(scip), c); else (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_s%d", SCIPgetNLPs(scip), -c-1); SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) ); SCIP_CALL( SCIPaddVarsToRow(scip, cut, cutlen, cutvars, cutvals) ); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ SCIProwChgRank(cut, cutrank); assert(success); #ifdef MAKECUTINTEGRAL /* try to scale the cut to integral values */ SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); #else #ifdef MAKEINTCUTINTEGRAL /* try to scale the cut to integral values if there are no continuous variables * -> leads to an integral slack variable that can later be used for other cuts */ { int k = 0; while ( k < cutlen && SCIPvarIsIntegral(cutvars[k]) ) ++k; if( k == cutlen ) { SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); } } #endif #endif #ifndef FORCECUTINTEGRAL success = TRUE; #endif if( success ) { if( !SCIPisCutEfficacious(scip, NULL, cut) ) { SCIPdebugMessage(" -> strong CG cut <%s> no longer efficacious: act=%f, rhs=%f, norm=%f, eff=%f\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut)); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ success = FALSE; } else { SCIP_Bool infeasible; SCIPdebugMessage(" -> found strong CG cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut), SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut)); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE, &infeasible) ); if ( infeasible ) *result = SCIP_CUTOFF; else { if( !cutislocal ) { SCIP_CALL( SCIPaddPoolCut(scip, cut) ); } *result = SCIP_SEPARATED; } ncuts++; } } else { SCIPdebugMessage(" -> strong CG cut <%s> couldn't be scaled to integral coefficients: act=%f, rhs=%f, norm=%f, eff=%f\n", cutname, cutact, cutrhs, cutnorm, SCIPgetCutEfficacy(scip, NULL, cut)); } /* release the row */ SCIP_CALL( SCIPreleaseRow(scip, &cut) ); } /* free temporary memory */ SCIPfreeBufferArray(scip, &cutvals); SCIPfreeBufferArray(scip, &cutvars); } } } /* free temporary memory */ SCIPfreeBufferArrayNull(scip, &varsolvals); SCIPfreeBufferArray(scip, &inds); SCIPfreeBufferArray(scip, &binvrow); SCIPfreeBufferArray(scip, &basisind); SCIPfreeBufferArray(scip, &cutcoefs); SCIPdebugMessage("end searching strong CG cuts: found %d cuts\n", ncuts); sepadata->lastncutsfound = SCIPgetNCutsFound(scip); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecFixandinfer) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** cands; int ncands; int startncands; int divedepth; SCIP_Bool cutoff; SCIP_Real large; *result = SCIP_DIDNOTRUN; /* we cannot run on problems with continuous variables */ if( SCIPgetNContVars(scip) > 0 ) return SCIP_OKAY; /* get unfixed variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &cands, &ncands, NULL) ); if( ncands == 0 ) return SCIP_OKAY; SCIPdebugMessage("starting fix-and-infer heuristic with %d unfixed integral variables\n", ncands); *result = SCIP_DIDNOTFIND; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* start probing */ SCIP_CALL( SCIPstartProbing(scip) ); /* fix variables and propagate inferences as long as the problem is still feasible and there are * unfixed integral variables */ cutoff = FALSE; divedepth = 0; startncands = ncands; /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); while( !cutoff && ncands > 0 && (divedepth < heurdata->minfixings || (startncands - ncands) * 2 * MAXDIVEDEPTH >= startncands * divedepth) && !SCIPisStopped(scip) ) { divedepth++; /* create next probing node */ SCIP_CALL( SCIPnewProbingNode(scip) ); /* fix next variable */ SCIP_CALL( fixVariable(scip, cands, ncands, large) ); /* propagate the fixing */ SCIP_CALL( SCIPpropagateProbing(scip, heurdata->proprounds, &cutoff, NULL) ); /* get remaining unfixed variables */ if( !cutoff ) { SCIP_CALL( SCIPgetPseudoBranchCands(scip, &cands, &ncands, NULL) ); } } /* check, if we are still feasible */ if( cutoff ) { SCIPdebugMessage("propagation detected a cutoff\n"); } else if( ncands == 0 ) { SCIP_Bool success; success = FALSE; /* try to add solution to SCIP */ SCIP_CALL( SCIPtryCurrentSol(scip, heur, FALSE, FALSE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found primal feasible solution\n"); *result = SCIP_FOUNDSOL; } else { SCIPdebugMessage("primal solution was rejected\n"); } } else { SCIPdebugMessage("probing was aborted (probing depth: %d, fixed: %d/%d)", divedepth, startncands - ncands, startncands); } /* end probing */ SCIP_CALL( SCIPendProbing(scip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpRapidlearning) {/*lint --e{715}*/ SCIP* subscip; /* the subproblem created by rapid learning */ SCIP_SEPADATA* sepadata; /* separator's private data */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_HASHMAP* varmapbw; /* mapping of sub-SCIP variables to SCIP variables */ SCIP_CONSHDLR** conshdlrs; /* array of constraint handler's that might that might obtain conflicts */ int* oldnconss; /* number of constraints without rapid learning conflicts */ SCIP_Longint nodelimit; /* node limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real memorylimit; /* memory limit for the subproblem */ int nconshdlrs; /* size of conshdlr and oldnconss array */ int nfixedvars; /* number of variables that could be fixed by rapid learning */ int nvars; /* number of variables */ int restartnum; /* maximal number of conflicts that should be created */ int i; /* counter */ SCIP_Bool success; /* was problem creation / copying constraint successful? */ SCIP_RETCODE retcode; /* used for catching sub-SCIP errors in debug mode */ int nconflicts; /* statistic: number of conflicts applied */ int nbdchgs; /* statistic: number of bound changes applied */ int n1startinfers; /* statistic: number of one side infer values */ int n2startinfers; /* statistic: number of both side infer values */ SCIP_Bool soladded; /* statistic: was a new incumbent found? */ SCIP_Bool dualboundchg; /* statistic: was a new dual bound found? */ SCIP_Bool disabledualreductions; /* TRUE, if dual reductions in sub-SCIP are not valid for original SCIP, * e.g., because a constraint could not be copied or a primal solution * could not be copied back */ int ndiscvars; soladded = FALSE; assert(sepa != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; ndiscvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip)+SCIPgetNImplVars(scip); /* only run when still not fixed binary variables exists */ if( ndiscvars == 0 ) return SCIP_OKAY; /* get separator's data */ sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* only run for integer programs */ if( !sepadata->contvars && ndiscvars != SCIPgetNVars(scip) ) return SCIP_OKAY; /* only run if there are few enough continuous variables */ if( sepadata->contvars && SCIPgetNContVars(scip) > sepadata->contvarsquot * SCIPgetNVars(scip) ) return SCIP_OKAY; /* do not run if pricers are present */ if( SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; /* if the separator should be exclusive to the root node, this prevents multiple calls due to restarts */ if( SCIPsepaGetFreq(sepa) == 0 && SCIPsepaGetNCalls(sepa) > 0) return SCIP_OKAY; /* call separator at most once per node */ if( SCIPsepaGetNCallsAtNode(sepa) > 0 ) return SCIP_OKAY; /* do not call rapid learning, if the problem is too big */ if( SCIPgetNVars(scip) > sepadata->maxnvars || SCIPgetNConss(scip) > sepadata->maxnconss ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; /* copy the subproblem */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rapid", FALSE, FALSE, &success) ); if( sepadata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, FALSE) ); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); SCIPhashmapFree(&varmapfw); /* this avoids dual presolving */ if( !success ) { for( i = 0; i < nvars; i++ ) { SCIP_CALL( SCIPaddVarLocks(subscip, subvars[i], 1, 1 ) ); } } SCIPdebugMessage("Copying SCIP was%s successful.\n", success ? "" : " not"); /* mimic an FD solver: DFS, no LP solving, 1-FUIP instead of all-FUIP */ SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/fuiplevels", 1) ); SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); SCIP_CALL( SCIPsetBoolParam(subscip, "constraints/disableenfops", TRUE) ); SCIP_CALL( SCIPsetIntParam(subscip, "propagating/pseudoobj/freq", -1) ); /* use inference branching */ SCIP_CALL( SCIPsetBoolParam(subscip, "branching/inference/useweightedsum", FALSE) ); /* only create short conflicts */ SCIP_CALL( SCIPsetRealParam(subscip, "conflict/maxvarsfac", 0.05) ); /* set limits for the subproblem */ nodelimit = SCIPgetNLPIterations(scip); nodelimit = MAX(sepadata->minnodes, nodelimit); nodelimit = MIN(sepadata->maxnodes, nodelimit); restartnum = 1000; /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit/5) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/restarts", 0) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/restartnum", restartnum) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* add an objective cutoff */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetUpperbound(scip)) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapbw, SCIPblkmem(scip), SCIPcalcHashtableSize(5 * nvars)) ); /* store reversing mapping of variables */ SCIP_CALL( SCIPtransformProb(subscip) ); for( i = 0; i < nvars; ++i) { SCIP_CALL( SCIPhashmapInsert(varmapbw, SCIPvarGetTransVar(subvars[i]), vars[i]) ); } /** allocate memory for constraints storage. Each constraint that will be created from now on will be a conflict. * Therefore, we need to remember oldnconss to get the conflicts from the FD search. */ nconshdlrs = 4; SCIP_CALL( SCIPallocBufferArray(scip, &conshdlrs, nconshdlrs) ); SCIP_CALL( SCIPallocBufferArray(scip, &oldnconss, nconshdlrs) ); /* store number of constraints before rapid learning search */ conshdlrs[0] = SCIPfindConshdlr(subscip, "bounddisjunction"); conshdlrs[1] = SCIPfindConshdlr(subscip, "setppc"); conshdlrs[2] = SCIPfindConshdlr(subscip, "linear"); conshdlrs[3] = SCIPfindConshdlr(subscip, "logicor"); /* redundant constraints might be eliminated in presolving */ SCIP_CALL( SCIPpresolve(subscip)); for( i = 0; i < nconshdlrs; ++i) { if( conshdlrs[i] != NULL ) oldnconss[i] = SCIPconshdlrGetNConss(conshdlrs[i]); } nfixedvars = SCIPgetNFixedVars(scip); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } /* abort solving, if limit of applied conflicts is reached */ if( SCIPgetNConflictConssApplied(subscip) >= restartnum ) { SCIPdebugMessage("finish after %lld successful conflict calls.\n", SCIPgetNConflictConssApplied(subscip)); } /* if the first 20% of the solution process were successful, proceed */ else if( (sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPisFeasLT(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) || (sepadata->applybdchgs && SCIPgetNFixedVars(subscip) > nfixedvars) || (sepadata->applyconflicts && SCIPgetNConflictConssApplied(subscip) > 0) ) { SCIPdebugMessage("proceed solving after the first 20%% of the solution process, since:\n"); if( SCIPgetNSols(subscip) > 0 && SCIPisFeasLE(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) { SCIPdebugMessage(" - there was a better solution (%f < %f)\n",SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip)); } if( SCIPgetNFixedVars(subscip) > nfixedvars ) { SCIPdebugMessage(" - there were %d variables fixed\n", SCIPgetNFixedVars(scip)-nfixedvars ); } if( SCIPgetNConflictConssFound(subscip) > 0 ) { SCIPdebugMessage(" - there were %lld conflict constraints created\n", SCIPgetNConflictConssApplied(subscip)); } /* set node limit to 100% */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) ); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } } else { SCIPdebugMessage("do not proceed solving after the first 20%% of the solution process.\n"); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif disabledualreductions = FALSE; /* check, whether a solution was found */ if( sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPfindHeur(scip, "trysol") != NULL ) { SCIP_HEUR* heurtrysol; SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until was declared to be feasible */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); soladded = FALSE; heurtrysol = SCIPfindHeur(scip, "trysol"); /* sequentially add solutions to trysol heuristic */ for( i = 0; i < nsubsols && !soladded; ++i ) { SCIPdebugMessage("Try to create new solution by copying subscip solution.\n"); SCIP_CALL( createNewSol(scip, subscip, subvars, heurtrysol, subsols[i], &soladded) ); } if( !soladded || !SCIPisEQ(scip, SCIPgetSolOrigObj(subscip, subsols[i-1]), SCIPgetSolOrigObj(subscip, subsols[0])) ) disabledualreductions = TRUE; } /* if the sub problem was solved completely, we update the dual bound */ dualboundchg = FALSE; if( sepadata->applysolved && !disabledualreductions && (SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL || SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE) ) { /* we need to multiply the dualbound with the scaling factor and add the offset, * because this information has been disregarded in the sub-SCIP */ SCIPdebugMessage("Update old dualbound %g to new dualbound %g.\n", SCIPgetDualbound(scip), SCIPgetTransObjscale(scip) * SCIPgetDualbound(subscip) + SCIPgetTransObjoffset(scip)); SCIP_CALL( SCIPupdateLocalDualbound(scip, SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip)) ); dualboundchg = TRUE; } /* check, whether conflicts were created */ nconflicts = 0; if( sepadata->applyconflicts && !disabledualreductions && SCIPgetNConflictConssApplied(subscip) > 0 ) { SCIP_HASHMAP* consmap; int hashtablesize; assert(SCIPgetNConflictConssApplied(subscip) < (SCIP_Longint) INT_MAX); hashtablesize = (int) SCIPgetNConflictConssApplied(subscip); assert(hashtablesize < INT_MAX/5); hashtablesize *= 5; /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), SCIPcalcHashtableSize(hashtablesize)) ); /* loop over all constraint handlers that might contain conflict constraints */ for( i = 0; i < nconshdlrs; ++i) { /* copy constraints that have been created in FD run */ if( conshdlrs[i] != NULL && SCIPconshdlrGetNConss(conshdlrs[i]) > oldnconss[i] ) { SCIP_CONS** conss; int c; int nconss; nconss = SCIPconshdlrGetNConss(conshdlrs[i]); conss = SCIPconshdlrGetConss(conshdlrs[i]); /* loop over all constraints that have been added in sub-SCIP run, these are the conflicts */ for( c = oldnconss[i]; c < nconss; ++c) { SCIP_CONS* cons; SCIP_CONS* conscopy; cons = conss[c]; assert(cons != NULL); success = FALSE; SCIP_CALL( SCIPgetConsCopy(subscip, scip, cons, &conscopy, conshdlrs[i], varmapbw, consmap, NULL, SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons), SCIPconsIsPropagated(cons), TRUE, FALSE, SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), FALSE, TRUE, &success) ); if( success ) { nconflicts++; SCIP_CALL( SCIPaddCons(scip, conscopy) ); SCIP_CALL( SCIPreleaseCons(scip, &conscopy) ); } else { SCIPdebugMessage("failed to copy conflict constraint %s back to original SCIP\n", SCIPconsGetName(cons)); } } } } SCIPhashmapFree(&consmap); } /* check, whether tighter global bounds were detected */ nbdchgs = 0; if( sepadata->applybdchgs && !disabledualreductions ) for( i = 0; i < nvars; ++i ) { SCIP_Bool infeasible; SCIP_Bool tightened; assert(SCIPisLE(scip, SCIPvarGetLbGlobal(vars[i]), SCIPvarGetLbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetUbGlobal(subvars[i]), SCIPvarGetUbGlobal(vars[i]))); /* update the bounds of the original SCIP, if a better bound was proven in the sub-SCIP */ SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; } n1startinfers = 0; n2startinfers = 0; /* install start values for inference branching */ if( sepadata->applyinfervals && (!sepadata->reducedinfer || soladded || nbdchgs+nconflicts > 0) ) { for( i = 0; i < nvars; ++i ) { SCIP_Real downinfer; SCIP_Real upinfer; SCIP_Real downvsids; SCIP_Real upvsids; SCIP_Real downconflen; SCIP_Real upconflen; /* copy downwards branching statistics */ downvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); /* copy upwards branching statistics */ upvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); /* memorize statistics */ if( downinfer+downconflen+downvsids > 0.0 || upinfer+upconflen+upvsids != 0 ) n1startinfers++; if( downinfer+downconflen+downvsids > 0.0 && upinfer+upconflen+upvsids != 0 ) n2startinfers++; SCIP_CALL( SCIPinitVarBranchStats(scip, vars[i], 0.0, 0.0, downvsids, upvsids, downconflen, upconflen, downinfer, upinfer, 0.0, 0.0) ); } } SCIPdebugPrintf("XXX Rapidlearning added %d conflicts, changed %d bounds, %s primal solution, %s dual bound improvement.\n", nconflicts, nbdchgs, soladded ? "found" : "no", dualboundchg ? "found" : "no"); SCIPdebugPrintf("YYY Infervalues initialized on one side: %5.2f %% of variables, %5.2f %% on both sides\n", 100.0 * n1startinfers/(SCIP_Real)nvars, 100.0 * n2startinfers/(SCIP_Real)nvars); /* change result pointer */ if( nconflicts > 0 || dualboundchg ) *result = SCIP_CONSADDED; else if( nbdchgs > 0 ) *result = SCIP_REDUCEDDOM; /* free local data */ SCIPfreeBufferArray(scip, &oldnconss); SCIPfreeBufferArray(scip, &conshdlrs); SCIPhashmapFree(&varmapbw); TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecGcgrens) { /*lint --e{715}*/ SCIP* masterprob; SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nstallnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get master problem */ masterprob = GCGrelaxGetMasterprob(scip); assert( masterprob != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* do not execute the heuristic on invalid relaxation solutions * (which is the case if the node has been cut off) */ if( !SCIPisRelaxSolValid(scip) ) { SCIPdebugMessage("skipping GCG RENS: invalid relaxation solution\n"); return SCIP_OKAY; } /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetStage(masterprob) > SCIP_STAGE_SOLVING || SCIPgetLPSolstat(masterprob) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only continue with some fractional variables */ if( SCIPgetNExternBranchCands(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward RENS if it succeeded often */ nstallnodes = (SCIP_Longint)(nstallnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nstallnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping RENS: nstallnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, heurdata->minnodes); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPapplyGcgrens(scip, heur, result, heurdata->minfixingrate, heurdata->minimprove, heurdata->maxnodes, nstallnodes, heurdata->binarybounds, heurdata->uselprows) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** call writing method */ static SCIP_RETCODE writeBounds( SCIP* scip, /**< SCIP data structure */ FILE* file, /**< file to write to or NULL */ SCIP_Bool writesubmipdualbound/**< write dualbounds of submip roots for all open nodes */ ) { SCIP_NODE** opennodes; int nopennodes; int n; int v; assert(scip != NULL); nopennodes = -1; #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Status after %"SCIP_LONGINT_FORMAT" processed nodes (%d open)\n", SCIPgetNNodes(scip), SCIPgetNNodesLeft(scip)); SCIPinfoMessage(scip, file, "Primalbound: %g\n", SCIPgetPrimalbound(scip)); SCIPinfoMessage(scip, file, "Dualbound: %g\n", SCIPgetDualbound(scip)); #else SCIPinfoMessage(scip, file, "PB %g\n", SCIPgetPrimalbound(scip)); #endif /* get all open nodes and therefor print all dualbounds */ for( v = 2; v >= 0; --v ) { SCIP_NODE* node; switch( v ) { case 2: SCIP_CALL( SCIPgetChildren(scip, &opennodes, &nopennodes) ); break; case 1: SCIP_CALL( SCIPgetSiblings(scip, &opennodes, &nopennodes) ); break; case 0: SCIP_CALL( SCIPgetLeaves(scip, &opennodes, &nopennodes) ); break; default: assert(0); break; } assert(nopennodes >= 0); /* print all node information */ for( n = nopennodes - 1; n >= 0 && !SCIPisStopped(scip); --n ) { node = opennodes[n]; if( writesubmipdualbound ) { SCIP* subscip; SCIP_Bool valid; SCIP_HASHMAP* varmap; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ int nvars; SCIP_Real submipdb; SCIP_Bool cutoff; SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmap, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); submipdb = SCIP_INVALID; valid = FALSE; cutoff = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmap, NULL, "__boundwriting", TRUE, FALSE, TRUE, &valid) ); if( valid ) { SCIP_VAR** branchvars; SCIP_Real* branchbounds; SCIP_BOUNDTYPE* boundtypes; int nbranchvars; int size; size = SCIPnodeGetDepth(node); /* allocate memory for all branching decisions */ SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* we assume that we only have one branching decision at each node */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); /* check if did not have enough memory */ if( nbranchvars > size ) { size = nbranchvars; SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* now getting all information */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); } /* apply all changes to the submip */ SCIP_CALL( applyDomainChanges(subscip, branchvars, branchbounds, boundtypes, nbranchvars, varmap) ); /* free memory for all branching decisions */ SCIPfreeBufferArray(scip, &boundtypes); SCIPfreeBufferArray(scip, &branchbounds); SCIPfreeBufferArray(scip, &branchvars); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* solve only root node */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); /* set cutoffbound as objective limit for subscip */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetCutoffbound(scip)) ); SCIP_CALL( SCIPsolve(subscip) ); cutoff = (SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE); submipdb = SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip); } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g, nodesubmiprootdualbound: %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #endif /* free hash map */ SCIPhashmapFree(&varmap); SCIP_CALL( SCIPfree(&subscip) ); } else { #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #endif } } } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "\n"); #endif return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOctane) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_SOL** first_sols; /* stores the first ffirst sols in order to check for common violation of a row */ SCIP_VAR** vars; /* the variables of the problem */ SCIP_VAR** fracvars; /* variables, that are fractional in current LP solution */ SCIP_VAR** subspacevars; /* the variables on which the search is performed. Either coinciding with vars or with the * space of all fractional variables of the current LP solution */ SCIP_Real p; /* n/2 - <delta,x> ( for some facet delta ) */ SCIP_Real q; /* <delta,a> */ SCIP_Real* rayorigin; /* origin of the ray, vector x in paper */ SCIP_Real* raydirection; /* direction of the ray, vector a in paper */ SCIP_Real* negquotient; /* negated quotient of rayorigin and raydirection, vector v in paper */ SCIP_Real* lambda; /* stores the distance of the facets (s.b.) to the origin of the ray */ SCIP_Bool usefracspace; /* determines whether the search concentrates on fractional variables and fixes integer ones */ SCIP_Bool cons_viol; /* used for checking whether a linear constraint is violated by one of the possible solutions */ SCIP_Bool success; SCIP_Bool* sign; /* signature of the direction of the ray */ SCIP_Bool** facets; /* list of extended facets */ int nvars; /* number of variables */ int nbinvars; /* number of 0-1-variables */ int nfracvars; /* number of fractional variables in current LP solution */ int nsubspacevars; /* dimension of the subspace on which the search is performed */ int nfacets; /* number of facets hidden by the ray that where already found */ int i; /* counter */ int j; /* counter */ int f_max; /* {0,1}-points to be checked */ int f_first; /* {0,1}-points to be generated at first in order to check whether a restart is necessary */ int r; /* counter */ int firstrule; int* perm; /* stores the way in which the coordinates were permuted */ int* fracspace; /* maps the variables of the subspace to the original variables */ assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* OCTANE is for use in 0-1 programs only */ if( nvars != nbinvars ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* don't call heuristic, if it was not successful enough in the past */ /*lint --e{647}*/ if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 ) return SCIP_OKAY; SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) ); /* don't use integral starting points */ if( nfracvars == 0 ) return SCIP_OKAY; /* get working pointers from heurdata */ sol = heurdata->sol; assert( sol != NULL ); f_max = heurdata->f_max; f_first = heurdata->f_first; usefracspace = heurdata->usefracspace; SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) ); /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */ if( usefracspace ) { nsubspacevars = nfracvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars); for( i = nvars - 1; i >= 0; --i ) fracspace[i] = -1; for( i = nsubspacevars - 1; i >= 0; --i ) fracspace[SCIPvarGetProbindex(subspacevars[i])] = i; } else { int currentindex; nsubspacevars = nvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); /* only copy the variables which are in the current LP */ currentindex = 0; for( i = 0; i < nvars; ++i ) { if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 ) { subspacevars[currentindex] = vars[i]; fracspace[i] = currentindex; ++currentindex; } else { fracspace[i] = -1; --nsubspacevars; } } } /* nothing to do for empty search space */ if( nsubspacevars == 0 ) return SCIP_OKAY; assert(0 < nsubspacevars && nsubspacevars <= nvars); for( i = 0; i < nsubspacevars; i++) assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i); /* at most 2^(n-1) facets can be hit */ if( nsubspacevars < 30 ) { /*lint --e{701}*/ assert(f_max > 0); f_max = MIN(f_max, 1 << (nsubspacevars - 1) ); } f_first = MIN(f_first, f_max); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) ); SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) ); for( i = f_max; i >= 0; --i ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) ); } SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) ); *result = SCIP_DIDNOTFIND; /* starting OCTANE */ SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n", usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5); /* generate starting point in original coordinates */ SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) ); for( i = nsubspacevars - 1; i >= 0; --i ) rayorigin[i] -= 0.5; firstrule = heurdata->lastrule; ++firstrule; for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ ) { SCIP_ROW** rows; int nrows; /* generate shooting ray in original coordinates by certain rules */ switch(r % 5) { case 1: if( heurdata->useavgnbray ) { SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) ); } break; case 2: if( heurdata->useobjray ) { SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 3: if( heurdata->usediffray ) { SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 4: if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) ); } break; case 0: if( heurdata->useavgray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) ); } break; default: SCIPerrorMessage("invalid ray rule identifier\n"); SCIPABORT(); } /* there must be a feasible direction for the shooting ray */ if( isZero(scip, raydirection, nsubspacevars) ) continue; /* transform coordinates such that raydirection >= 0 */ flipCoords(rayorigin, raydirection, sign, nsubspacevars); for( i = f_max - 1; i >= 0; --i) lambda[i] = SCIPinfinity(scip); /* calculate negquotient, initialize perm, facets[0], p, and q */ p = 0.5 * nsubspacevars; q = 0.0; for( i = nsubspacevars - 1; i >= 0; --i ) { /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */ if( SCIPisFeasZero(scip, raydirection[i]) ) { if( rayorigin[i] < 0 ) negquotient[i] = SCIPinfinity(scip); else negquotient[i] = -SCIPinfinity(scip); } else negquotient[i] = - (rayorigin[i] / raydirection[i]); perm[i] = i; /* initialization of facets[0] to the all-one facet with p and q its characteristic values */ facets[0][i] = TRUE; p -= rayorigin[i]; q += raydirection[i]; } assert(SCIPisPositive(scip, q)); /* resort the coordinates in nonincreasing order of negquotient */ SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars); #ifndef NDEBUG for( i = 0; i < nsubspacevars; i++ ) assert( raydirection[i] >= 0 ); for( i = 1; i < nsubspacevars; i++ ) assert( negquotient[i - 1] >= negquotient[i] ); #endif /* finished initialization */ /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */ for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i ) { facets[0][i] = FALSE; p += 2 * rayorigin[i]; q -= 2 * raydirection[i]; assert(SCIPisPositive(scip, p)); assert(SCIPisPositive(scip, q)); } /* avoid dividing by values close to 0.0 */ if( !SCIPisFeasPositive(scip, q) ) continue; /* assert necessary for flexelint */ assert(q > 0); lambda[0] = p / q; nfacets = 1; /* find the first facets hit by the ray */ for( i = 0; i < nfacets && i < f_first; ++i) generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); /* construct the first ffirst possible solutions */ for( i = 0; i < nfacets && i < f_first; ++i ) { SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) ); SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) ); assert( first_sols[i] != NULL ); } /* try, whether there is a row violated by all of the first ffirst solutions */ cons_viol = FALSE; SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); for( i = nrows - 1; i >= 0; --i ) { if( !SCIProwIsLocal(rows[i]) ) { SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real rowval; SCIP_Real* coeffs; int nnonzerovars; int k; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]); rhs = SCIProwGetRhs(rows[i]); coeffs = SCIProwGetVals(rows[i]); nnonzerovars = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j])); /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */ if( lhs > rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( lhs <= rowval ) { cons_viol = FALSE; break; } } } /* dito for the right hand side */ else if( rhs < rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( rhs >= rowval ) { cons_viol = FALSE; break; } } } /* break as soon as one row is violated by all of the ffirst solutions */ if( cons_viol ) break; } } if( !cons_viol ) { /* if there was no row violated by all solutions, try whether one or more of them are feasible */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { assert(first_sols[i] != NULL); SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } /* search for further facets and construct and try solutions out of facets fixed as closest ones */ for( i = f_first; i < f_max; ++i) { if( i >= nfacets ) break; generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) ); SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } } /* finished OCTANE */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) ); } } heurdata->lastrule = r; if( *result == SCIP_FOUNDSOL ) ++(heurdata->nsuccess); /* free temporary memory */ SCIPfreeBufferArray(scip, &first_sols); for( i = f_max; i >= 0; --i ) SCIPfreeBufferArray(scip, &facets[i]); SCIPfreeBufferArray(scip, &facets); SCIPfreeBufferArray(scip, &lambda); SCIPfreeBufferArray(scip, &perm); SCIPfreeBufferArray(scip, &sign); SCIPfreeBufferArray(scip, &negquotient); SCIPfreeBufferArray(scip, &raydirection); SCIPfreeBufferArray(scip, &rayorigin); SCIPfreeBufferArray(scip, &subspacevars); SCIPfreeBufferArray(scip, &fracspace); return SCIP_OKAY; }