/** returns the next unprocessed variable (last in, first out) with pending bound changes, or NULL */
static
SCIP_VAR* heurdataPopBoundChangeVar(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata            /**< heuristic data */
   )
{
   SCIP_VAR* var;
   int varpos;
   int varindex;

   assert(heurdata->nupdatedvars >= 0);

   /* return if no variable is currently pending */
   if( heurdata->nupdatedvars == 0 )
      return NULL;

   varpos = heurdata->nupdatedvars - 1;
   var = heurdata->updatedvars[varpos];
   assert(var != NULL);
   varindex = SCIPvarGetProbindex(var);
   assert(0 <= varindex && varindex < heurdata->varpossmemsize);
   assert(varpos == heurdata->varposs[varindex]);

   heurdata->varposs[varindex] = -1;
   heurdata->nupdatedvars--;

   return var;
}
/** creates the rows of the subproblem */
static
SCIP_RETCODE createRows(
   SCIP*                 scip,               /**< original SCIP data structure */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem */
   SCIP_VAR**            subvars             /**< the variables of the subproblem */
   )
{
   SCIP_ROW** rows;                          /* original scip rows                       */
   SCIP_CONS* cons;                          /* new constraint                           */
   SCIP_VAR** consvars;                      /* new constraint's variables               */
   SCIP_COL** cols;                          /* original row's columns                   */

   SCIP_Real constant;                       /* constant added to the row                */
   SCIP_Real lhs;                            /* left hand side of the row                */
   SCIP_Real rhs;                            /* left right side of the row               */
   SCIP_Real* vals;                          /* variables' coefficient values of the row */

   int nrows;
   int nnonz;
   int i;
   int j;

   /* get the rows and their number */
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* copy all rows to linear constraints */
   for( i = 0; i < nrows; i++ )
   {
      /* ignore rows that are only locally valid */
      if( SCIProwIsLocal(rows[i]) )
         continue;

      /* get the row's data */
      constant = SCIProwGetConstant(rows[i]);
      lhs = SCIProwGetLhs(rows[i]) - constant;
      rhs = SCIProwGetRhs(rows[i]) - constant;
      vals = SCIProwGetVals(rows[i]);
      nnonz = SCIProwGetNNonz(rows[i]);
      cols = SCIProwGetCols(rows[i]);

      assert(lhs <= rhs);

      /* allocate memory array to be filled with the corresponding subproblem variables */
      SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
      for( j = 0; j < nnonz; j++ )
         consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

      /* create a new linear constraint and add it to the subproblem */
      SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
      SCIP_CALL( SCIPaddCons(subscip, cons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

      /* free temporary memory */
      SCIPfreeBufferArray(scip, &consvars);
   }

   return SCIP_OKAY;
}
/** free heuristic data */
static
SCIP_RETCODE heurdataFreeArrays(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata            /**< heuristic data */
   )
{
   assert(heurdata->memsize == 0 || heurdata->rowmeans != NULL);
   assert(heurdata->memsize >= 0);

   if( heurdata->memsize > 0 )
   {
      SCIPfreeBufferArray(scip, &heurdata->rowmeans);
      SCIPfreeBufferArray(scip, &heurdata->rowvariances);
      SCIPfreeBufferArray(scip, &heurdata->rowinfinitiesup);
      SCIPfreeBufferArray(scip, &heurdata->rowinfinitiesdown);

      heurdata->memsize = 0;
   }

   if( heurdata->varpossmemsize > 0 )
   {
      SCIP_VAR** vars;
      int v;

      assert(heurdata->varpossmemsize == SCIPgetNVars(scip));

      vars = SCIPgetVars(scip);
      for( v = heurdata->varpossmemsize - 1; v >= 0; --v )
      {
         SCIP_VAR* var;

         var = vars[v];

         assert(var != NULL);
         assert(v == SCIPvarGetProbindex(var));
         SCIP_CALL( SCIPdropVarEvent(scip, var, EVENT_DISTRIBUTION, heurdata->eventhdlr, NULL, heurdata->varfilterposs[v]) );
      }
      SCIPfreeBufferArray(scip, &heurdata->currentlbs);
      SCIPfreeBufferArray(scip, &heurdata->currentubs);
      SCIPfreeBufferArray(scip, &heurdata->updatedvars);
      SCIPfreeBufferArray(scip, &heurdata->varposs);
      SCIPfreeBufferArray(scip, &heurdata->varfilterposs);
   }
   /* allocate variable update event processing array storage */

   heurdata->varpossmemsize = 0;
   heurdata->nupdatedvars = 0;

   return SCIP_OKAY;
}
/** add variable to the bound change event queue; skipped if variable is already in there, or if variable has
 *  no row currently watched
 */
static
void heurdataAddBoundChangeVar(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_VAR*             var                 /**< the variable whose bound changes need to be processed */
   )
{
   int varindex;
   int varpos;

   assert(var != NULL);

   varindex = SCIPvarGetProbindex(var);
   assert(-1 <= varindex && varindex < heurdata->varpossmemsize);

   /* if variable is not active, it should not be watched */
   if( varindex == -1 )
      return;
   varpos = heurdata->varposs[varindex];
   assert(varpos < heurdata->nupdatedvars);

   /* nothing to do if variable is already in the queue */
   if( varpos >= 0 )
   {
      assert(heurdata->updatedvars[varpos] == var);

      return;
   }

   /* if none of the variables rows was calculated yet, variable needs not to be watched */
   assert((heurdata->currentlbs[varindex] == SCIP_INVALID)
      == (heurdata->currentubs[varindex] == SCIP_INVALID)); /*lint !e777 doesn't like comparing floats for equality */

   /* we don't need to enqueue the variable if it hasn't been watched so far */
   if( heurdata->currentlbs[varindex] == SCIP_INVALID ) /*lint !e777 see above */
      return;

   /* add the variable to the heuristic data of variables to process updates for */
   assert(heurdata->varpossmemsize > heurdata->nupdatedvars);
   varpos = heurdata->nupdatedvars;
   heurdata->updatedvars[varpos] = var;
   heurdata->varposs[varindex] = varpos;
   ++heurdata->nupdatedvars;
}
/** update the variables current lower and upper bound */
static
void heurdataUpdateCurrentBounds(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_VAR*             var                 /**< the variable to update current bounds */
   )
{
   int varindex;
   SCIP_Real lblocal;
   SCIP_Real ublocal;

   assert(var != NULL);

   varindex = SCIPvarGetProbindex(var);
   assert(0 <= varindex && varindex < heurdata->varpossmemsize);
   lblocal = SCIPvarGetLbLocal(var);
   ublocal = SCIPvarGetUbLocal(var);

   assert(SCIPisFeasLE(scip, lblocal, ublocal));

   heurdata->currentlbs[varindex] = lblocal;
   heurdata->currentubs[varindex] = ublocal;
}
Пример #6
0
/** reads a block section */
static
SCIP_RETCODE readBlock(
    SCIP*                 scip,               /**< SCIP data structure */
    BLKINPUT*             blkinput,           /**< BLK reading data */
    SCIP_READERDATA*      readerdata          /**< reader data */
)
{
    int blockid;

    assert(blkinput != NULL);

    blockid = blkinput->blocknr;

    while( getNextToken(blkinput) )
    {
        SCIP_VAR* var;
        int varidx;
        int oldblock;

        /* check if we reached a new section */
        if( isNewSection(scip, blkinput) )
            return SCIP_OKAY;

        /* the token must be the name of an existing variable */
        var = SCIPfindVar(scip, blkinput->token);
        if( var == NULL )
        {
            syntaxError(scip, blkinput, "unknown variable in block section");
            return SCIP_OKAY;
        }

        varidx = SCIPvarGetProbindex(var);
        oldblock = readerdata->varstoblock[varidx];

        /* set the block number of the variable to the number of the current block */
        if( oldblock == NOVALUE )
        {
            SCIPdebugMessage("\tVar %s temporary in block %d.\n", SCIPvarGetName(var), blockid);
            readerdata->varstoblock[varidx] = blockid;
            ++(readerdata->nblockvars[blockid]);
        }
        /* variable was assigned to another (non-linking) block before, so it becomes a linking variable, now */
        else if( (oldblock != LINKINGVALUE) )
        {
            assert(oldblock != blockid);
            SCIPdebugMessage("\tVar %s is linking (old %d != %d new).\n", SCIPvarGetName(var), oldblock, blockid);

            readerdata->varstoblock[varidx] = LINKINGVALUE;

            /* decrease the number of variables in the old block and increase the number of linking variables */
            --(readerdata->nblockvars[oldblock]);
            ++(readerdata->nlinkingvars);

            assert(readerdata->nlinkingvarsblocks[varidx] == 0);
            assert(readerdata->linkingvarsblocks[varidx] == NULL);
            SCIP_CALL( SCIPallocMemoryArray(scip, &readerdata->linkingvarsblocks[varidx], 2) ); /*lint !e506 !e866*/
            readerdata->linkingvarsblocks[varidx][0] = oldblock;
            readerdata->linkingvarsblocks[varidx][1] = blockid;
            readerdata->nlinkingvarsblocks[varidx] = 2;
        }
        /* variable is a linking variable already, store the new block to which it belongs */
        else
        {
            assert(oldblock == LINKINGVALUE);
            assert(readerdata->nlinkingvarsblocks[varidx] >= 2);
            assert(readerdata->linkingvarsblocks[varidx] != NULL);
            SCIP_CALL( SCIPreallocMemoryArray(scip, &readerdata->linkingvarsblocks[varidx], readerdata->nlinkingvarsblocks[varidx] + 1) ); /*lint !e866*/
            readerdata->linkingvarsblocks[varidx][readerdata->nlinkingvarsblocks[varidx]] = blockid;
            ++(readerdata->nlinkingvarsblocks[varidx]);
        }
    }

    return SCIP_OKAY;
}
Пример #7
0
/* Generate edges from given row
 *
 * We avoid parallel edges. Each row generates a clique in the graph.
 */
static
SCIP_RETCODE createEdgesFromRow(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR**            vars,               /**< array of constraint variables */
   SCIP_Real*            vals,               /**< array of constraint values */
   int                   nvars,              /**< number of constraint variables */
   SparseGraph*          G                   /**< graph */
   )
{
   int i, j;
   SCIP_Real w;

   assert( scip != NULL );
   assert( nvars > 0 );

   /* compute weight */
   w = 0;
   for( i = 0; i < nvars; ++i )
      w += ABS(vals[i]);

   /* generate edges */
   for( i = 0; i < nvars; ++i )
   {
      int s;
      s = SCIPvarGetProbindex(vars[i]);
      assert( s >= 0 );

      for( j = i+1; j < nvars; ++j )
      {
         unsigned int k;
         int t;
         int a;
         t = SCIPvarGetProbindex(vars[j]);
         assert( t >= 0 );

         /* search whether edge is already present */
         k = 0;
         a = G->A[s][k];
         while( a >= 0 )
         {
            /* if we found edge, add weight */
            if( a == t )
            {
               G->W[s][k] += w;
               break;
            }
            a = G->A[s][++k];
            assert( k <= G->size[s] );
         }

         /* add new edge */
         if( a < 0 )
         {
            /* forward edge */
            SCIP_CALL( ensureEdgeCapacity(scip, G, (unsigned int) s) );
            k = G->deg[s];
            assert( G->A[s][k] == -1 );

            G->A[s][k] = t;
            G->W[s][k] = w;

            G->A[s][k+1] = -1; /*lint !e679*/
            ++G->deg[s];

            /* backward edge */
            SCIP_CALL( ensureEdgeCapacity(scip, G, (unsigned int) t) );
            k = G->deg[t];
            assert( G->A[t][k] == -1 );

            G->A[t][k] = s;
            G->W[t][k] = w;

            G->A[t][k+1] = -1; /*lint !e679*/
            ++G->deg[t];

            /* increase number of edges */
            ++G->m;
         }
      }
   }

   return SCIP_OKAY;
}
Пример #8
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                         */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                                */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed          */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)] ? */
   SCIP_Bool             uselprows,          /**< should subproblem be created out of the rows in the LP rows?   */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully  */
   )
{
   SCIP_VAR** vars;                          /* original SCIP variables */

   SCIP_Real fixingrate;

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int fixingcounter;

   assert(scip != NULL);
   assert(subscip != NULL);
   assert(subvars != NULL);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);

   /* get required variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   fixingcounter = 0;

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      SCIP_Real lpsolval;
      SCIP_Real lb;
      SCIP_Real ub;

      /* get the current LP solution for each variable */
      lpsolval = SCIPgetRelaxSolVal(scip, vars[i]);

      if( SCIPisFeasIntegral(scip, lpsolval) )
      {
         /* fix variables to current LP solution if it is integral,
          * use exact integral value, if the variable is only integral within numerical tolerances
          */
         lb = SCIPfloor(scip, lpsolval+0.5);
         ub = lb;
         fixingcounter++;
      }
      else if( binarybounds )
      {
         /* if the sub problem should be a binary problem, change the bounds to nearest integers */
         lb = SCIPfeasFloor(scip,lpsolval);
         ub = SCIPfeasCeil(scip,lpsolval);
      }
      else
      {
         /* otherwise just copy bounds */
         lb =  SCIPvarGetLbGlobal(vars[i]);
         ub =  SCIPvarGetUbGlobal(vars[i]);
      }

      /* perform the bound change */
      SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
      SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
   }

   /* abort, if all integer variables were fixed (which should not happen for MIP) */
   if( fixingcounter == nbinvars + nintvars )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }
   else
      fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1));
   SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars);

   /* abort, if the amount of fixed variables is insufficient */
   if( fixingrate < minfixingrate )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }

   if( uselprows )
   {
      SCIP_ROW** rows;                          /* original scip rows                         */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;
         int j;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(subscip, &consvars);
      }
   }

   *success = TRUE;
   return SCIP_OKAY;
}
/** process a variable from the queue of changed variables */
static
SCIP_RETCODE varProcessBoundChanges(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_VAR*             var                 /**< the variable whose bound changes need to be processed */
   )
{
   SCIP_ROW** colrows;
   SCIP_COL* varcol;
   SCIP_Real* colvals;
   SCIP_Real oldmean;
   SCIP_Real newmean;
   SCIP_Real oldvariance;
   SCIP_Real newvariance;
   SCIP_Real oldlb;
   SCIP_Real newlb;
   SCIP_Real oldub;
   SCIP_Real newub;
   SCIP_VARTYPE vartype;
   int ncolrows;
   int r;
   int varindex;

   /* ensure that this is a probing bound change */
   assert(SCIPinProbing(scip));

   assert(var != NULL);
   varcol = SCIPvarGetCol(var);
   assert(varcol != NULL);
   colrows = SCIPcolGetRows(varcol);
   colvals = SCIPcolGetVals(varcol);
   ncolrows = SCIPcolGetNNonz(varcol);

   varindex = SCIPvarGetProbindex(var);

   oldlb = heurdata->currentlbs[varindex];
   oldub = heurdata->currentubs[varindex];

   /* skip update if the variable has never been subject of previously calculated row activities */
   assert((oldlb == SCIP_INVALID) == (oldub == SCIP_INVALID)); /*lint !e777 doesn't like comparing floats for equality */
   if( oldlb == SCIP_INVALID ) /*lint !e777 */
      return SCIP_OKAY;

   newlb = SCIPvarGetLbLocal(var);
   newub = SCIPvarGetUbLocal(var);

   /* skip update if the bound change events have cancelled out */
   if( SCIPisFeasEQ(scip, oldlb, newlb) && SCIPisFeasEQ(scip, oldub, newub) )
      return SCIP_OKAY;

   /* calculate old and new variable distribution mean and variance */
   oldvariance = 0.0;
   newvariance = 0.0;
   oldmean = 0.0;
   newmean = 0.0;
   vartype = SCIPvarGetType(var);
   SCIPvarCalcDistributionParameters(scip, oldlb, oldub, vartype, &oldmean, &oldvariance);
   SCIPvarCalcDistributionParameters(scip, newlb, newub, vartype, &newmean, &newvariance);

   /* loop over all rows of this variable and update activity distribution */
   for( r = 0; r < ncolrows; ++r )
   {
      int rowpos;

      assert(colrows[r] != NULL);
      rowpos = SCIProwGetIndex(colrows[r]);
      assert(rowpos >= 0);

      SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, rowpos) );

      /* only consider rows for which activity distribution was already calculated */
      if( heurdata->rowmeans[rowpos] != SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */
      {
         SCIP_Real coeff;
         SCIP_Real coeffsquared;
         assert(heurdata->rowvariances[rowpos] != SCIP_INVALID
               && SCIPisFeasGE(scip, heurdata->rowvariances[rowpos], 0.0)); /*lint !e777 */

         coeff = colvals[r];
         coeffsquared = SQUARED(coeff);

         /* update variable contribution to row activity distribution */
         heurdata->rowmeans[rowpos] += coeff * (newmean - oldmean);
         heurdata->rowvariances[rowpos] += coeffsquared * (newvariance - oldvariance);
         heurdata->rowvariances[rowpos] = MAX(0.0, heurdata->rowvariances[rowpos]);

         /* account for changes of the infinite contributions to row activities */
         if( coeff > 0.0 )
         {
            /* if the coefficient is positive, upper bounds affect activity up */
            if( SCIPisInfinity(scip, newub) && !SCIPisInfinity(scip, oldub) )
               ++heurdata->rowinfinitiesup[rowpos];
            else if( !SCIPisInfinity(scip, newub) && SCIPisInfinity(scip, oldub) )
               --heurdata->rowinfinitiesup[rowpos];

            if( SCIPisInfinity(scip, newlb) && !SCIPisInfinity(scip, oldlb) )
               ++heurdata->rowinfinitiesdown[rowpos];
            else if( !SCIPisInfinity(scip, newlb) && SCIPisInfinity(scip, oldlb) )
               --heurdata->rowinfinitiesdown[rowpos];
         }
         else if( coeff < 0.0 )
         {
            if( SCIPisInfinity(scip, newub) && !SCIPisInfinity(scip, oldub) )
               ++heurdata->rowinfinitiesdown[rowpos];
            else if( !SCIPisInfinity(scip, newub) && SCIPisInfinity(scip, oldub) )
               --heurdata->rowinfinitiesdown[rowpos];

            if( SCIPisInfinity(scip, newlb) && !SCIPisInfinity(scip, oldlb) )
               ++heurdata->rowinfinitiesup[rowpos];
            else if( !SCIPisInfinity(scip, newlb) && SCIPisInfinity(scip, oldlb) )
               --heurdata->rowinfinitiesup[rowpos];
         }
         assert(heurdata->rowinfinitiesdown[rowpos] >= 0);
         assert(heurdata->rowinfinitiesup[rowpos] >= 0);
      }
   }

   /* store the new local bounds in the data */
   heurdataUpdateCurrentBounds(scip, heurdata, var);

   return SCIP_OKAY;
}
Пример #10
0
/** scoring callback for distribution diving. best candidate maximizes the distribution score */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreDistributiondiving)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_Real upscore;
   SCIP_Real downscore;
   int varindex;

   heurdata = SCIPheurGetData(SCIPdivesetGetHeur(diveset));
   assert(heurdata != NULL);

   /* process pending bound change events */
   while( heurdata->nupdatedvars > 0 )
   {
      SCIP_VAR* nextvar;

      /* pop the next variable from the queue and process its bound changes */
      nextvar = heurdataPopBoundChangeVar(scip, heurdata);
      assert(nextvar != NULL);
      SCIP_CALL( varProcessBoundChanges(scip, heurdata, nextvar) );
   }

   assert(cand != NULL);

   varindex = SCIPvarGetProbindex(cand);

   /* terminate with a penalty for inactive variables, which the plugin can currently not score
    * this should never happen with default settings where only LP branching candidates are iterated, but might occur
    * if other constraint handlers try to score an inactive variable that was (multi-)aggregated or negated
    */
   if( varindex == - 1 )
   {
      *score = -1.0;
      *roundup = FALSE;

      return SCIP_OKAY;
   }


   /* in debug mode, ensure that all bound process events which occurred in the mean time have been captured
    * by the heuristic event system
    */
   assert(SCIPisFeasLE(scip, SCIPvarGetLbLocal(cand), SCIPvarGetUbLocal(cand)));
   assert(0 <= varindex && varindex < heurdata->varpossmemsize);

   assert((heurdata->currentlbs[varindex] == SCIP_INVALID)
      == (heurdata->currentubs[varindex] == SCIP_INVALID));/*lint !e777 doesn't like comparing floats for equality */
   assert((heurdata->currentlbs[varindex] == SCIP_INVALID)
      || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(cand), heurdata->currentlbs[varindex])); /*lint !e777 */
   assert((heurdata->currentubs[varindex] == SCIP_INVALID)
      || SCIPisFeasEQ(scip, SCIPvarGetUbLocal(cand), heurdata->currentubs[varindex])); /*lint !e777 */

   /* if the heuristic has not captured the variable bounds yet, this can be done now */
   if( heurdata->currentlbs[varindex] == SCIP_INVALID ) /*lint !e777 */
      heurdataUpdateCurrentBounds(scip, heurdata, cand);

   upscore = 0.0;
   downscore = 0.0;

   /* loop over candidate rows and determine the candidate up- and down- branching score w.r.t. the score parameter */
   SCIP_CALL( calcBranchScore(scip, heurdata, cand, candsol, &upscore, &downscore, heurdata->score) );

   /* score is simply the maximum of the two individual scores */
   *roundup = (upscore > downscore);
   *score = MAX(upscore, downscore);

   return SCIP_OKAY;
}
Пример #11
0
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  prefer fractional integers over other variables in order to become integral during the process;
 *  shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable
 *  was already shifted in the opposite direction
 */
static
SCIP_RETCODE selectShifting(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_SOL*             sol,                /**< primal solution */
    SCIP_ROW*             row,                /**< LP row */
    SCIP_Real             rowactivity,        /**< activity of LP row */
    int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
    SCIP_Real*            nincreases,         /**< array with weighted number of increasings per variables */
    SCIP_Real*            ndecreases,         /**< array with weighted number of decreasings per variables */
    SCIP_Real             increaseweight,     /**< current weight of increase/decrease updates */
    SCIP_VAR**            shiftvar,           /**< pointer to store the shifting variable, returns NULL if impossible */
    SCIP_Real*            oldsolval,          /**< pointer to store old solution value of shifting variable */
    SCIP_Real*            newsolval           /**< pointer to store new (shifted) solution value of shifting variable */
)
{
    SCIP_COL** rowcols;
    SCIP_Real* rowvals;
    int nrowcols;
    SCIP_Real activitydelta;
    SCIP_Real bestshiftscore;
    SCIP_Real bestdeltaobj;
    int c;

    assert(direction == +1 || direction == -1);
    assert(nincreases != NULL);
    assert(ndecreases != NULL);
    assert(shiftvar != NULL);
    assert(oldsolval != NULL);
    assert(newsolval != NULL);

    /* get row entries */
    rowcols = SCIProwGetCols(row);
    rowvals = SCIProwGetVals(row);
    nrowcols = SCIProwGetNLPNonz(row);

    /* calculate how much the activity must be shifted in order to become feasible */
    activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity);
    assert((direction == +1 && SCIPisPositive(scip, activitydelta))
           || (direction == -1 && SCIPisNegative(scip, activitydelta)));

    /* select shifting variable */
    bestshiftscore = SCIP_REAL_MAX;
    bestdeltaobj = SCIPinfinity(scip);
    *shiftvar = NULL;
    *newsolval = 0.0;
    *oldsolval = 0.0;
    for( c = 0; c < nrowcols; ++c )
    {
        SCIP_COL* col;
        SCIP_VAR* var;
        SCIP_Real val;
        SCIP_Real solval;
        SCIP_Real shiftval;
        SCIP_Real shiftscore;
        SCIP_Bool isinteger;
        SCIP_Bool isfrac;
        SCIP_Bool increase;

        col = rowcols[c];
        var = SCIPcolGetVar(col);
        val = rowvals[c];
        assert(!SCIPisZero(scip, val));
        solval = SCIPgetSolVal(scip, sol, var);

        isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
        isfrac = isinteger && !SCIPisFeasIntegral(scip, solval);
        increase = (direction * val > 0.0);

        /* calculate the score of the shifting (prefer smaller values) */
        if( isfrac )
            shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) :
                         -1.0 / (SCIPvarGetNLocksDown(var) + 1.0);
        else
        {
            int probindex;
            probindex = SCIPvarGetProbindex(var);

            if( increase )
                shiftscore = ndecreases[probindex]/increaseweight;
            else
                shiftscore = nincreases[probindex]/increaseweight;
            if( isinteger )
                shiftscore += 1.0;
        }

        if( shiftscore <= bestshiftscore )
        {
            SCIP_Real deltaobj;

            if( !increase )
            {
                /* shifting down */
                assert(direction * val < 0.0);
                if( isfrac )
                    shiftval = SCIPfeasFloor(scip, solval);
                else
                {
                    SCIP_Real lb;

                    assert(activitydelta/val < 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasFloor(scip, shiftval);
                    lb = SCIPvarGetLbGlobal(var);
                    shiftval = MAX(shiftval, lb);
                }
            }
            else
            {
                /* shifting up */
                assert(direction * val > 0.0);
                if( isfrac )
                    shiftval = SCIPfeasCeil(scip, solval);
                else
                {
                    SCIP_Real ub;

                    assert(activitydelta/val > 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasCeil(scip, shiftval);
                    ub = SCIPvarGetUbGlobal(var);
                    shiftval = MIN(shiftval, ub);
                }
            }

            if( SCIPisEQ(scip, shiftval, solval) )
                continue;

            deltaobj = SCIPvarGetObj(var) * (shiftval - solval);
            if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj )
            {
                bestshiftscore = shiftscore;
                bestdeltaobj = deltaobj;
                *shiftvar = var;
                *oldsolval = solval;
                *newsolval = shiftval;
            }
        }
    }

    return SCIP_OKAY;
}
Пример #12
0
/** reads the blocks section */
static
SCIP_RETCODE readBlock(
    SCIP*                 scip,               /**< SCIP data structure */
    DECINPUT*             decinput,           /**< DEC reading data */
    SCIP_READERDATA*      readerdata          /**< reader data */
)
{
    int oldblock;
    int varidx;
    int consindex;
    int i;
    int blockid;
    int nvars;
    SCIP_CONS* cons;
    SCIP_VAR** vars;
    SCIP_Bool conshasvar;

    assert(decinput != NULL);
    assert(readerdata != NULL);

    while( getNextToken(decinput) )
    {
        /* check if we reached a new section */
        if( isNewSection(scip, decinput) )
            break;

        /* the token must be the name of an existing cons */
        cons = SCIPfindCons(scip, decinput->token);
        if( cons == NULL )
        {
            syntaxError(scip, decinput, "unknown constraint in block section");
            break;
        }

        conshasvar = FALSE;
        /* get all vars for the specific constraint */
        nvars = SCIPgetNVarsXXX(scip, cons);
        vars = NULL;
        if( nvars > 0 )
        {
            SCIP_CALL( SCIPallocMemoryArray(scip, &vars, nvars) );
            SCIP_CALL( SCIPgetVarsXXX(scip, cons, vars, nvars) );
        }

        blockid = decinput->blocknr;

        for( i = 0; i < nvars; i ++ )
        {
            SCIP_VAR* var;
            assert(vars != NULL); /* for flexelint */
            if( decinput->presolved )
            {
                var = SCIPvarGetProbvar(vars[i]);
                if( !SCIPisVarRelevant(var) )
                    continue;
            }
            else
                var = vars[i];

            conshasvar = TRUE;
            /* store for each var whether it is in none, one or more blocks */
            varidx = SCIPvarGetProbindex(var);
            assert(varidx >= 0 && varidx < SCIPgetNVars(scip));
            oldblock = readerdata->varstoblock[varidx];

            assert(oldblock == NOVALUE || oldblock == LINKINGVALUE || (oldblock >= 0 && oldblock < decinput->nblocks));

            /* variable was assigned to no block before, just assign it to the new block */
            if( oldblock == NOVALUE )
            {
                SCIPdebugMessage("\tVar %s temporary in block %d.\n", SCIPvarGetName(vars[i]), blockid);
                readerdata->varstoblock[varidx] = blockid;
                ++(readerdata->nblockvars[blockid]);
            }
            /* variable was assigned to another (non-linking) block before, so it becomes a linking variable, now */
            else if( (oldblock != LINKINGVALUE) && oldblock != blockid )
            {
                SCIPdebugMessage("\tVar %s is linking (old %d != %d new).\n", SCIPvarGetName(vars[i]), oldblock, blockid);
                assert(oldblock != blockid);

                readerdata->varstoblock[varidx] = LINKINGVALUE;

                /* decrease the value again if it is a linking var */
                --(readerdata->nblockvars[oldblock]);
                ++(readerdata->nlinkingvars);
            }
        }
        SCIPfreeMemoryArrayNull(scip, &vars);

        if( !conshasvar )
        {
            assert(!SCIPhashmapExists(readerdata->constoblock, cons));
            SCIPwarningMessage(scip, "Cons <%s> has been deleted by presolving, skipping.\n",  SCIPconsGetName(cons));
            continue;
        }
        /*
         * saving block <-> constraint
         */

        /** @todo check if linking constraints are not in the subscipcons */
        consindex = readerdata->nblockconss[blockid];
        readerdata->blockconss[blockid][consindex] = cons;
        ++(readerdata->nblockconss[blockid]);

        assert(SCIPhashmapGetImage(readerdata->constoblock, cons) == (void*)(size_t) LINKINGVALUE);

        SCIPdebugMessage("cons %s is in block %d\n", SCIPconsGetName(cons), blockid);
        SCIP_CALL( SCIPhashmapSetImage(readerdata->constoblock, cons, (void*) ((size_t) blockid)) );
        --(readerdata->nlinkingconss);


    }

    return SCIP_OKAY;
}
Пример #13
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                  */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                        */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                               */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed         */
   unsigned int*         randseed,           /**< a seed value for the random number generator                  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP_VAR** vars;                          /* original scip variables                    */
   SCIP_SOL* sol;                            /* pool of solutions                          */
   SCIP_Bool* marked;                        /* array of markers, which variables to fixed */
   SCIP_Bool fixingmarker;                   /* which flag should label a fixed variable?  */

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int j;
   int nmarkers;

   /* get required data of the original problem */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   sol = SCIPgetBestSol(scip);
   assert(sol != NULL);


   SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) );

   if( minfixingrate > 0.5 )
   {
      nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = FALSE;
   }
   else
   {
      nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = TRUE;
   }
   assert( 0 <= nmarkers && nmarkers <=  SCIPceil(scip,(nbinvars+nintvars)/2.0 ) );

   j = 0;
   BMSclearMemoryArray(marked, nbinvars+nintvars);
   while( j < nmarkers )
   {
      do
      {
         i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed);
      }
      while( marked[i] );
      marked[i] = TRUE;
      j++;
   }
   assert( j == nmarkers );

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      /* fix all randomly marked variables */
      if( marked[i] == fixingmarker )
      {
         SCIP_Real solval;
         SCIP_Real lb;
         SCIP_Real ub;

         solval = SCIPgetSolVal(scip, sol, vars[i]);
         lb = SCIPvarGetLbGlobal(subvars[i]);
         ub = SCIPvarGetUbGlobal(subvars[i]);
         assert(SCIPisLE(scip, lb, ub));
         
         /* due to dual reductions, it may happen that the solution value is not in
            the variable's domain anymore */
         if( SCIPisLT(scip, solval, lb) )
            solval = lb;
         else if( SCIPisGT(scip, solval, ub) )
            solval = ub;
         
         /* perform the bound change */
         if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) )
         {
            SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) );
            SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) );
         }
      }
   }

   if( uselprows )
   {
      SCIP_ROW** rows;   /* original scip rows */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(scip, &consvars);
      }
   }

   SCIPfreeBufferArray(scip, &marked);
   return SCIP_OKAY;
}
Пример #14
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOctane)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_SOL** first_sols;     /* stores the first ffirst sols in order to check for common violation of a row */

   SCIP_VAR** vars;           /* the variables of the problem */
   SCIP_VAR** fracvars;       /* variables, that are fractional in current LP solution */
   SCIP_VAR** subspacevars;   /* the variables on which the search is performed. Either coinciding with vars or with the
                               * space of all fractional variables of the current LP solution */

   SCIP_Real p;               /* n/2 - <delta,x> ( for some facet delta ) */
   SCIP_Real q;               /* <delta,a> */

   SCIP_Real* rayorigin;      /* origin of the ray, vector x in paper */
   SCIP_Real* raydirection;   /* direction of the ray, vector a in paper */
   SCIP_Real* negquotient;    /* negated quotient of rayorigin and raydirection, vector v in paper */
   SCIP_Real* lambda;         /* stores the distance of the facets (s.b.) to the origin of the ray */

   SCIP_Bool usefracspace;    /* determines whether the search concentrates on fractional variables and fixes integer ones */
   SCIP_Bool cons_viol;       /* used for checking whether a linear constraint is violated by one of the possible solutions */
   SCIP_Bool success;
   SCIP_Bool* sign;           /* signature of the direction of the ray */
   SCIP_Bool** facets;        /* list of extended facets */

   int nvars;            /* number of variables  */
   int nbinvars;         /* number of 0-1-variables */
   int nfracvars;        /* number of fractional variables in current LP solution */
   int nsubspacevars;    /* dimension of the subspace on which the search is performed */
   int nfacets;          /* number of facets hidden by the ray that where already found */
   int i;                /* counter */
   int j;                /* counter */
   int f_max;            /* {0,1}-points to be checked */
   int f_first;          /* {0,1}-points to be generated at first in order to check whether a restart is necessary */
   int r;                /* counter */
   int firstrule;

   int* perm;            /* stores the way in which the coordinates were permuted */
   int* fracspace;       /* maps the variables of the subspace to the original variables */

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) );

   /* OCTANE is for use in 0-1 programs only */
   if( nvars != nbinvars )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* don't call heuristic, if it was not successful enough in the past */
   /*lint --e{647}*/
   if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 )
      return SCIP_OKAY;

   SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) );

   /* don't use integral starting points */
   if( nfracvars == 0 )
      return SCIP_OKAY;

   /* get working pointers from heurdata */
   sol = heurdata->sol;
   assert( sol != NULL );
   f_max = heurdata->f_max;
   f_first = heurdata->f_first;
   usefracspace = heurdata->usefracspace;

   SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) );

   /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */
   if( usefracspace )
   {
      nsubspacevars = nfracvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );
      BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars);
      for( i = nvars - 1; i >= 0; --i )
         fracspace[i] = -1;
      for( i = nsubspacevars - 1; i >= 0; --i )
         fracspace[SCIPvarGetProbindex(subspacevars[i])] = i;
   }
   else
   {
      int currentindex;

      nsubspacevars = nvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );

      /* only copy the variables which are in the current LP */
      currentindex = 0;
      for( i = 0; i < nvars; ++i )
      {
         if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 )
         {
            subspacevars[currentindex] = vars[i];
            fracspace[i] = currentindex;
            ++currentindex;

         }
         else
         {
            fracspace[i] = -1;
            --nsubspacevars;
         }
      }
   }

   /* nothing to do for empty search space */
   if( nsubspacevars == 0 )
      return SCIP_OKAY;

   assert(0 < nsubspacevars && nsubspacevars <= nvars);

   for( i = 0; i < nsubspacevars; i++)
      assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i);

   /* at most 2^(n-1) facets can be hit */
   if( nsubspacevars < 30 )
   {
      /*lint --e{701}*/
      assert(f_max > 0);
      f_max = MIN(f_max, 1 << (nsubspacevars - 1) );
   }

   f_first = MIN(f_first, f_max);

   /* memory allocation */
   SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) );
   SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) );
   for( i = f_max; i >= 0; --i )
   {
      /*lint --e{866}*/
      SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) );
   }
   SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) );

   *result = SCIP_DIDNOTFIND;

   /* starting OCTANE */
   SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n",
      usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5);

   /* generate starting point in original coordinates */
   SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) );
   for( i = nsubspacevars - 1; i >= 0; --i )
      rayorigin[i] -= 0.5;

   firstrule = heurdata->lastrule;
   ++firstrule;
   for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ )
   {
      SCIP_ROW** rows;
      int nrows;

      /* generate shooting ray in original coordinates by certain rules */
      switch(r % 5)
      {
      case 1:
         if( heurdata->useavgnbray )
         {
            SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) );
         }
         break;
      case 2:
         if( heurdata->useobjray )
         {
            SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 3:
         if( heurdata->usediffray )
         {
            SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 4:
         if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) );
         }
         break;
      case 0:
         if( heurdata->useavgray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) );
         }
         break;
      default:
         SCIPerrorMessage("invalid ray rule identifier\n");
         SCIPABORT();
      }

      /* there must be a feasible direction for the shooting ray */
      if( isZero(scip, raydirection, nsubspacevars) )
         continue;

      /* transform coordinates such that raydirection >= 0 */
      flipCoords(rayorigin, raydirection, sign, nsubspacevars);

      for( i = f_max - 1; i >= 0; --i)
         lambda[i] = SCIPinfinity(scip);

      /* calculate negquotient, initialize perm, facets[0], p, and q */
      p = 0.5 * nsubspacevars;
      q = 0.0;
      for( i = nsubspacevars - 1; i >= 0; --i )
      {
         /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */
         if( SCIPisFeasZero(scip, raydirection[i]) )
         {
            if( rayorigin[i] < 0 )
               negquotient[i] = SCIPinfinity(scip);
            else
               negquotient[i] = -SCIPinfinity(scip);
         }
         else
            negquotient[i] = - (rayorigin[i] / raydirection[i]);

         perm[i] = i;

         /* initialization of facets[0] to the all-one facet with p and q its characteristic values */
         facets[0][i] = TRUE;
         p -= rayorigin[i];
         q += raydirection[i];
      }

      assert(SCIPisPositive(scip, q));

      /* resort the coordinates in nonincreasing order of negquotient */
      SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars);

#ifndef NDEBUG
      for( i = 0; i < nsubspacevars; i++ )
         assert( raydirection[i] >= 0 );
      for( i = 1; i < nsubspacevars; i++ )
         assert( negquotient[i - 1] >= negquotient[i] );
#endif
      /* finished initialization */

      /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */
      for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i )
      {
         facets[0][i] = FALSE;
         p += 2 * rayorigin[i];
         q -= 2 * raydirection[i];
         assert(SCIPisPositive(scip, p));
         assert(SCIPisPositive(scip, q));
      }

      /* avoid dividing by values close to 0.0 */
      if( !SCIPisFeasPositive(scip, q) )
         continue;

      /* assert necessary for flexelint */
      assert(q > 0);
      lambda[0] = p / q;

      nfacets = 1;

      /* find the first facets hit by the ray */
      for( i = 0; i < nfacets && i < f_first; ++i)
         generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);

      /* construct the first ffirst possible solutions */
      for( i = 0; i < nfacets && i < f_first; ++i )
      {
         SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) );
         SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) );
         assert( first_sols[i] != NULL );
      }

      /* try, whether there is a row violated by all of the first ffirst solutions */
      cons_viol = FALSE;
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
      for( i = nrows - 1; i >= 0; --i )
      {
         if( !SCIProwIsLocal(rows[i]) )
         {
            SCIP_COL** cols;
            SCIP_Real constant;
            SCIP_Real lhs;
            SCIP_Real rhs;
            SCIP_Real rowval;
            SCIP_Real* coeffs;
            int nnonzerovars;
            int k;

            /* get the row's data */
            constant = SCIProwGetConstant(rows[i]);
            lhs = SCIProwGetLhs(rows[i]);
            rhs = SCIProwGetRhs(rows[i]);
            coeffs = SCIProwGetVals(rows[i]);
            nnonzerovars = SCIProwGetNNonz(rows[i]);
            cols = SCIProwGetCols(rows[i]);
            rowval = constant;

            for( j = nnonzerovars - 1; j >= 0; --j )
               rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j]));

            /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */
            if( lhs > rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( lhs <= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* dito for the right hand side */
            else if( rhs < rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( rhs >= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* break as soon as one row is violated by all of the ffirst solutions */
            if( cons_viol )
               break;
         }
      }


      if( !cons_viol )
      {
         /* if there was no row violated by all solutions, try whether one or more of them are feasible */
         for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
         {
            assert(first_sols[i] != NULL);
            SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
         /* search for further facets and construct and try solutions out of facets fixed as closest ones */
         for( i = f_first; i < f_max; ++i)
         {
            if( i >= nfacets )
               break;
            generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);
            SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) );
            SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
      }

      /* finished OCTANE */
      for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
      {
         SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) );
      }
   }
   heurdata->lastrule = r;

   if( *result == SCIP_FOUNDSOL )
      ++(heurdata->nsuccess);

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &first_sols);
   for( i = f_max; i >= 0; --i )
      SCIPfreeBufferArray(scip, &facets[i]);
   SCIPfreeBufferArray(scip, &facets);
   SCIPfreeBufferArray(scip, &lambda);
   SCIPfreeBufferArray(scip, &perm);
   SCIPfreeBufferArray(scip, &sign);
   SCIPfreeBufferArray(scip, &negquotient);
   SCIPfreeBufferArray(scip, &raydirection);
   SCIPfreeBufferArray(scip, &rayorigin);
   SCIPfreeBufferArray(scip, &subspacevars);
   SCIPfreeBufferArray(scip, &fracspace);

   return SCIP_OKAY;
}
Пример #15
0
/** fills the whole Decomp struct after the blk file has been read */
static
SCIP_RETCODE fillDecompStruct(
    SCIP*                 scip,               /**< SCIP data structure */
    BLKINPUT*             blkinput,           /**< blk reading data */
    DEC_DECOMP*           decomp,             /**< DEC_DECOMP structure to fill */
    SCIP_READERDATA*      readerdata          /**< reader data*/
)
{

    SCIP_HASHMAP* constoblock;
    SCIP_CONS** allcons;

    SCIP_VAR** consvars;
    int i;
    int j;
    int nvars;
    int blocknr;
    int nconss;
    int nblocks;
    SCIP_Bool valid;

    assert(scip != NULL);
    assert(blkinput != NULL);
    assert(readerdata != NULL);

    allcons = SCIPgetConss(scip);
    nvars = SCIPgetNVars(scip);
    nconss = SCIPgetNConss(scip);
    nblocks = blkinput->nblocks;

    DECdecompSetPresolved(decomp, blkinput->presolved);
    DECdecompSetNBlocks(decomp, nblocks);
    DECdecompSetDetector(decomp, NULL);

    DECdecompSetType(decomp, DEC_DECTYPE_ARROWHEAD, &valid);
    assert(valid);

    /* hashmaps */
    SCIP_CALL( SCIPhashmapCreate(&constoblock, SCIPblkmem(scip), nconss) );
    SCIP_CALL( SCIPallocMemoryArray(scip, &consvars, nvars) );

    /* assign constraints to blocks or declare them linking */
    for( i = 0; i < nconss; i ++ )
    {
        SCIP_CONS* cons;

        cons = allcons[i];

        if( SCIPhashmapGetImage(readerdata->constoblock, cons) == (void*) (size_t) LINKINGVALUE )
        {
            SCIP_CALL( SCIPhashmapInsert(constoblock, cons, (void*) (size_t) (nblocks+1)) );

            SCIPdebugMessage("cons %s is linking\n", SCIPconsGetName(cons));
        }
        /* check whether all variables in the constraint belong to one block */
        else
        {
            int nconsvars;

            nconsvars = SCIPgetNVarsXXX(scip, cons);
            assert(nconsvars < nvars);

            SCIP_CALL( SCIPgetVarsXXX(scip, cons, consvars, nvars) );

            blocknr = -1;

            /* find the first unique assignment of a contained variable to a block */
            for( j = 0; j < nconsvars; ++j )
            {
                /* if a contained variables is directly transferred to the master, the constraint is a linking constraint */
                if( readerdata->varstoblock[SCIPvarGetProbindex(consvars[j])] == NOVALUE )
                {
                    blocknr = -1;
                    break;
                }
                /* assign the constraint temporarily to the block of the variable, if it is unique */
                if( blocknr == -1 && readerdata->varstoblock[SCIPvarGetProbindex(consvars[j])] != LINKINGVALUE )
                {
                    blocknr = readerdata->varstoblock[SCIPvarGetProbindex(consvars[j])];
                }
            }
            if( blocknr != -1 )
            {
                int varidx;
                int varblock;

                /* check whether all contained variables are copied into the assigned block;
                 * if not, the constraint is treated as a linking constraint
                 */
                for( j = 0; j < nconsvars; ++j )
                {
                    varidx = SCIPvarGetProbindex(consvars[j]);
                    varblock = readerdata->varstoblock[varidx];
                    assert(varblock != NOVALUE);

                    if( varblock != LINKINGVALUE && varblock != blocknr )
                    {
                        blocknr = -1;
                        break;
                    }
                    else if( varblock == LINKINGVALUE )
                    {
                        int k;

                        for( k = 0; k < readerdata->nlinkingvarsblocks[varidx]; ++k )
                        {
                            if( readerdata->linkingvarsblocks[varidx][k] == blocknr )
                                break;
                        }
                        /* we did not break, so the variable is not assigned to the block */
                        if( k == readerdata->nlinkingvarsblocks[varidx] )
                        {
                            blocknr = -1;
                            break;
                        }
                    }
                }
            }

            if( blocknr == -1 )
            {
                SCIP_CALL( SCIPhashmapInsert(constoblock, cons, (void*) (size_t) (nblocks+1)) );

                SCIPdebugMessage("constraint <%s> is a linking constraint\n",
                                 SCIPconsGetName(cons));
            }
            else
            {
                SCIP_CALL( SCIPhashmapInsert(constoblock, cons, (void*) (size_t) (blocknr+1)) );
                SCIPdebugMessage("constraint <%s> is assigned to block %d\n", SCIPconsGetName(cons), blocknr);
            }
        }
    }
    SCIP_CALL( DECfilloutDecdecompFromConstoblock(scip, decomp, constoblock, nblocks, SCIPgetVars(scip), SCIPgetNVars(scip), SCIPgetConss(scip), SCIPgetNConss(scip), FALSE) );

    SCIPfreeMemoryArray(scip, &consvars);

    return SCIP_OKAY;
}
Пример #16
0
/** ensure that maxindex + 1 rows can be represented in data arrays; memory gets reallocated with 10% extra space
 *  to save some time for future allocations */
static
SCIP_RETCODE heurdataEnsureArraySize(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   int                   maxindex            /**< row index at hand (size must be at least this large) */
   )
{
   int newsize;
   int r;

   /* maxindex fits in current array -> nothing to do */
   if( maxindex < heurdata->memsize )
      return SCIP_OKAY;

   /* new memory size is the max index + 1 plus 10% additional space */
   newsize = (int)SCIPfeasCeil(scip, (maxindex + 1) * 1.1);
   assert(newsize > heurdata->memsize);
   assert(heurdata->memsize >= 0);

   /* alloc memory arrays for row information */
   if( heurdata->memsize == 0 )
   {
      SCIP_VAR** vars;
      int v;
      int nvars;

      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->rowinfinitiesdown, newsize) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->rowinfinitiesup, newsize) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->rowmeans, newsize) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->rowvariances, newsize) );

      assert(SCIPgetStage(scip) == SCIP_STAGE_SOLVING);

      vars = SCIPgetVars(scip);
      nvars = SCIPgetNVars(scip);

      assert(nvars > 0);

      /* allocate variable update event processing array storage */
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->varfilterposs, nvars) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->varposs, nvars) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->updatedvars, nvars) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->currentubs, nvars) );
      SCIP_CALL( SCIPallocBufferArray(scip, &heurdata->currentlbs, nvars) );

      heurdata->varpossmemsize = nvars;
      heurdata->nupdatedvars = 0;

      /* init variable event processing data */
      for( v = 0; v < nvars; ++v )
      {
         assert(SCIPvarIsActive(vars[v]));
         assert(SCIPvarGetProbindex(vars[v]) == v);

         /* set up variable events to catch bound changes */
         SCIP_CALL( SCIPcatchVarEvent(scip, vars[v], EVENT_DISTRIBUTION, heurdata->eventhdlr, NULL, &(heurdata->varfilterposs[v])) );
         assert(heurdata->varfilterposs[v] >= 0);

         heurdata->varposs[v] = -1;
         heurdata->updatedvars[v] = NULL;
         heurdata->currentlbs[v] = SCIP_INVALID;
         heurdata->currentubs[v] = SCIP_INVALID;
      }

   }
   else
   {
      SCIP_CALL( SCIPreallocBufferArray(scip, &heurdata->rowinfinitiesdown, newsize) );
      SCIP_CALL( SCIPreallocBufferArray(scip, &heurdata->rowinfinitiesup, newsize) );
      SCIP_CALL( SCIPreallocBufferArray(scip, &heurdata->rowmeans, newsize) );
      SCIP_CALL( SCIPreallocBufferArray(scip, &heurdata->rowvariances, newsize) );
   }

   /* loop over extended arrays and invalidate data to trigger initialization of this row when necessary */
   for( r = heurdata->memsize; r < newsize; ++r )
   {
      heurdata->rowmeans[r] = SCIP_INVALID;
      heurdata->rowvariances[r] = SCIP_INVALID;
      heurdata->rowinfinitiesdown[r] = 0;
      heurdata->rowinfinitiesup[r] = 0;
   }

   /* adjust memsize */
   heurdata->memsize = newsize;

   return SCIP_OKAY;
}
Пример #17
0
/** print row in PPM format to file stream */
static
void printRow(
   SCIP*                 scip,               /**< SCIP data structure */
   FILE*                 file,               /**< output file (or NULL for standard output) */
   SCIP_READERDATA*      readerdata,         /**< information for reader */
   SCIP_VAR**            vars,               /**< array of constraint variables */
   SCIP_Real*            vals,               /**< array of constraint values */
   int                   nvars,              /**< number of constraint variables */
   int                   ntotalvars,         /**< number of variables */
   SCIP_Real             maxcoef             /**< maximal coefficient */
   )
{
   int v;
   int i;
   int j;

   int red;
   int green;
   int blue;

   char linebuffer[PPM_MAX_LINELEN];
   int linecnt;
   int varindex;
   int actvarindex;
   int maxvarindex;
   int indexvar = 0;

   char buffer[PPM_MAX_LINELEN];
   const unsigned char max = (unsigned char)255;
   char white[4];

   assert( scip != NULL );
   assert (nvars > 0);
   assert (readerdata != NULL);

   i = 0;
   varindex = -1;
   maxvarindex = 0;

   (void) SCIPsnprintf(white, 4, "%c%c%c", max, max, max);
   clearLine(linebuffer, &linecnt);

   /* calculate maximum index of the variables in this constraint */
   for( v = 0; v < nvars; ++v )
   {
      if(maxvarindex < SCIPvarGetProbindex(vars[v]))
         maxvarindex = SCIPvarGetProbindex(vars[v]);
   }

   assert(maxvarindex < ntotalvars);

   /* print coefficients */
   for(v = 0; v < nvars; ++v)
   {
      actvarindex = maxvarindex;
      for(j = 0; j < nvars; ++j)
      {
         if( varindex < SCIPvarGetProbindex(vars[j]) && SCIPvarGetProbindex(vars[j]) <= actvarindex )
         {
            actvarindex = SCIPvarGetProbindex(vars[j]);
            indexvar = j;
         }
      }
      varindex = actvarindex;

      /* fill in white points since these variables indices do not exits in this constraint */
      for( ; i < varindex; ++i )
      {
         if(readerdata->rgb_ascii)
            appendLine(scip, file, readerdata, linebuffer, &linecnt, white);
         else
            appendLine(scip, file, readerdata, linebuffer, &linecnt, " 255 255 255 ");
      }


      calcColorValue(scip, readerdata, REALABS(vals[indexvar]), &red, &green, &blue, maxcoef);
      if(readerdata->rgb_ascii)
      {
         if(red == 35 || red == 0) red++;
         if(green==35 || green == 0) green++;
         if(blue==35 || blue == 0) blue++;
         (void) SCIPsnprintf(buffer, PPM_MAX_LINELEN, "%c%c%c", (unsigned char)red, (unsigned char)green, (unsigned char)blue);
      }
      else
         (void) SCIPsnprintf(buffer, PPM_MAX_LINELEN, " %d %d %d ", red, green, blue);

      appendLine(scip, file, readerdata, linebuffer, &linecnt, buffer);
      i++;
   }

   /* fill in white points since these variables indices do not exits in this constraint */
   for( ; i < ntotalvars; ++i )
   {
      if(readerdata->rgb_ascii)
         appendLine(scip, file, readerdata, linebuffer, &linecnt, white);
      else
         appendLine(scip, file, readerdata, linebuffer, &linecnt, " 255 255 255 ");
   }

   endLine(scip, file, readerdata, linebuffer, &linecnt);
}
Пример #18
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
Пример #19
0
/** searches and adds implied bound cuts that are violated by the given solution value array */
static
SCIP_RETCODE separateCuts(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SEPA*            sepa,               /**< separator */
   SCIP_SOL*             sol,                /**< the solution that should be separated, or NULL for LP solution */
   SCIP_Real*            solvals,            /**< array with solution values of all problem variables */
   SCIP_VAR**            fracvars,           /**< array of fractional variables */
   SCIP_Real*            fracvals,           /**< solution values of fractional variables */
   int                   nfracs,             /**< number of fractional variables */
   SCIP_Bool*            cutoff,             /**< whether a cutoff has been detected */
   int*                  ncuts               /**< pointer to store the number of generated cuts */
   )
{
   SCIP_CLIQUE** cliques;
   SCIP_SEPADATA* sepadata;
   int ncliques;
   int i;

   assert(solvals != NULL);
   assert(fracvars != NULL || nfracs == 0);
   assert(fracvals != NULL || nfracs == 0);
   assert(cutoff != NULL);
   assert(ncuts != NULL);

   *cutoff = FALSE;
   *ncuts = 0;
   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   SCIPdebugMessage("searching for implied bound cuts\n");

   /* search binary variables for violated implications */
   for( i = 0; i < nfracs; i++ )
   {
      SCIP_BOUNDTYPE* impltypes; 
      SCIP_Real* implbounds; 
      SCIP_VAR** implvars;
      int nimpl;
      int j;

      assert(fracvars != NULL);
      assert(fracvals != NULL);

      /* only process binary variables */
      if( SCIPvarGetType(fracvars[i]) != SCIP_VARTYPE_BINARY )
         continue;

      /* get implications of x == 1 */
      nimpl = SCIPvarGetNImpls(fracvars[i], TRUE);
      implvars = SCIPvarGetImplVars(fracvars[i], TRUE);
      impltypes = SCIPvarGetImplTypes(fracvars[i], TRUE);
      implbounds = SCIPvarGetImplBounds(fracvars[i], TRUE);

      /*debugMessage("%d implications for <%s>[%g] == 1\n", nimpl, SCIPvarGetName(fracvars[i]), fracvals[i]);*/

      /* try to add cuts for implications of x == 1
       *    x == 1 -> y <= p:  y <= ub + x * (p - ub)  <==>  y + (ub - p) * x <=  ub
       *    x == 1 -> y >= p:  y >= lb + x * (p - lb)  <==> -y + (p - lb) * x <= -lb
       * with lb (ub) global lower (upper) bound of y
       */
      for( j = 0; j < nimpl; j++ )
      {
         SCIP_Real solval;

         assert(implvars != NULL);
         assert(impltypes != NULL);
         assert(implbounds != NULL);

         /* consider only implications with active implvar */
         if( SCIPvarGetProbindex(implvars[j]) < 0 )
            continue;

         solval = solvals[SCIPvarGetProbindex(implvars[j])];
         if( impltypes[j] == SCIP_BOUNDTYPE_UPPER )
         {
            SCIP_Real ub;

            /* implication x == 1 -> y <= p */
            ub = SCIPvarGetUbGlobal(implvars[j]);

            /* consider only nonredundant and numerical harmless implications */
            if( SCIPisLE(scip, implbounds[j], ub) && (ub - implbounds[j]) * SCIPfeastol(scip) <= RELCUTCOEFMAXRANGE )
            {
               /* add cut if violated */
               SCIP_CALL( addCut(scip, sepa, sol, 1.0, implvars[j], solval, (ub - implbounds[j]), fracvars[i], fracvals[i],
                     ub, cutoff, ncuts) );
               if ( *cutoff )
                  return SCIP_OKAY;
            }
         }
         else
         {
            SCIP_Real lb;

            /* implication x == 1 -> y >= p */
            lb = SCIPvarGetLbGlobal(implvars[j]);
            assert(impltypes[j] == SCIP_BOUNDTYPE_LOWER);

            /* consider only nonredundant and numerical harmless implications */
            if( SCIPisGE(scip, implbounds[j], lb) && (implbounds[j] - lb) * SCIPfeastol(scip) <= RELCUTCOEFMAXRANGE )
            {
               /* add cut if violated */
               SCIP_CALL( addCut(scip, sepa, sol, -1.0, implvars[j], solval, (implbounds[j] - lb), fracvars[i], fracvals[i],
                     -lb, cutoff, ncuts) );
               if ( *cutoff )
                  return SCIP_OKAY;
            }
         }
      }

      /* get implications of x == 0 */
      nimpl = SCIPvarGetNImpls(fracvars[i], FALSE);
      implvars = SCIPvarGetImplVars(fracvars[i], FALSE);
      impltypes = SCIPvarGetImplTypes(fracvars[i], FALSE);
      implbounds = SCIPvarGetImplBounds(fracvars[i], FALSE);

      /*debugMessage("%d implications for <%s>[%g] == 0\n", nimpl, SCIPvarGetName(fracvars[i]), fracvals[i]);*/

      /* try to add cuts for implications of x == 0
       *    x == 0 -> y <= p:  y <= p + x * (ub - p)  <==>  y + (p - ub) * x <=  p
       *    x == 0 -> y >= p:  y >= p + x * (lb - p)  <==> -y + (lb - p) * x <= -p
       * with lb (ub) global lower (upper) bound of y
       */
      for( j = 0; j < nimpl; j++ )
      {
         SCIP_Real solval;

         /* consider only implications with active implvar */
         if( SCIPvarGetProbindex(implvars[j]) < 0 )
            continue;

         solval = solvals[SCIPvarGetProbindex(implvars[j])];
         if( impltypes[j] == SCIP_BOUNDTYPE_UPPER )
         {
            SCIP_Real ub;

            /* implication x == 0 -> y <= p */
            ub = SCIPvarGetUbGlobal(implvars[j]);

            /* consider only nonredundant and numerical harmless implications */
            if( SCIPisLE(scip, implbounds[j], ub) && (ub - implbounds[j]) * SCIPfeastol(scip) < RELCUTCOEFMAXRANGE )
            {
               /* add cut if violated */
               SCIP_CALL( addCut(scip, sepa, sol, 1.0, implvars[j], solval, (implbounds[j] - ub), fracvars[i], fracvals[i],
                     implbounds[j], cutoff, ncuts) );
               if ( *cutoff )
                  return SCIP_OKAY;
            }
         }
         else
         {
            SCIP_Real lb;

            /* implication x == 0 -> y >= p */
            lb = SCIPvarGetLbGlobal(implvars[j]);
            assert(impltypes[j] == SCIP_BOUNDTYPE_LOWER);

            /* consider only nonredundant and numerical harmless implications */
            if( SCIPisGE(scip, implbounds[j], lb) && (implbounds[j] - lb) * SCIPfeastol(scip) < RELCUTCOEFMAXRANGE )
            {
               /* add cut if violated */
               SCIP_CALL( addCut(scip, sepa, sol, -1.0, implvars[j], solval, (lb - implbounds[j]), fracvars[i], fracvals[i],
                     -implbounds[j], cutoff, ncuts) );
               if ( *cutoff )
                  return SCIP_OKAY;
            }
         }
      }
   }

   /* stop separation here if cliques should not be separated */
   if( ! sepadata->usetwosizecliques )
      return SCIP_OKAY;

   /* prepare clean clique data */
   SCIP_CALL( SCIPcleanupCliques(scip, cutoff) );

   if( *cutoff )
      return SCIP_OKAY;

   cliques = SCIPgetCliques(scip);
   ncliques = SCIPgetNCliques(scip);

   /* loop over cliques of size 2 which are essentially implications and add cuts if they are violated */
   for( i = 0; i < ncliques; ++i )
   {
      SCIP_CLIQUE* clique;
      SCIP_VAR** clqvars;
      SCIP_Bool* clqvals;
      SCIP_Real rhs;

      clique = cliques[i];
      /* only consider inequality cliques of size 2 */
      if( SCIPcliqueGetNVars(clique) != 2 || SCIPcliqueIsEquation(clique) )
         continue;

      /* get variables and values of the clique */
      clqvars = SCIPcliqueGetVars(clique);
      clqvals = SCIPcliqueGetValues(clique);

      /* clique variables should never be equal after clean up */
      assert(clqvars[0] != clqvars[1]);

      /* calculate right hand side of clique inequality, which is initially 1 and decreased by 1 for every occurence of
       * a negated variable in the clique
       */
      rhs = 1.0;
      if( ! clqvals[0] )
         rhs -= 1.0;
      if( ! clqvals[1] )
         rhs -= 1.0;

      /* Basic clique inequality is
       *
       *       cx * x + (1-cx) (1-x) + cy * y + (1-cy) * (1-y) <= 1,
       *
       * where x and y are the two binary variables in the clique and cx and cy are their clique values, where a
       * clique value of 0 means that the negation of the variable should be part of the inequality.
       * Hence, exactly one of the two possible terms for x and y has a nonzero coefficient
       */
      SCIP_CALL( addCut(scip, sepa, sol,
            clqvals[0] ? 1.0 : -1.0, clqvars[0], SCIPgetSolVal(scip, sol, clqvars[0]),
            clqvals[1] ? 1.0 : -1.0, clqvars[1], SCIPgetSolVal(scip, sol, clqvars[1]),
            rhs, cutoff, ncuts) );

      /* terminate if cutoff was found */
      if( *cutoff )
         return SCIP_OKAY;
   }

   return SCIP_OKAY;
}
Пример #20
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR* var;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real* lpcandsfrac;
   SCIP_Real primsol;
   SCIP_Real frac;
   SCIP_Real pscostquot;
   SCIP_Real bestpscostquot;
   SCIP_Real oldobj;
   SCIP_Real newobj;
   SCIP_Real objscale;
   SCIP_Bool bestcandmayrounddown;
   SCIP_Bool bestcandmayroundup;
   SCIP_Bool bestcandroundup;
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;
   SCIP_Bool roundup;
   SCIP_Bool lperror;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int* roundings;
   int nvars;
   int varidx;
   int nlpcands;
   int startnlpcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int bestcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only apply heuristic, if only a few solutions have been found */
   if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols )
      return SCIP_OKAY;

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get fractional variables that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the maximal diving depth */
   nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   if( SCIPgetNSolsFound(scip) == 0 )
      maxdivedepth = (int)(heurdata->depthfacnosol * nvars);
   else
      maxdivedepth = (int)(heurdata->depthfac * nvars);
   maxdivedepth = MIN(maxdivedepth, 10*maxdepth);


   *result = SCIP_DIDNOTFIND;

   /* get temporary memory for remembering the current soft roundings */
   SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) );
   BMSclearMemoryArray(roundings, nvars);

   /* start diving */
   SCIP_CALL( SCIPstartDive(scip) );

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth);

   /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but
    * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case
    * - if possible, we dive at least with the depth 10
    * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
    */
   lperror = FALSE;
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   divedepth = 0;
   bestcandmayrounddown = FALSE;
   bestcandmayroundup = FALSE;
   startnlpcands = nlpcands;
   while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10
            && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) )
   {
      SCIP_RETCODE retcode;

      divedepth++;

      /* choose variable for objective change:
       * - prefer variables that may not be rounded without destroying LP feasibility:
       *   - of these variables, change objective value of variable with largest rel. difference of pseudo cost values
       * - if all remaining fractional variables may be rounded without destroying LP feasibility:
       *   - change objective value of variable with largest rel. difference of pseudo cost values
       */
      bestcand = -1;
      bestpscostquot = -1.0;
      bestcandmayrounddown = TRUE;
      bestcandmayroundup = TRUE;
      bestcandroundup = FALSE;
      for( c = 0; c < nlpcands; ++c )
      {
         var = lpcands[c];
         mayrounddown = SCIPvarMayRoundDown(var);
         mayroundup = SCIPvarMayRoundUp(var);
         primsol = lpcandssol[c];
         frac = lpcandsfrac[c];
         if( mayrounddown || mayroundup )
         {
            /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
            if( bestcandmayrounddown || bestcandmayroundup )
            {
               /* choose rounding direction:
                * - if variable may be rounded in both directions, round corresponding to the pseudo cost values
                * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                *   the current fractional solution
                */
               roundup = FALSE;
               if( mayrounddown && mayroundup )
                  calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup);
               else if( mayrounddown )
                  calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup);
               else
                  calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup);

               /* prefer variables, that have already been soft rounded but failed to get integral */
               varidx = SCIPvarGetProbindex(var);
               assert(0 <= varidx && varidx < nvars);
               if( roundings[varidx] != 0 )
                  pscostquot *= 1000.0;

               /* check, if candidate is new best candidate */
               if( pscostquot > bestpscostquot )
               {
                  bestcand = c;
                  bestpscostquot = pscostquot;
                  bestcandmayrounddown = mayrounddown;
                  bestcandmayroundup = mayroundup;
                  bestcandroundup = roundup;
               }
            }
         }
         else
         {
            /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */
            calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup);

            /* prefer variables, that have already been soft rounded but failed to get integral */
            varidx = SCIPvarGetProbindex(var);
            assert(0 <= varidx && varidx < nvars);
            if( roundings[varidx] != 0 )
               pscostquot *= 1000.0;

            /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
            if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot )
            {
               bestcand = c;
               bestpscostquot = pscostquot;
               bestcandmayrounddown = FALSE;
               bestcandmayroundup = FALSE;
               bestcandroundup = roundup;
            }
         }
      }
      assert(bestcand != -1);

      /* if all candidates are roundable, try to round the solution */
      if( bestcandmayrounddown || bestcandmayroundup )
      {
         SCIP_Bool success;

         /* create solution from diving LP and try to round it */
         SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
         SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

         if( success )
         {
            SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n",
               SCIPgetSolOrigObj(scip, heurdata->sol));

            /* try to add solution to SCIP */
            SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check, if solution was feasible and good enough */
            if( success )
            {
               SCIPdebugMessage(" -> solution was feasible and good enough\n");
               *result = SCIP_FOUNDSOL;
            }
         }
      }

      var = lpcands[bestcand];

      /* check, if the best candidate was already subject to soft rounding */
      varidx = SCIPvarGetProbindex(var);
      assert(0 <= varidx && varidx < nvars);
      if( roundings[varidx] == +1 )
      {
         /* variable was already soft rounded upwards: hard round it downwards */
         SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) );
         SCIPdebugMessage("  dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n",
            divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var));
      }
      else if( roundings[varidx] == -1 )
      {
         /* variable was already soft rounded downwards: hard round it upwards */
         SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
         SCIPdebugMessage("  dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n",
            divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var));
      }
      else
      {
         assert(roundings[varidx] == 0);

         /* apply soft rounding of best candidate via a change in the objective value */
         objscale = divedepth * 1000.0;
         oldobj = SCIPgetVarObjDive(scip, var);
         if( bestcandroundup )
         {
            /* soft round variable up: make objective value (more) negative */
            if( oldobj < 0.0 )
               newobj = objscale * oldobj;
            else
               newobj = -objscale * oldobj;
            newobj = MIN(newobj, -objscale);

            /* remember, that this variable was soft rounded upwards */
            roundings[varidx] = +1;
         }
         else
         {
            /* soft round variable down: make objective value (more) positive */
            if( oldobj > 0.0 )
               newobj = objscale * oldobj;
            else
               newobj = -objscale * oldobj;
            newobj = MAX(newobj, objscale);

            /* remember, that this variable was soft rounded downwards */
            roundings[varidx] = -1;
         }
         SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) );
         SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
            SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj);
      }

      /* resolve the diving LP */
      nlpiterations = SCIPgetNLPIterations(scip);
      retcode =  SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL);
      lpsolstat = SCIPgetLPSolstat(scip);

      /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
       * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
         {
            SCIP_CALL( retcode );
         }
#endif
         SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode);
         SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
      }

      if( lperror )
         break;

      /* update iteration count */
      heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

      /* get LP solution status  and fractional variables, that should be integral */
      if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         /* get new fractional variables */
         SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
      }
      SCIPdebugMessage("   -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands);
   }

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendDive(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   /* free temporary memory for remembering the current soft roundings */
   SCIPfreeBufferArray(scip, &roundings);

   SCIPdebugMessage("objpscostdiving heuristic finished\n");

   return SCIP_OKAY;
}
Пример #21
0
/** calculates the initial mean and variance of the row activity normal distribution.
 *
 *  The mean value \f$ \mu \f$ is given by \f$ \mu = \sum_i=1^n c_i * (lb_i +ub_i) / 2 \f$ where
 *  \f$n \f$ is the number of variables, and \f$ c_i, lb_i, ub_i \f$ are the variable coefficient and
 *  bounds, respectively. With the same notation, the variance \f$ \sigma^2 \f$ is given by
 *  \f$ \sigma^2 = \sum_i=1^n c_i^2 * \sigma^2_i \f$, with the variance being
 *  \f$ \sigma^2_i = ((ub_i - lb_i + 1)^2 - 1) / 12 \f$ for integer variables and
 *  \f$ \sigma^2_i = (ub_i - lb_i)^2 / 12 \f$ for continuous variables.
 */
static
void rowCalculateGauss(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEURDATA*        heurdata,           /**< the heuristic rule data */
   SCIP_ROW*             row,                /**< the row for which the gaussian normal distribution has to be calculated */
   SCIP_Real*            mu,                 /**< pointer to store the mean value of the gaussian normal distribution */
   SCIP_Real*            sigma2,             /**< pointer to store the variance value of the gaussian normal distribution */
   int*                  rowinfinitiesdown,  /**< pointer to store the number of variables with infinite bounds to DECREASE activity */
   int*                  rowinfinitiesup     /**< pointer to store the number of variables with infinite bounds to INCREASE activity */
   )
{
   SCIP_COL** rowcols;
   SCIP_Real* rowvals;
   int nrowvals;
   int c;

   assert(scip != NULL);
   assert(row != NULL);
   assert(mu != NULL);
   assert(sigma2 != NULL);
   assert(rowinfinitiesup != NULL);
   assert(rowinfinitiesdown != NULL);

   rowcols = SCIProwGetCols(row);
   rowvals = SCIProwGetVals(row);
   nrowvals = SCIProwGetNNonz(row);

   assert(nrowvals == 0 || rowcols != NULL);
   assert(nrowvals == 0 || rowvals != NULL);

   *mu = SCIProwGetConstant(row);
   *sigma2 = 0.0;
   *rowinfinitiesdown = 0;
   *rowinfinitiesup = 0;

   /* loop over nonzero row coefficients and sum up the variable contributions to mu and sigma2 */
   for( c = 0; c < nrowvals; ++c )
   {
      SCIP_VAR* colvar;
      SCIP_Real colval;
      SCIP_Real colvarlb;
      SCIP_Real colvarub;
      SCIP_Real squarecoeff;
      SCIP_Real varvariance;
      SCIP_Real varmean;
      int varindex;

      assert(rowcols[c] != NULL);
      colvar = SCIPcolGetVar(rowcols[c]);
      assert(colvar != NULL);

      colval = rowvals[c];
      colvarlb = SCIPvarGetLbLocal(colvar);
      colvarub = SCIPvarGetUbLocal(colvar);

      varmean = 0.0;
      varvariance = 0.0;
      varindex = SCIPvarGetProbindex(colvar);
      assert((heurdata->currentlbs[varindex] == SCIP_INVALID)
            == (heurdata->currentubs[varindex] == SCIP_INVALID)); /*lint !e777 doesn't like comparing floats for equality */

      /* variable bounds need to be watched from now on */
      if( heurdata->currentlbs[varindex] == SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */
         heurdataUpdateCurrentBounds(scip, heurdata, colvar);

      assert(!SCIPisInfinity(scip, colvarlb));
      assert(!SCIPisInfinity(scip, -colvarub));
      assert(SCIPisFeasLE(scip, colvarlb, colvarub));

      /* variables with infinite bounds are skipped for the calculation of the variance; they need to
       * be accounted for by the counters for infinite row activity decrease and increase and they
       * are used to shift the row activity mean in case they have one nonzero, but finite bound */
      if( SCIPisInfinity(scip, -colvarlb) || SCIPisInfinity(scip, colvarub) )
      {
         if( SCIPisInfinity(scip, colvarub) )
         {
         /* an infinite upper bound gives the row an infinite maximum activity or minimum activity, if the coefficient is
          * positive or negative, resp.
          */
            if( colval < 0.0 )
               ++(*rowinfinitiesdown);
            else
               ++(*rowinfinitiesup);
         }

         /* an infinite lower bound gives the row an infinite maximum activity or minimum activity, if the coefficient is
          * negative or positive, resp.
          */
         if( SCIPisInfinity(scip, -colvarlb) )
         {
            if( colval > 0.0 )
               ++(*rowinfinitiesdown);
            else
               ++(*rowinfinitiesup);
         }
      }
      SCIPvarCalcDistributionParameters(scip, colvarlb, colvarub, SCIPvarGetType(colvar), &varmean, &varvariance);

      /* actual values are updated; the contribution of the variable to mu is the arithmetic mean of its bounds */
      *mu += colval * varmean;

      /* the variance contribution of a variable is c^2 * (u - l)^2 / 12.0 for continuous and c^2 * ((u - l + 1)^2 - 1) / 12.0 for integer */
      squarecoeff = SQUARED(colval);
      *sigma2 += squarecoeff * varvariance;

      assert(!SCIPisFeasNegative(scip, *sigma2));
   }

   SCIPdebug( SCIPprintRow(scip, row, NULL) );
   SCIPdebugMessage("  Row %s has a mean value of %g at a sigma2 of %g \n", SCIProwGetName(row), *mu, *sigma2);
}
Пример #22
0
/** adds priced variables to the LP */
SCIP_RETCODE SCIPpricestoreApplyVars(
   SCIP_PRICESTORE*      pricestore,         /**< pricing storage */
   BMS_BLKMEM*           blkmem,             /**< block memory buffers */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< dynamic problem statistics */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_PROB*            prob,               /**< transformed problem after presolve */
   SCIP_TREE*            tree,               /**< branch and bound tree */
   SCIP_LP*              lp                  /**< LP data */
   )
{
   SCIP_VAR* var;
   SCIP_COL* col;
   int v;

   assert(pricestore != NULL);
   assert(pricestore->naddedbdviolvars <= pricestore->nbdviolvars);
   assert(set != NULL);
   assert(prob != NULL);
   assert(lp != NULL);
   assert(tree != NULL);
   assert(SCIPtreeIsFocusNodeLPConstructed(tree));

   SCIPdebugMessage("adding %d variables (%d bound violated and %d priced vars) to %d LP columns\n",
      SCIPpricestoreGetNVars(pricestore), pricestore->nbdviolvars - pricestore->naddedbdviolvars,
      pricestore->nvars, SCIPlpGetNCols(lp));

   /* add the variables with violated bounds to LP */
   for( v = pricestore->naddedbdviolvars; v < pricestore->nbdviolvars; ++v )
   {
      var = pricestore->bdviolvars[v];
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
      assert(SCIPvarGetProbindex(var) >= 0);
      assert(var->nuses >= 2); /* at least used in pricing storage and in problem */

      if( SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE )
      {
         /* transform loose variable into column variable */
         SCIP_CALL( SCIPvarColumn(var, blkmem, set, stat, prob, lp) );
      }
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

      col = SCIPvarGetCol(var);
      assert(col != NULL);
      assert(col->lppos == -1);
      SCIPdebugMessage("adding bound violated variable <%s> (lb=%g, ub=%g)\n", SCIPvarGetName(var), 
         pricestore->bdviolvarslb[v], pricestore->bdviolvarsub[v]);
      SCIP_CALL( SCIPlpAddCol(lp, set, col, SCIPtreeGetCurrentDepth(tree)) );

      if( !pricestore->initiallp )
         pricestore->nvarsapplied++;
   }
   pricestore->naddedbdviolvars = pricestore->nbdviolvars;

   /* add the selected pricing variables to LP */
   for( v = 0; v < pricestore->nvars; ++v )
   {
      var = pricestore->vars[v];
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
      assert(SCIPvarGetProbindex(var) >= 0);
      assert(var->nuses >= 2); /* at least used in pricing storage and in problem */

      /* transform variable into column variable, if needed */
      if( SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE )
      {
         SCIP_CALL( SCIPvarColumn(var, blkmem, set, stat, prob, lp) );
      }
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

      col = SCIPvarGetCol(var);
      assert(col != NULL);
      assert(col->lppos == -1);
      SCIPdebugMessage("adding priced variable <%s> (score=%g)\n", SCIPvarGetName(var), pricestore->scores[v]);
      SCIP_CALL( SCIPlpAddCol(lp, set, col, SCIPtreeGetCurrentDepth(tree)) );

      /* release the variable */
      SCIP_CALL( SCIPvarRelease(&pricestore->vars[v], blkmem, set, eventqueue, lp) );

      if( !pricestore->initiallp )
         pricestore->nvarsapplied++;
   }

   /* clear the pricing storage */
   pricestore->nvars = 0;

   return SCIP_OKAY;
}
Пример #23
0
/** generates the direction of the shooting ray as the average of the normalized non-basic vars and rows */
static
SCIP_RETCODE generateAverageNBRay(
   SCIP*                 scip,               /**< SCIP data structure                   */
   SCIP_Real*            raydirection,       /**< shooting ray                          */
   int*                  fracspace,          /**< index set of fractional variables     */
   SCIP_VAR**            subspacevars,       /**< pointer to fractional space variables */
   int                   nsubspacevars       /**< dimension of fractional space         */
   )
{
   SCIP_ROW** rows;
   SCIP_COL** cols;
   int nrows;
   int ncols;
   int i;

   assert(scip != NULL);
   assert(raydirection != NULL);
   assert(fracspace != NULL);
   assert(subspacevars != NULL);

   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );

   /* add up non-basic variables */
   for( i = nsubspacevars - 1; i >= 0; --i )
   {
      SCIP_Real solval;

      solval = SCIPvarGetLPSol(subspacevars[i]);

      if( SCIPisFeasEQ(scip, solval, SCIPvarGetLbLocal(subspacevars[i])) )
         raydirection[i] = +1.0;
      else if( SCIPisFeasEQ(scip, solval, SCIPvarGetUbLocal(subspacevars[i])) )
         raydirection[i] = -1.0;
      else
         raydirection[i] = 0.0;
   }

   /* add up non-basic rows */
   for( i = nrows - 1; i >= 0; --i )
   {
      SCIP_Real dualsol;
      SCIP_Real factor;
      SCIP_Real* coeffs;
      SCIP_Real rownorm;
      int j;
      int nnonz;

      dualsol = SCIProwGetDualsol(rows[i]);
      if( SCIPisFeasPositive(scip, dualsol) )
         factor = 1.0;
      else if( SCIPisFeasNegative(scip, dualsol) )
         factor = -1.0;
      else
         continue;

      /* get the row's data */
      coeffs = SCIProwGetVals(rows[i]);
      cols = SCIProwGetCols(rows[i]);

      nnonz = SCIProwGetNNonz(rows[i]);

      rownorm = 0.0;
      for( j = nnonz - 1; j >= 0; --j )
      {
         SCIP_VAR* var;
         var = SCIPcolGetVar(cols[j]);
         if( fracspace[SCIPvarGetProbindex(var)] >= 0 )
            rownorm += coeffs[j] * coeffs[j];
      }

      if( SCIPisFeasZero(scip,rownorm) )
         continue;
      else
      {
         assert(rownorm > 0);
         rownorm = SQRT(rownorm);
      }

      for( j = nnonz - 1; j >= 0; --j )
      {
         SCIP_VAR* var;
         int f;

         var = SCIPcolGetVar(cols[j]);
         f = fracspace[SCIPvarGetProbindex(var)];

         if( f >= 0 )
         {
            raydirection[f] += factor * coeffs[j] / rownorm;
            assert(SCIP_REAL_MIN <= raydirection[f] && raydirection[f]  <= SCIP_REAL_MAX);
         }
      }
   }
   return SCIP_OKAY;
}