Пример #1
0
/*********************************************************
* Name: SPI_Init
* Desc: Initialize SPI2 Module
* Parameter: None
* Return: None             
**********************************************************/
void SPI_Init(void)
{
    /*Body*/
    /* set PORTE pin 1 to DSPI1.SOUT*/
#ifdef MCU_MK70F12
    PORTE_PCR1 =  PORT_PCR_MUX(7);
#else
    PORTE_PCR1 =  PORT_PCR_MUX(2);
#endif // MCU_MK70F12
    /* set PORTE pin 2 to DSPI1.SCK*/
    PORTE_PCR2 =  PORT_PCR_MUX(2);
    /* set PORTE pin 3 to DSPI1.SIN*/
#ifdef MCU_MK70F12
    PORTE_PCR3 =  PORT_PCR_MUX(7);
#else
    PORTE_PCR3 =  PORT_PCR_MUX(2);
#endif // MCU_MK70F12
    /* set PORTE pin 4 to DSPI1.CS0*/
    PORTE_PCR4 =  PORT_PCR_MUX(2);    
    
    SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
    /* Enable clock gate to DSPI1 module */
#ifdef MCU_MK70F12
    SIM_SCGC6 |= SIM_SCGC6_DSPI1_MASK;
#else
    SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#endif // MCU_MK70F12
    
    /* Enable master mode, disable both transmit and receive FIFO buffers, 
    set the inactive state for PCS2 high, enable the module (MDIS = 0), 
   delay the sample point from the leading edge of the clock and halt 
   any transfer
    */
    SPI1_MCR = (SPI_MCR_MSTR_MASK   | 
                SPI_MCR_PCSIS(1)    | 
                SPI_MCR_SMPL_PT(2)  |
                SPI_MCR_HALT_MASK); 
  
    SPI1_MCR |= (SPI_MCR_CLR_RXF_MASK | SPI_MCR_CLR_TXF_MASK);
    // K60: bus clock: 48MHz, DSPI clock: ~107 KHz
    // K70: bus clock: 60MHz, DSPI clock: ~156 KHz
    /* Value to be passed in SPI_Send_byte() function to DPI_CTAR0 register */
#ifdef MCU_MK70F12
    gSPI_BaudRate = (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0x07));
#else
    gSPI_BaudRate = (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0x06));
#endif 
    /* Configure the rest of the delays */
    gSPI_BeforeTransfDelay = (SPI_CTAR_CSSCK(1) | SPI_CTAR_CSSCK(0x04));
    gSPI_AfterTransfDelay  = (SPI_CTAR_PASC(3) | SPI_CTAR_ASC(0x04));
    gSPI_InterTransfDelay  = (SPI_CTAR_PDT(3)  | SPI_CTAR_DT(0x05));  
}/*EndBody*/
Пример #2
0
/*********************************************************
* Name: SPI_High_rate
* Desc: Change SPI baud rate to high speed
* Parameter: None
* Return: None
**********************************************************/
void SPI_High_rate(void)
{
    /*Body*/
    /* DSPI clock 6 MHz */
    /* The system clock fsys = 68 MHz */
    /* Value to be passed in SPI_Send_byte() function to DPI_CTAR0 register */
    gSPI_BaudRate = (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0x01)); 
        
    /* Configure the rest of the delays */
    gSPI_BeforeTransfDelay = (SPI_CTAR_CSSCK(1)  | SPI_CTAR_CSSCK(0x02));
    gSPI_AfterTransfDelay  = (SPI_CTAR_PASC(1) | SPI_CTAR_ASC(0x02));
    gSPI_InterTransfDelay  = (SPI_CTAR_PDT(1)  | SPI_CTAR_DT(0x01));  
}/*EndBody*/   
Пример #3
0
/**
  * @brief  .
  * @param  None
  * @retval None
  */
void SPI_Configuration (void)
{
	/* note:ILI初始化需在AT25芯片初始化之�?*/
	/* 开启对应时��?*/
	SIM->SCGC6 |= SIM_SCGC6_SPI1_MASK;
	SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;
	ILI_SIN_PORT->PCR[ILI_SIN_Pin] = (PORT_PCR_MUX(2) 
			|PORT_PCR_PE_MASK
			|PORT_PCR_PS_MASK);
	ILI_SOUT_PORT->PCR[ILI_SOUT_Pin] = (PORT_PCR_MUX(2)
			|PORT_PCR_PE_MASK
			|PORT_PCR_PS_MASK);
	ILI_SCK_PORT->PCR[ILI_SCK_Pin] = (PORT_PCR_MUX(2)
			|PORT_PCR_PE_MASK
			|PORT_PCR_PS_MASK);
	ILI_CS_PORT->PCR[ILI_CS_Pin] = (PORT_PCR_MUX(2)
			|PORT_PCR_PE_MASK
			|PORT_PCR_PS_MASK);
	/* 主模�?*/
	ILI_SPI->MCR  = 0 & (~SPI_MCR_MDIS_MASK) 
				|SPI_MCR_HALT_MASK
				|SPI_MCR_MSTR_MASK
				|SPI_MCR_PCSIS_MASK
				|SPI_MCR_CLR_TXF_MASK
				|SPI_MCR_CLR_RXF_MASK  
				|SPI_MCR_DIS_TXF_MASK
				|SPI_MCR_DIS_RXF_MASK
				|SPI_MCR_SMPL_PT(2);
	//�᫽�分频及波特率
	ILI_SPI->CTAR[0] = 0| SPI_CTAR_DBR_MASK	 //设置���⿡��?
						| SPI_CTAR_PCSSCK(0)
						| SPI_CTAR_PASC(0)
						| SPI_CTAR_PBR(0)
						| SPI_CTAR_CSSCK(0)
						| SPI_CTAR_ASC (0)
					| SPI_CTAR_FMSZ(8)
					| SPI_CTAR_PDT(0);
	//分频设置
	ILI_SPI->CTAR[0] |=SPI_CTAR_BR(0xc);
	//�߶钟相位、极��?
	//ILI_SPI->CTAR[0] |= SPI_CTAR_CPHA_MASK;
	//ILI_SPI->CTAR[0] |= SPI_CTAR_CPOL_MASK;
	//ILI_SPI->CTAR[0] |= SPI_CTAR_LSBFE_MASK;
	ILI_SPI->SR = SPI_SR_EOQF_MASK
		| SPI_SR_TFUF_MASK
		| SPI_SR_TFFF_MASK
		| SPI_SR_RFOF_MASK
		| SPI_SR_RFDF_MASK
		| SPI_SR_TCF_MASK;
	ILI_SPI->MCR &= ~SPI_MCR_HALT_MASK;
}
Пример #4
0
/* ===================================================================*/
LDD_TDeviceData* SPI_SD_Init(LDD_TUserData *UserDataPtr)
{
  /* Allocate LDD device structure */
  SPI_SD_TDeviceDataPtr DeviceDataPrv;

  /* {Default RTOS Adapter} Driver memory allocation: Dynamic allocation is simulated by a pointer to the static object */
  DeviceDataPrv = &DeviceDataPrv__DEFAULT_RTOS_ALLOC;
  DeviceDataPrv->UserData = UserDataPtr; /* Store the RTOS device structure */
  /* Interrupt vector(s) allocation */
  /* {Default RTOS Adapter} Set interrupt vector: IVT is static, ISR parameter is passed by the global variable */
  INT_SPI1__DEFAULT_RTOS_ISRPARAM = DeviceDataPrv;
  DeviceDataPrv->TxCommand = 0x80000000U; /* Initialization of current Tx command */
  DeviceDataPrv->ErrFlag = 0x00U;      /* Clear error flags */
  /* Clear the receive counters and pointer */
  DeviceDataPrv->InpRecvDataNum = 0x00U; /* Clear the counter of received characters */
  DeviceDataPrv->InpDataNumReq = 0x00U; /* Clear the counter of characters to receive by ReceiveBlock() */
  DeviceDataPrv->InpDataPtr = NULL;    /* Clear the buffer pointer for received characters */
  /* Clear the transmit counters and pointer */
  DeviceDataPrv->OutSentDataNum = 0x00U; /* Clear the counter of sent characters */
  DeviceDataPrv->OutDataNumReq = 0x00U; /* Clear the counter of characters to be send by SendBlock() */
  DeviceDataPrv->OutDataPtr = NULL;    /* Clear the buffer pointer for data to be transmitted */
  DeviceDataPrv->CurrentAttributeSet = 0U; /* Init current attribute set */
  DeviceDataPrv->SerFlag = 0x00U;      /* Reset flags */
  /* SIM_SCGC6: SPI1=1 */
  SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
  /* Interrupt vector(s) priority setting */
  /* NVICIP27: PRI27=0x70 */
  NVICIP27 = NVIC_IP_PRI27(0x70);
  /* NVICISER0: SETENA|=0x08000000 */
  NVICISER0 |= NVIC_ISER_SETENA(0x08000000);
  /* SIM_SCGC5: PORTD=1 */
  SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;
  /* PORTD_PCR7: ISF=0,MUX=7 */
  PORTD_PCR7 = (uint32_t)((PORTD_PCR7 & (uint32_t)~(uint32_t)(
                PORT_PCR_ISF_MASK
               )) | (uint32_t)(
                PORT_PCR_MUX(0x07)
               ));
  /* PORTD_PCR6: ISF=0,MUX=7 */
  PORTD_PCR6 = (uint32_t)((PORTD_PCR6 & (uint32_t)~(uint32_t)(
                PORT_PCR_ISF_MASK
               )) | (uint32_t)(
                PORT_PCR_MUX(0x07)
               ));
  /* PORTD_PCR5: ISF=0,MUX=7 */
  PORTD_PCR5 = (uint32_t)((PORTD_PCR5 & (uint32_t)~(uint32_t)(
                PORT_PCR_ISF_MASK
               )) | (uint32_t)(
                PORT_PCR_MUX(0x07)
               ));
  /* SPI1_MCR: MSTR=0,CONT_SCKE=0,DCONF=0,FRZ=0,MTFE=0,PCSSE=0,ROOE=1,??=0,??=0,PCSIS=0,DOZE=0,MDIS=0,DIS_TXF=0,DIS_RXF=0,CLR_TXF=0,CLR_RXF=0,SMPL_PT=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,HALT=1 */
  SPI1_MCR = SPI_MCR_DCONF(0x00) |
             SPI_MCR_ROOE_MASK |
             SPI_MCR_PCSIS(0x00) |
             SPI_MCR_SMPL_PT(0x00) |
             SPI_MCR_HALT_MASK;        /* Set Configuration register */
  /* SPI1_MCR: MSTR=1,CONT_SCKE=0,DCONF=0,FRZ=0,MTFE=0,PCSSE=0,ROOE=1,??=0,??=0,PCSIS=0,DOZE=0,MDIS=0,DIS_TXF=1,DIS_RXF=1,CLR_TXF=1,CLR_RXF=1,SMPL_PT=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,HALT=1 */
  SPI1_MCR = SPI_MCR_MSTR_MASK |
             SPI_MCR_DCONF(0x00) |
             SPI_MCR_ROOE_MASK |
             SPI_MCR_PCSIS(0x00) |
             SPI_MCR_DIS_TXF_MASK |
             SPI_MCR_DIS_RXF_MASK |
             SPI_MCR_CLR_TXF_MASK |
             SPI_MCR_CLR_RXF_MASK |
             SPI_MCR_SMPL_PT(0x00) |
             SPI_MCR_HALT_MASK;        /* Set Configuration register */
  /* SPI1_CTAR0: DBR=1,FMSZ=7,CPOL=0,CPHA=0,LSBFE=0,PCSSCK=0,PASC=0,PDT=0,PBR=0,CSSCK=0,ASC=0,DT=0,BR=0 */
  SPI1_CTAR0 = SPI_CTAR_DBR_MASK |
               SPI_CTAR_FMSZ(0x07) |
               SPI_CTAR_PCSSCK(0x00) |
               SPI_CTAR_PASC(0x00) |
               SPI_CTAR_PDT(0x00) |
               SPI_CTAR_PBR(0x00) |
               SPI_CTAR_CSSCK(0x00) |
               SPI_CTAR_ASC(0x00) |
               SPI_CTAR_DT(0x00) |
               SPI_CTAR_BR(0x00);      /* Set Clock and Transfer Attributes register */
  /* SPI1_SR: TCF=1,TXRXS=0,??=0,EOQF=1,TFUF=1,??=0,TFFF=1,??=0,??=0,??=0,??=1,??=0,RFOF=1,??=0,RFDF=1,??=0,TXCTR=0,TXNXTPTR=0,RXCTR=0,POPNXTPTR=0 */
  SPI1_SR = SPI_SR_TCF_MASK |
            SPI_SR_EOQF_MASK |
            SPI_SR_TFUF_MASK |
            SPI_SR_TFFF_MASK |
            SPI_SR_RFOF_MASK |
            SPI_SR_RFDF_MASK |
            SPI_SR_TXCTR(0x00) |
            SPI_SR_TXNXTPTR(0x00) |
            SPI_SR_RXCTR(0x00) |
            SPI_SR_POPNXTPTR(0x00) |
            0x00200000U;               /* Clear flags */
  /* SPI1_RSER: TCF_RE=0,??=0,??=0,EOQF_RE=0,TFUF_RE=0,??=0,TFFF_RE=0,TFFF_DIRS=0,??=0,??=0,??=0,??=0,RFOF_RE=0,??=0,RFDF_RE=1,RFDF_DIRS=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SPI1_RSER = SPI_RSER_RFDF_RE_MASK;   /* Set DMA Interrupt Request Select and Enable register */
  SPI_SD_SetClockConfiguration(DeviceDataPrv, Cpu_GetClockConfiguration()); /* Set Initial according speed CPU mode */
  /* Registration of the device structure */
  PE_LDD_RegisterDeviceStructure(PE_LDD_COMPONENT_SPI_SD_ID,DeviceDataPrv);
  return ((LDD_TDeviceData *)DeviceDataPrv); /* Return pointer to the data data structure */
}
Пример #5
0
/* ===================================================================*/
LDD_TDeviceData* SM1_Init(LDD_TUserData *UserDataPtr)
{
    /* Allocate LDD device structure */
    SM1_TDeviceDataPtr DeviceDataPrv;

    /* {Default RTOS Adapter} Driver memory allocation: Dynamic allocation is simulated by a pointer to the static object */
    DeviceDataPrv = &DeviceDataPrv__DEFAULT_RTOS_ALLOC;
    DeviceDataPrv->UserData = UserDataPtr; /* Store the RTOS device structure */
    /* Interrupt vector(s) allocation */
    /* {Default RTOS Adapter} Set interrupt vector: IVT is static, ISR parameter is passed by the global variable */
    INT_SPI0__DEFAULT_RTOS_ISRPARAM = DeviceDataPrv;
    DeviceDataPrv->TxCommand = 0x80040000U; /* Initialization of current Tx command */
    DeviceDataPrv->ErrFlag = 0x00U;      /* Clear error flags */
    /* Clear the receive counters and pointer */
    DeviceDataPrv->InpRecvDataNum = 0x00U; /* Clear the counter of received characters */
    DeviceDataPrv->InpDataNumReq = 0x00U; /* Clear the counter of characters to receive by ReceiveBlock() */
    DeviceDataPrv->InpDataPtr = NULL;    /* Clear the buffer pointer for received characters */
    /* Clear the transmit counters and pointer */
    DeviceDataPrv->OutSentDataNum = 0x00U; /* Clear the counter of sent characters */
    DeviceDataPrv->OutDataNumReq = 0x00U; /* Clear the counter of characters to be send by SendBlock() */
    DeviceDataPrv->OutDataPtr = NULL;    /* Clear the buffer pointer for data to be transmitted */
    /* SIM_SCGC6: SPI0=1 */
    SIM_SCGC6 |= SIM_SCGC6_SPI0_MASK;
    /* Interrupt vector(s) priority setting */
    /* NVIC_IPR2: PRI_10=1 */
    NVIC_IPR2 = (uint32_t)((NVIC_IPR2 & (uint32_t)~(uint32_t)(
                                NVIC_IP_PRI_10(0x02)
                            )) | (uint32_t)(
                               NVIC_IP_PRI_10(0x01)
                           ));
    /* NVIC_ISER: SETENA31=0,SETENA30=0,SETENA29=0,SETENA28=0,SETENA27=0,SETENA26=0,SETENA25=0,SETENA24=0,SETENA23=0,SETENA22=0,SETENA21=0,SETENA20=0,SETENA19=0,SETENA18=0,SETENA17=0,SETENA16=0,SETENA15=0,SETENA14=0,SETENA13=0,SETENA12=0,SETENA11=0,SETENA10=1,SETENA9=0,SETENA8=0,SETENA7=0,SETENA6=0,SETENA5=0,SETENA4=0,SETENA3=0,SETENA2=0,SETENA1=0,SETENA0=0 */
    NVIC_ISER = NVIC_ISER_SETENA10_MASK;
    /* NVIC_ICER: CLRENA31=0,CLRENA30=0,CLRENA29=0,CLRENA28=0,CLRENA27=0,CLRENA26=0,CLRENA25=0,CLRENA24=0,CLRENA23=0,CLRENA22=0,CLRENA21=0,CLRENA20=0,CLRENA19=0,CLRENA18=0,CLRENA17=0,CLRENA16=0,CLRENA15=0,CLRENA14=0,CLRENA13=0,CLRENA12=0,CLRENA11=0,CLRENA10=0,CLRENA9=0,CLRENA8=0,CLRENA7=0,CLRENA6=0,CLRENA5=0,CLRENA4=0,CLRENA3=0,CLRENA2=0,CLRENA1=0,CLRENA0=0 */
    NVIC_ICER = 0x00U;
    /* SIM_SCGC5: PORTE=1,PORTC=1 */
    SIM_SCGC5 |= (SIM_SCGC5_PORTE_MASK | SIM_SCGC5_PORTC_MASK);
    /* PORTE_PCR18: ISF=0,MUX=6 */
    PORTE_PCR18 = (uint32_t)((PORTE_PCR18 & (uint32_t)~(uint32_t)(
                                  PORT_PCR_ISF_MASK |
                                  PORT_PCR_MUX(0x01)
                              )) | (uint32_t)(
                                 PORT_PCR_MUX(0x06)
                             ));
    /* PORTE_PCR19: ISF=0,MUX=6 */
    PORTE_PCR19 = (uint32_t)((PORTE_PCR19 & (uint32_t)~(uint32_t)(
                                  PORT_PCR_ISF_MASK |
                                  PORT_PCR_MUX(0x01)
                              )) | (uint32_t)(
                                 PORT_PCR_MUX(0x06)
                             ));
    /* PORTC_PCR5: ISF=0,MUX=2 */
    PORTC_PCR5 = (uint32_t)((PORTC_PCR5 & (uint32_t)~(uint32_t)(
                                 PORT_PCR_ISF_MASK |
                                 PORT_PCR_MUX(0x05)
                             )) | (uint32_t)(
                                PORT_PCR_MUX(0x02)
                            ));
    /* PORTC_PCR2: ISF=0,MUX=2 */
    PORTC_PCR2 = (uint32_t)((PORTC_PCR2 & (uint32_t)~(uint32_t)(
                                 PORT_PCR_ISF_MASK |
                                 PORT_PCR_MUX(0x05)
                             )) | (uint32_t)(
                                PORT_PCR_MUX(0x02)
                            ));
    /* SPI0_MCR: MSTR=0,CONT_SCKE=0,DCONF=0,FRZ=0,MTFE=0,??=0,ROOE=1,??=0,??=0,??=0,PCSIS=4,DOZE=0,MDIS=0,DIS_TXF=0,DIS_RXF=0,CLR_TXF=0,CLR_RXF=0,SMPL_PT=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,HALT=1 */
    SPI0_MCR = SPI_MCR_DCONF(0x00) |
               SPI_MCR_ROOE_MASK |
               SPI_MCR_PCSIS(0x04) |
               SPI_MCR_SMPL_PT(0x00) |
               SPI_MCR_HALT_MASK;        /* Set Configuration register */
    /* SPI0_MCR: MSTR=1,CONT_SCKE=0,DCONF=0,FRZ=0,MTFE=0,??=0,ROOE=1,??=0,??=0,??=0,PCSIS=4,DOZE=0,MDIS=0,DIS_TXF=1,DIS_RXF=1,CLR_TXF=1,CLR_RXF=1,SMPL_PT=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,HALT=1 */
    SPI0_MCR = SPI_MCR_MSTR_MASK |
               SPI_MCR_DCONF(0x00) |
               SPI_MCR_ROOE_MASK |
               SPI_MCR_PCSIS(0x04) |
               SPI_MCR_DIS_TXF_MASK |
               SPI_MCR_DIS_RXF_MASK |
               SPI_MCR_CLR_TXF_MASK |
               SPI_MCR_CLR_RXF_MASK |
               SPI_MCR_SMPL_PT(0x00) |
               SPI_MCR_HALT_MASK;        /* Set Configuration register */
    /* SPI0_CTAR0: DBR=1,FMSZ=7,CPOL=0,CPHA=0,LSBFE=0,PCSSCK=0,PASC=0,PDT=0,PBR=2,CSSCK=0,ASC=0,DT=0,BR=1 */
    SPI0_CTAR0 = SPI_CTAR_DBR_MASK |
                 SPI_CTAR_FMSZ(0x07) |
                 SPI_CTAR_PCSSCK(0x00) |
                 SPI_CTAR_PASC(0x00) |
                 SPI_CTAR_PDT(0x00) |
                 SPI_CTAR_PBR(0x02) |
                 SPI_CTAR_CSSCK(0x00) |
                 SPI_CTAR_ASC(0x00) |
                 SPI_CTAR_DT(0x00) |
                 SPI_CTAR_BR(0x01);      /* Set Clock and Transfer Attributes register */
    /* SPI0_SR: TCF=1,TXRXS=0,??=0,EOQF=1,TFUF=1,??=0,TFFF=1,??=0,??=0,??=0,??=1,??=0,RFOF=1,??=0,RFDF=1,??=0,TXCTR=0,TXNXTPTR=0,RXCTR=0,POPNXTPTR=0 */
    SPI0_SR = SPI_SR_TCF_MASK |
              SPI_SR_EOQF_MASK |
              SPI_SR_TFUF_MASK |
              SPI_SR_TFFF_MASK |
              SPI_SR_RFOF_MASK |
              SPI_SR_RFDF_MASK |
              SPI_SR_TXCTR(0x00) |
              SPI_SR_TXNXTPTR(0x00) |
              SPI_SR_RXCTR(0x00) |
              SPI_SR_POPNXTPTR(0x00) |
              0x00200000U;               /* Clear flags */
    /* SPI0_RSER: TCF_RE=0,??=0,??=0,EOQF_RE=0,TFUF_RE=0,??=0,TFFF_RE=0,TFFF_DIRS=0,??=0,??=0,??=0,??=0,RFOF_RE=0,??=0,RFDF_RE=1,RFDF_DIRS=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
    SPI0_RSER = SPI_RSER_RFDF_RE_MASK;   /* Set DMA Interrupt Request Select and Enable register */
    /* SPI0_MCR: HALT=0 */
    SPI0_MCR &= (uint32_t)~(uint32_t)(SPI_MCR_HALT_MASK);
    /* Registration of the device structure */
    PE_LDD_RegisterDeviceStructure(PE_LDD_COMPONENT_SM1_ID,DeviceDataPrv);
    return ((LDD_TDeviceData *)DeviceDataPrv); /* Return pointer to the data data structure */
}
Пример #6
0
//=========================================================================
//函数名称:spi_init
//函数参数:spin:SPI通道号。
//          Master:是否是主机。
//函数返回:无
//功能概要:SPI初始化。
//=========================================================================
void spi_init(SPIn spin,SPI_CFG master)
{
    
    //使能SPI模块时钟,配置SPI引脚功能
    if(spin == 0)
    {
        SIM_SCGC6 |= SIM_SCGC6_DSPI0_MASK;
        //PORTA_PCR14 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK;//PCS0   //DSE=1:输出时高驱动能力
        PORTA_PCR15 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK;//SCK
        PORTA_PCR16 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK;//SOUT
        PORTA_PCR17 = 0 | PORT_PCR_MUX(0x2);//SIN
    }
    else if(spin == 1)
    {
        SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
        PORTE_PCR1 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK; //SOUT
        PORTE_PCR2 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK; //SCK
        PORTE_PCR3 = 0 | PORT_PCR_MUX(0x2);                     //SIN
        PORTE_PCR4 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK; //PCS0
    }
    else 
    {   
        SIM_SCGC3 |= SIM_SCGC3_SPI2_MASK;
        PORTD_PCR13 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK; //SOUT
        PORTD_PCR12 = 0 | PORT_PCR_MUX(0x2) | PORT_PCR_DSE_MASK; //SCK
        PORTD_PCR14 = 0 | PORT_PCR_MUX(0x2)/* | PORT_PCR_DSE_MASK*/;                     //SIN
        //PORTD_PCR15 = 0 | PORT_PCR_MUX(0x2)/* | PORT_PCR_DSE_MASK*/; //PCS1     
    }
    
    SPI_MCR_REG(SPIN[spin]) = 0 
                 | SPI_MCR_CLR_TXF_MASK     //Clear the Tx FIFO counter.
                 | SPI_MCR_CLR_RXF_MASK     //Clear the Rx FIFO counter.
                 //| SPI_MCR_PCSIS_MASK
                 | SPI_MCR_HALT_MASK;

    
    //根据主从机模式设置工作模式。MCU提供最大主机频率是1/2主频,最大从机频率是1/4主频
    if(master == MASTER)
    {
        SPI_MCR_REG(SPIN[spin]) =  (0
                                    |  SPI_MCR_MSTR_MASK //Master,主机模式
                                   // |   SPI_MCR_PCSIS(2) //PCS1
                                    );      
        SPI_CTAR_REG(SPIN[spin],0) = (0
                       //| SPI_CTAR_DBR_MASK          //双波特率 ,这里设 DBR=1,CPHA=1,PBR=00,得SCK Duty Cycle 为 50/50
                       //| SPI_CTAR_CPHA_MASK         //数据在SCK上升沿改变(输出),在下降沿被捕捉(输入读取)。如果是0,则反之。  w25x16在上升沿读取数据;NRF24L01在上升沿读取数据
                        | SPI_CTAR_PBR(1)            //波特率分频器 ,0~3 对应的分频值Prescaler为 2、3、5、7
                         
                        | SPI_CTAR_PDT(0x00)         //延时因子为 PDT*2+1 ,这里PDT为3,即延时因子为7。PDT为2bit
                        | SPI_CTAR_BR(0)             //波特率计数器值 ,当BR<=3,分频Scaler 为 2*(BR+1) ,当BR>=3,分频Scaler 为 2^BR  。BR为4bit
                                                    //SCK 波特率 = (fSYS/Prescaler) x [(1+DBR)/Scaler ]          fSYS 为 Bus clock
                                                    //              100M  2          1    2   = 50M   这里以最大的来算
                                                    //              100M   5          1    2   =20M
                         
                       //| SPI_CTAR_CPOL_MASK         //时钟极性,1表示 SCK 不活跃状态为高电平,   NRF24L01 不活跃为低电平
                        | SPI_CTAR_FMSZ(0x07)        //每帧传输 7bit+1 ,即8bit (FMSZ默认就是8)  
                      // | SPI_CTAR_LSBFE_MASK        //1为低位在前。
                        //| SPI_CTAR_CSSCK(1)          //
                        //|SPI_CTAR_PCSSCK(2)         //设置片选信号有效到时钟第一个边沿出现的延时的预分频值。tcsc延时预分频 2*x+1;
                       ); 
                        //LSBFE 为 0 ,数据在前
    }
    else
    {
        //默认从机模式
        SPI_CTAR_SLAVE_REG(SPIN[spin],0) = 0 
                            | SPI_CTAR_SLAVE_FMSZ(0x07)
                            | SPI_CTAR_SLAVE_CPOL_MASK 
                            | SPI_CTAR_SLAVE_CPHA_MASK; 
   }
    //DELAY_MS(100);
   /*************  清标志位  ***************/
    SPI_SR_REG(SPIN[spin]) = (SPI_SR_EOQF_MASK     //End of Queue Flag,发送队列空了,发送完毕
                         | SPI_SR_TFUF_MASK     //Transmit FIFO Underflow Flag,传输FIFO下溢标志位,SPI为从机模式,Tx FIFO为空,而外部SPI主机模式启动传输,标志位就会置1,写1清0
                         | SPI_SR_TFFF_MASK     //Transmit FIFO Fill Flag,传输FIFO满标志位。 写1或者DMA控制器发现传输FIFO满了就会清0。 0表示Tx FIFO满了
                         | SPI_SR_RFOF_MASK     //Receive FIFO Overflow Flag,接收FIFO溢出标志位。
                         | SPI_SR_RFDF_MASK);   //Receive FIFO Drain Flag,接收FIFO损耗标志位,写1或者DMA控制器发现传输FIFO空了就会清0。0表示Rx FIFO空
    
    
    SPI_MCR_REG(SPIN[spin]) &= ~SPI_MCR_HALT_MASK;     //启动SPI传输。1为暂停,0为启动
    
    DELAY_MS(1);
}
Пример #7
0
	ITM->TPR = ITM_TPR_PRIVMASK_Msk; // ITM Trace Privilege Register
	ITM->TER = 0x00000001; // ITM Trace Enable Register. Enabled tracing on stimulus ports. One bit per stimulus port.
	*((volatile unsigned *)(ITM_BASE + 0x01000)) = 0x400003FE; // DWT_CTRL
	*((volatile unsigned *)(ITM_BASE + 0x40304)) = 0x00000100; // Formatter and Flush Control Register
}

static SPI_slave volatile	test_slave = SPI_slave(
	Platform::spi0,
	{PTD, 0}, GPIOPin::MUX_ALT2,
	(
		SPI_CTAR_FMSZ(7)   |   // 8-bit frames
		SPI_CTAR_CPOL_MASK |   // Clock idle high
		SPI_CTAR_CPHA_MASK |   // Sample following edge
		SPI_CTAR_PCSSCK(2) |   // PCS to SCK prescaler = 5
		SPI_CTAR_PASC(2)   |   // Same delay before end of PCS
		SPI_CTAR_PDT(3)    |   // Same delay after end of PCS
		SPI_CTAR_PBR(0)    |   // Use sysclk / 2
		SPI_CTAR_CSSCK(6)  |   // Base delay is 128*Tsys
		SPI_CTAR_ASC(3)    |   // Unit delay before end of PCS
		SPI_CTAR_DT(3)     |   // Same after end of PCS
		SPI_CTAR_BR(8)         // Scale by 256
	),
    0
);

/*!
 * @brief Application entry point
 */
int main(){
	struct pt pt_dsp, pt_controller, pt_wavegen;
Пример #8
0
/***********************************************************************************************
 功能:SPI 初始化
 形参:SPI_InitStruct SPI 初始化结构
 返回:0
 详解:0
************************************************************************************************/
void SPI_Init(SPI_InitTypeDef* SPI_InitStruct)
{
	SPI_Type *SPIx = NULL;
	PORT_Type *SPI_PORT = NULL;
	SPI_DataMapTypeDef *pSPI_DataMap = (SPI_DataMapTypeDef*)&(SPI_InitStruct->SPIxDataMap);
	SPI_CSMapTypeDef *pSPI_CSMap = (SPI_CSMapTypeDef*)&(SPI_InitStruct->SPIxPCSMap);
	
	//参数检测
	assert_param(IS_SPI_DATA_CHL(SPI_InitStruct->SPIxDataMap));
	assert_param(IS_SPI_PCS_CHL(SPI_InitStruct->SPIxPCSMap));
	assert_param(IS_SPI_BAUDRATE(SPI_InitStruct->SPI_BaudRatePrescaler));
	assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
	assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
	assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
	assert_param(IS_SPI_FIRSTBIT(SPI_InitStruct->SPI_FirstBit));
	
	//找出SPI模块 开SPI模块时钟
	switch(pSPI_DataMap->SPI_Index)
	{
		case 0:
			SIM->SCGC6 |= SIM_SCGC6_SPI0_MASK;
			SPIx = SPI0;
			break;
		case 1:
			SIM->SCGC6 |= SIM_SCGC6_SPI1_MASK;
			SPIx = SPI1;
			break;
		case 2:
			SIM->SCGC3 |= SIM_SCGC3_SPI2_MASK;
		  SPIx = SPI2;
			break;
		default:break;     
	}
	//找出对应的PORT
	switch(pSPI_DataMap->SPI_GPIO_Index)
	{
		case 0:
			SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK;
			SPI_PORT = PORTA;
			break;
		case 1:
			SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK;
			SPI_PORT = PORTB;
			break;
		case 2:
			SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK;
			SPI_PORT = PORTC;
			break;
		case 3:
			SIM->SCGC5 |= SIM_SCGC5_PORTD_MASK;
			SPI_PORT = PORTD;
			break;
		case 4:
			SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;
			SPI_PORT = PORTE;
			break;
		default:break;
	}
	//开启对应的引脚 SCK SOUT SIN
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SIN_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SOUT_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	SPI_PORT->PCR[pSPI_DataMap->SPI_SIN_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	SPI_PORT->PCR[pSPI_DataMap->SPI_SOUT_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	/*SCK配置开漏*/
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index]|= PORT_PCR_ODE_MASK;
	//配置PCS
	//找出对应的PORT
	switch(pSPI_CSMap->SPI_GPIO_Index)
	{
		case 0:
			SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK;
			SPI_PORT = PORTA;
			break;
		case 1:
			SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK;
			SPI_PORT = PORTB;
			break;
		case 2:
			SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK;
			SPI_PORT = PORTC;
			break;
		case 3:
			SIM->SCGC5 |= SIM_SCGC5_PORTD_MASK;
			SPI_PORT = PORTD;
			break;
		case 4:
			SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;
			SPI_PORT = PORTE;
			break;
		default:break;
	}
	SPI_PORT->PCR[pSPI_CSMap->SPI_PCS_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_CSMap->SPI_PCS_Pin_Index] |= PORT_PCR_MUX(pSPI_CSMap->SPI_Alt_Index);
	//设置主从模式
	(SPI_InitStruct->SPI_Mode == SPI_Mode_Master)?(SPIx->MCR  |= SPI_MCR_MSTR_MASK):(SPIx->MCR  &= ~SPI_MCR_MSTR_MASK);
	//配置SPI主模式寄存器
	SPIx->MCR  = 0 & (~SPI_MCR_MDIS_MASK) 
									|SPI_MCR_HALT_MASK        //让SPI进入停止模式
									|SPI_MCR_MSTR_MASK        //配置SPI为主机模式
									|SPI_MCR_PCSIS_MASK       //PCS为高电平当在SPI不工作的时候
									|SPI_MCR_CLR_TXF_MASK     //首先要清除MDIS,清除TXF_MASK和RXF_MASK
									|SPI_MCR_CLR_RXF_MASK  
									|SPI_MCR_DIS_TXF_MASK     //然后再禁止TXD和RXD FIFO 模式 ,将SPI配置成正常模式
									|SPI_MCR_DIS_RXF_MASK
									|SPI_MCR_SMPL_PT(2);
	//配置分频及波特率
	SPIx->CTAR[1] = 0| SPI_CTAR_DBR_MASK	 //设置通信的
									| SPI_CTAR_PCSSCK(0)
									| SPI_CTAR_PASC(0)
									| SPI_CTAR_PBR(0)
									| SPI_CTAR_CSSCK(0)
									| SPI_CTAR_FMSZ(SPI_InitStruct->SPI_DataSize -1) //设置数据传输的位数
									| SPI_CTAR_PDT(0);                                //设置片选信号在数据完成后的延时值 
	//分频设置
	SPIx->CTAR[1] |=SPI_CTAR_BR(SPI_InitStruct->SPI_BaudRatePrescaler);							 
	//时钟相位设置
	(SPI_InitStruct->SPI_CPHA == SPI_CPHA_1Edge)?(SPIx->CTAR[1] &= ~SPI_CTAR_CPHA_MASK):(SPIx->CTAR[1] |= SPI_CTAR_CPHA_MASK);
	//时钟极性
	(SPI_InitStruct->SPI_CPOL == SPI_CPOL_Low)?(SPIx->CTAR[1] &= ~SPI_CTAR_CPOL_MASK):(SPIx->CTAR[1] |= SPI_CTAR_CPOL_MASK);
	//配置MSB或者LSD
	(SPI_InitStruct->SPI_FirstBit == SPI_FirstBit_MSB)?(SPIx->CTAR[1] &= ~SPI_CTAR_LSBFE_MASK):(SPIx->CTAR[1] |= SPI_CTAR_LSBFE_MASK);
	//清空状态
  SPIx->SR = SPI_SR_EOQF_MASK   //队列结束标志 w1c  (write 1 to clear)     
            | SPI_SR_TFUF_MASK    //TX FIFO underflow flag  w1c
            | SPI_SR_TFFF_MASK    //TX FIFO fill      flag  w1c
            | SPI_SR_RFOF_MASK    //RX FIFO overflow  flag  w1c
            | SPI_SR_RFDF_MASK    //RX FIFO fill      flasg w1c (0时为空)
					  | SPI_SR_TCF_MASK;
	//开始传输
	 SPIx->MCR &= ~SPI_MCR_HALT_MASK;    //开始传输,见参考手册1129页
}
Пример #9
0
void spi_set_params(const spi_bus_t spi_num, const uint8_t ctas, const spi_config_t* config) {
  uint32_t ctar = 0;
  uint8_t br_prescaler = 0xff;
  uint8_t br_scaler = 0xff;
  uint8_t prescaler_tmp = 0xff;
  uint8_t scaler_tmp = 0xff;

  /* All of the SPI modules run on the Bus clock, see K60 Ref Manual. 3.9.4.2 SPI clocking */
  /* Find the baud rate divisors */
  find_closest_baudrate_scalers(SystemBusClock, config->sck_freq, &br_prescaler, &br_scaler);
  ctar |= SPI_CTAR_PBR(br_prescaler) | SPI_CTAR_BR(br_scaler);

  /* Find the other delay divisors */
  /* tCSC */
  if (config->tcsc_freq > 0) {
    if (find_closest_delay_scalers(SystemBusClock, config->tcsc_freq,
          &prescaler_tmp, &scaler_tmp) == 0) {
      ctar |= SPI_CTAR_PCSSCK(prescaler_tmp) | SPI_CTAR_CSSCK(scaler_tmp);
    } else {
      /* failed to find a solution */
      DEBUGGER_BREAK(BREAK_INVALID_PARAM);
    }
  } else {
    /* default: copy BR scaler */
    ctar |= SPI_CTAR_PCSSCK(br_prescaler) | SPI_CTAR_CSSCK(br_scaler);
  }

  /* tASC */
  if (config->tasc_freq > 0) {
    if (find_closest_delay_scalers(SystemBusClock, config->tasc_freq,
          &prescaler_tmp, &scaler_tmp) == 0) {
      ctar |= SPI_CTAR_PASC(prescaler_tmp) | SPI_CTAR_ASC(scaler_tmp);
    } else {
      /* failed to find a solution */
      DEBUGGER_BREAK(BREAK_INVALID_PARAM);
    }
  } else {
    /* default: copy BR scaler */
    ctar |= SPI_CTAR_PASC(br_prescaler) | SPI_CTAR_ASC(br_scaler);
  }

  /* tDT */
  if (config->tdt_freq > 0) {
    if (find_closest_delay_scalers(SystemBusClock, config->tdt_freq,
          &prescaler_tmp, &scaler_tmp) == 0) {
      ctar |= SPI_CTAR_PDT(prescaler_tmp) | SPI_CTAR_DT(scaler_tmp);
    } else {
      /* failed to find a solution */
      DEBUGGER_BREAK(BREAK_INVALID_PARAM);
    }
  } else {
    /* default: copy BR scaler */
    ctar |= SPI_CTAR_PDT(br_prescaler) | SPI_CTAR_DT(br_scaler);
  }

  /* FMSZ+1 equals the frame size */
  ctar |= SPI_CTAR_FMSZ(config->frame_size - 1);

  if (config->cpol != 0) {
    ctar |= SPI_CTAR_CPOL_MASK;
  }
  if (config->cpha != 0) {
    ctar |= SPI_CTAR_CPHA_MASK;
  }

  SPI[spi_num]->CTAR[ctas] = ctar;
  spi_conf[spi_num][ctas] = config;
}
Пример #10
0
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
    SPI_Type *spi_dev;
    uint8_t br_prescaler = 0xff;
    uint8_t br_scaler = 0xff;
    uint8_t prescaler_tmp = 0xff;
    uint8_t scaler_tmp = 0xff;
    uint32_t ctas = 0;
    uint32_t ctar = 0;
    uint32_t br_desired;
    uint32_t module_clock;
    uint32_t tcsc_freq;
    uint32_t tasc_freq;
    uint32_t tdt_freq;

    switch (speed) {
        case SPI_SPEED_100KHZ:
            br_desired = 100000;
            break;

        case SPI_SPEED_400KHZ:
            br_desired = 400000;
            break;

        case SPI_SPEED_1MHZ:
            br_desired = 1000000;
            break;

        case SPI_SPEED_5MHZ:
            br_desired = 5000000;
            break;

        case SPI_SPEED_10MHZ:
            br_desired = 10000000;
            break;

        default:
            return -2;
    }

    switch (dev) {
#if SPI_0_EN

        case SPI_0:
            KINETIS_CFG_SPI_IO(0);
            break;
#endif /* SPI_0_EN */

#if SPI_1_EN

        case SPI_1:
            KINETIS_CFG_SPI_IO(1);
            break;
#endif /* SPI_1_EN */

#if SPI_2_EN

        case SPI_2:
            KINETIS_CFG_SPI_IO(2);
            break;
#endif /* SPI_2_EN */

#if SPI_3_EN

        case SPI_3:
            KINETIS_CFG_SPI_IO(3);
            break;
#endif /* SPI_3_EN */

#if SPI_4_EN

        case SPI_4:
            KINETIS_CFG_SPI_IO(4);
            break;
#endif /* SPI_4_EN */

#if SPI_5_EN

        case SPI_5:
            KINETIS_CFG_SPI_IO(5);
            break;
#endif /* SPI_5_EN */

#if SPI_6_EN

        case SPI_6:
            KINETIS_CFG_SPI_IO(6);
            break;
#endif /* SPI_6_EN */

#if SPI_7_EN

        case SPI_7:
            KINETIS_CFG_SPI_IO(7);
            break;
#endif /* SPI_7_EN */

        default:
            return -1;
    }

    /* Find baud rate scaler and prescaler settings */
    if (find_closest_baudrate_scalers(module_clock, br_desired,
                                      &br_prescaler, &br_scaler) < 0) {
        /* Desired baud rate is too low to be reachable at current module clock frequency. */
        return -2;
    }

    ctar |= SPI_CTAR_PBR(br_prescaler) | SPI_CTAR_BR(br_scaler);

    /* Find the other delay divisors */
    /* tCSC */
    if (tcsc_freq == 0) {
        /* Default to same as baud rate if set to zero. */
        tcsc_freq = br_desired;
    }

    if (find_closest_delay_scalers(module_clock, tcsc_freq,
                                   &prescaler_tmp, &scaler_tmp) < 0) {
        /* failed to find a solution */
        return -2;
    }

    ctar |= SPI_CTAR_PCSSCK(prescaler_tmp) | SPI_CTAR_CSSCK(scaler_tmp);

    /* tASC */
    if (tasc_freq == 0) {
        /* Default to same as baud rate if set to zero. */
        tasc_freq = br_desired;
    }

    if (find_closest_delay_scalers(module_clock, tasc_freq,
                                   &prescaler_tmp, &scaler_tmp) < 0) {
        /* failed to find a solution */
        return -2;
    }

    ctar |= SPI_CTAR_PASC(prescaler_tmp) | SPI_CTAR_ASC(scaler_tmp);

    /* tDT */
    if (tdt_freq == 0) {
        /* Default to same as baud rate if set to zero. */
        tdt_freq = br_desired;
    }

    if (find_closest_delay_scalers(module_clock, tdt_freq,
                                   &prescaler_tmp, &scaler_tmp) < 0) {
        /* failed to find a solution */
        return -2;
    }

    ctar |= SPI_CTAR_PDT(prescaler_tmp) | SPI_CTAR_DT(scaler_tmp);


    /* Set clock polarity and phase. */
    switch (conf) {
        case SPI_CONF_FIRST_RISING:
            break;

        case SPI_CONF_SECOND_RISING:
            ctar |= SPI_CTAR_CPHA_MASK;
            break;

        case SPI_CONF_FIRST_FALLING:
            ctar |= SPI_CTAR_CPOL_MASK;
            break;

        case SPI_CONF_SECOND_FALLING:
            ctar |= SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK;
            break;

        default:
            return -2;
    }

    /* Update CTAR register with new timing settings, 8-bit frame size. */
    spi_dev->CTAR[ctas] = SPI_CTAR_FMSZ(7) | ctar;

    /* enable SPI */
    spi_dev->MCR = SPI_MCR_MSTR_MASK
                   | SPI_MCR_DOZE_MASK
                   | SPI_MCR_CLR_TXF_MASK
                   | SPI_MCR_CLR_RXF_MASK;

    if (KINETIS_SPI_USE_HW_CS) {
        spi_dev->MCR |= SPI_MCR_PCSIS(1);
    }

    spi_dev->RSER = (uint32_t)0;

    return 0;
}
Пример #11
0
void SPI_Configuration (void)
{
	SPI_Type *SPIx = NULL;
	PORT_Type *SPI_PORT = NULL;
	SPI_InitTypeDef SPI_InitStruct;
	SPI_DataMapTypeDef *pSPI_DataMap;
	SPI_CSMapTypeDef *pSPI_CSMap;
	SPI_InitStruct.SPIxDataMap = SPILCD_PORT_DATA;
	SPI_InitStruct.SPIxPCSMap = SPILCD_PORT_CS;
	SPI_InitStruct.SPI_DataSize = 16;
	SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
	SPI_InitStruct.SPI_Mode = SPI_Mode_Master;
	SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
	SPI_InitStruct.SPI_CPOL = SPI_CPOL_High;
	SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_MSB;
	//SPI_Init(&SPI_InitStruct);
	pSPI_CSMap = (SPI_CSMapTypeDef*)&(SPI_InitStruct.SPIxPCSMap);
	pSPI_DataMap = (SPI_DataMapTypeDef*)&(SPI_InitStruct.SPIxDataMap);
	SIM->SCGC6 |= SIM_SCGC6_SPI0_MASK;
	SPIx = SPI0;
	SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK;
	SPI_PORT = PORTA;	
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SIN_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SOUT_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	SPI_PORT->PCR[pSPI_DataMap->SPI_SIN_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	SPI_PORT->PCR[pSPI_DataMap->SPI_SOUT_Pin_Index] |= PORT_PCR_MUX(pSPI_DataMap->SPI_Alt_Index);
	/*SCK配置开漏*/
	SPI_PORT->PCR[pSPI_DataMap->SPI_SCK_Pin_Index]|= PORT_PCR_ODE_MASK;
	SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK;
/*	SPI_PORT = PORTA;
	SPI_PORT->PCR[pSPI_CSMap->SPI_PCS_Pin_Index] &= ~PORT_PCR_MUX_MASK;
	SPI_PORT->PCR[pSPI_CSMap->SPI_PCS_Pin_Index] |= PORT_PCR_MUX(pSPI_CSMap->SPI_Alt_Index);*/
	//设置主从模式
	(SPI_InitStruct.SPI_Mode == SPI_Mode_Master)?(SPIx->MCR  |= SPI_MCR_MSTR_MASK):(SPIx->MCR  &= ~SPI_MCR_MSTR_MASK);
	SPIx->MCR  = 0 & (~SPI_MCR_MDIS_MASK) 
					|SPI_MCR_HALT_MASK        //让SPI进入停止模式
					|SPI_MCR_MSTR_MASK        //配置SPI为主机模式
					|SPI_MCR_PCSIS_MASK       //PCS为高电平当在SPI不工作的时候
					|SPI_MCR_CLR_TXF_MASK     //首先要清除MDIS,清除TXF_MASK和RXF_MASK
					|SPI_MCR_CLR_RXF_MASK  
					|SPI_MCR_DIS_TXF_MASK     //然后再禁止TXD和RXD FIFO 模式 ,将SPI配置成正常模式
					|SPI_MCR_DIS_RXF_MASK
					|SPI_MCR_SMPL_PT(2);
	SPIx->CTAR[1] = 0| SPI_CTAR_DBR_MASK	 //设置通信的
					| SPI_CTAR_PCSSCK(0)
					| SPI_CTAR_PASC(0)
					| SPI_CTAR_ASC(0)
					| SPI_CTAR_PBR(0)
					| SPI_CTAR_CSSCK(0)
					| SPI_CTAR_FMSZ(SPI_InitStruct.SPI_DataSize -1)//设置数据传输的位数
					| SPI_CTAR_PDT(0);//设置片选信号在数据完成后的延时值 
	//分频设置
	SPIx->CTAR[1] |=SPI_CTAR_BR(SPI_InitStruct.SPI_BaudRatePrescaler);							 
	//时钟相位设置
	(SPI_InitStruct.SPI_CPHA == SPI_CPHA_1Edge)?(SPIx->CTAR[1] &= ~SPI_CTAR_CPHA_MASK):(SPIx->CTAR[1] |= SPI_CTAR_CPHA_MASK);
	//时钟极性
	(SPI_InitStruct.SPI_CPOL == SPI_CPOL_Low)?(SPIx->CTAR[1] &= ~SPI_CTAR_CPOL_MASK):(SPIx->CTAR[1] |= SPI_CTAR_CPOL_MASK);
	//配置MSB或者LSD
	(SPI_InitStruct.SPI_FirstBit == SPI_FirstBit_MSB)?(SPIx->CTAR[1] &= ~SPI_CTAR_LSBFE_MASK):(SPIx->CTAR[1] |= SPI_CTAR_LSBFE_MASK);
	//清空状态
	SPIx->SR = SPI_SR_EOQF_MASK   //队列结束标志 w1c  (write 1 to clear)     
			| SPI_SR_TFUF_MASK    //TX FIFO underflow flag  w1c
			| SPI_SR_TFFF_MASK    //TX FIFO fill      flag  w1c
			| SPI_SR_RFOF_MASK    //RX FIFO overflow  flag  w1c
			| SPI_SR_RFDF_MASK    //RX FIFO fill      flasg w1c (0时为空)
			| SPI_SR_TCF_MASK;
	//开始传输
	SPIx->MCR &= ~SPI_MCR_HALT_MASK;    //开始传输,见参考手册1129页					
	
	AD7687_ReceiveWord ();
	NVIC_DisableIRQ (AD7687_SIN_IRQ);
 	AD7687_SIN_PORT->PCR[AD7687_SIN_Pin]&=~PORT_PCR_IRQC_MASK;
 	AD7687_SIN_PORT->PCR[AD7687_SIN_Pin]|=PORT_PCR_IRQC(GPIO_IT_RISING);
}
Пример #12
0
uint8 LPLD_SPI_Init(SPI_InitTypeDef spi_init_structure)
{
    SPI_MemMapPtr spix = spi_init_structure.SPI_SPIx;
  uint8 spi_mode = spi_init_structure.SPI_ModeSelect;
  uint8 sck_div = spi_init_structure.SPI_SckDivider; 
  boolean txFIFO_enable = spi_init_structure.SPI_EnableTxFIFO;
  boolean rxFIFO_enable = spi_init_structure.SPI_EnableRxFIFO;
  //定义SPI外设中断变量
  boolean tx_complete_int = spi_init_structure.SPI_TxCompleteIntEnable;
  boolean QueueEnd_Request_int = spi_init_structure.SPI_QueueEndIntEnable; 
  boolean txFIFO_underflow_int = spi_init_structure.SPI_TxFIFO_UnderflowIntEnable;
  boolean rxFIFO_overflow_int = spi_init_structure.SPI_RxFIFO_OverflowIntEnable;
  boolean txFIFO_Fill_int = spi_init_structure.SPI_TxFIFO_FillIntEnable;
  boolean rxFIFO_Drain_int = spi_init_structure.SPI_RxFIFO_DrainIntEnable; 
  boolean txFIFO_req = spi_init_structure.SPI_TxFIFO_RequestSelect;
  boolean rxFIFO_req = spi_init_structure.SPI_RxFIFO_RequestSelect;
  //选择SPI引脚
  PortPinsEnum_Type miso_pin = spi_init_structure.SPI_MisoPin;//MISO 
  PortPinsEnum_Type mosi_pin = spi_init_structure.SPI_MosiPin;//MOSI
  PortPinsEnum_Type sck_pin = spi_init_structure.SPI_SckPin;  //SCK
  PortPinsEnum_Type pcs0_pin = spi_init_structure.SPI_Pcs0Pin;//PCS0
  PortPinsEnum_Type pcs1_pin = spi_init_structure.SPI_Pcs1Pin;//PCS1
  PortPinsEnum_Type pcs2_pin = spi_init_structure.SPI_Pcs2Pin;//PCS2
  PortPinsEnum_Type pcs3_pin = spi_init_structure.SPI_Pcs3Pin;//PCS3
  PortPinsEnum_Type pcs4_pin = spi_init_structure.SPI_Pcs4Pin;//PCS4
  PortPinsEnum_Type pcs5_pin = spi_init_structure.SPI_Pcs5Pin;//PCS5
  //定义中断回掉函数
  SPI_ISR_CALLBACK TxComplete_isr = spi_init_structure.SPI_TxCompleteIntIsr;
  SPI_ISR_CALLBACK QueueEndReq_isr = spi_init_structure.SPI_QueueEndIntIsr;
  SPI_ISR_CALLBACK UnderflowInt_isr = spi_init_structure.SPI_TxFIFO_UnderflowIntIsr;
  SPI_ISR_CALLBACK OverflowInt_isr = spi_init_structure.SPI_RxFIFO_OverflowIntIsr;
  SPI_ISR_CALLBACK FillInt_isr = spi_init_structure.SPI_TxFIFO_FillIntIsr;
  SPI_ISR_CALLBACK DrainInt_isr = spi_init_structure.SPI_RxFIFO_DrainIntIsr;
 
    if (spi_mode < SPI_MODE_MASTER || spi_mode > SPI_MODE_SLAVE || sck_div > SPI_SCK_DIV_32768)
        return 0;
    //检测参数

  if(spix == SPI0)
  {
      //enable DSPI0 clock
    SIM_SCGC6 |= SIM_SCGC6_DSPI0_MASK;  

    //选择pcs0 
    //NRF24L01 pcs0_pin = PTA14
    switch(pcs0_pin)
    {
        case PTA14:
            PORTA->PCR[14] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
            break;
        case PTC4:
            PORTA->PCR[4] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
            break;
        default:
            return 0;
    }
    //选择PCS1
    if(pcs1_pin == PTC3)
    {
      PORTC->PCR[3]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs1_pin == PTD4)//pcs1_pin == PTD4
    {
      PORTD->PCR[4] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS2
    if(pcs2_pin == PTC2)
    {
      PORTC->PCR[2]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs2_pin == PTD5)//pcs2_pin == PTD5
    {
      PORTD->PCR[5]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS3
    if(pcs3_pin == PTC1)
    {
      PORTC->PCR[1]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs3_pin == PTD6)//pcs3_pin == PTD6
    {
      PORTD->PCR[6]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS4
    if(pcs4_pin == PTC0)
    {
      PORTC->PCR[0]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }

    //选择PCS5
    if(pcs5_pin == PTB23)
    {
      PORTB->PCR[23] = 0 | PORT_PCR_MUX(3) | PORT_PCR_DSE_MASK;
    }

    //选择SCK 
    //sck_pin = PTA15
    if(sck_pin == PTA15)
    {
      PORTA->PCR[15] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SCK
    }
    else if (sck_pin == PTA15)//sck_pin == PTC5
    {
      PORTC->PCR[5] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SCK
    }
    //选择mosi 
    //mosi_pin = PTA16
    if(mosi_pin == PTA16)
    {
      PORTA->PCR[16] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    else if (mosi_pin == PTC6)//mosi_pin == PTC6
    {
      PORTC->PCR[6] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    //选择MISO 
    //miso_pin = PTA17
    if(miso_pin == PTA17)
    {
      PORTA->PCR[17] = 0 | PORT_PCR_MUX(2); //SIN
    }
    else if (miso_pin == PTC7)//miso_pin == PTC7
    {
      PORTC->PCR[7] = 0 | PORT_PCR_MUX(2); //SIN
    } 
  }
  else if(spix == SPI1)
  {
    SIM_SCGC6 |= SIM_SCGC6_DSPI1_MASK;
    //选择PCS0
    if(pcs0_pin == PTB10)
    {
      PORTB->PCR[10] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs0_pin == PTE4)//pcs0_pin == PTE4
    {
      PORTE->PCR[4] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS1
    if(pcs1_pin == PTB9)
    {
      PORTB->PCR[9]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs1_pin == PTE0)//pcs1_pin == PTE0
    {
      PORTE->PCR[0] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS2
    if(pcs2_pin == PTE5)
    {
      PORTE->PCR[5]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }

    //选择PCS3
    if(pcs3_pin == PTE6)
    {
      PORTE->PCR[6]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }

    //选择SCK
    if(sck_pin == PTB11)
    {
      PORTB->PCR[11] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (sck_pin == PTE2)//sck_pin == PTE2
    {
      PORTE->PCR[2] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SCK
    }
    //选择MOSI
    if(mosi_pin == PTB16)
    {
      PORTB->PCR[16] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    else if (mosi_pin == PTE1)//mosi_pin == PTE1
    {
      PORTE->PCR[1] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    //选择MISO
    if(miso_pin == PTB17)
    {
      PORTB->PCR[17] = 0 | PORT_PCR_MUX(2); //SIN
    }
    else if (miso_pin == PTE3)//miso_pin == PTE3
    {
      PORTE->PCR[3] = 0 | PORT_PCR_MUX(2); //SIN
    } 
  }
  else if(spix == SPI2)
  {
    SIM_SCGC3 |= SIM_SCGC3_DSPI2_MASK;
    //选择PCS0
    if(pcs0_pin == PTD11)
    {
      PORTD->PCR[11] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (pcs0_pin == PTB20)//pcs0_pin == PTB20
    {
      PORTB->PCR[20] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    //选择PCS1
    if(pcs1_pin == PTD15)
    {
      PORTD->PCR[15]  = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }

    //选择SCK
    if(sck_pin == PTD12)
    {
      PORTD->PCR[12] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;
    }
    else if (sck_pin == PTB21)//sck_pin == PTB21
    {
      PORTB->PCR[21] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SCK
    }
    //选择MOSI
    if(mosi_pin == PTD13)
    {
      PORTD->PCR[13] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    else if (mosi_pin == PTB22)//mosi_pin == PTB22
    {
      PORTB->PCR[22] = 0 | PORT_PCR_MUX(2) | PORT_PCR_DSE_MASK;//SOUT
    }
    //选择MISO
    if(miso_pin == PTD14)
    {
      PORTD->PCR[14] = 0 | PORT_PCR_MUX(2); //SIN
    }
    else if (miso_pin == PTB23)//miso_pin == PTB23
    {
      PORTB->PCR[23] = 0 | PORT_PCR_MUX(2); //SIN
    } 
  }

  //allow external logic to disable dspi clocks
  spix->MCR &=  ~(SPI_MCR_MDIS_MASK);

  spix->MCR |=  (SPI_MCR_HALT_MASK //stop transfers   
          //PCS[5] / PCSS is used as active-low PCS strobe signal
                |SPI_MCR_PCSIS_MASK      
          //clear the tx fifo count
                |SPI_MCR_CLR_TXF_MASK 
          //clear the rx fifo count
                |SPI_MCR_CLR_RXF_MASK); 
 
  //选择SPI工作模式
  switch (spi_mode)
  {
    case SPI_MODE_SLAVE:
        spix->MCR &= ~SPI_MCR_MSTR_MASK;
        break;
    case SPI_MODE_MASTER:
        spix->MCR |= SPI_MCR_MSTR_MASK;
        break;
    default:
        return 0;
  }

  //选择使能tx FIFO
  if(txFIFO_enable == TRUE)
  {
      //tx fifo is enable
    spix->MCR &= ~SPI_MCR_DIS_TXF_MASK; 
  }
  else
  {
      //tx fifo is disable
    spix->MCR |= SPI_MCR_DIS_TXF_MASK;//选择传统方式
  }
  //选择使能Rx FIFO
  if(rxFIFO_enable == TRUE)
  {
      //rx fifo is enable
    spix->MCR &= ~SPI_MCR_DIS_RXF_MASK;
  }
  else
  {
      //rx fifo is disable
    spix->MCR |= SPI_MCR_DIS_RXF_MASK; //选择传统方式
  }
  //选择使能发送完成中断
  if(tx_complete_int == TRUE)
  {
    spix->RSER |= SPI_RSER_TCF_RE_MASK; 
  }
  else
  { 
    spix->RSER &= ~SPI_RSER_TCF_RE_MASK;
  }
  //选择使能发送队列结束中断
  if(QueueEnd_Request_int == TRUE)
  {
    spix->RSER |=SPI_RSER_EOQF_RE_MASK;
  }
  else
    spix->RSER &= ~SPI_RSER_EOQF_RE_MASK;
  //选择使能txFIFO为空中断
  if(txFIFO_underflow_int== TRUE)
  {
    spix->RSER |=SPI_RSER_TFUF_RE_MASK;
  }
  else
    spix->RSER &= ~SPI_RSER_TFUF_RE_MASK;
  //选择使能rxFIFO溢出中断
  if(rxFIFO_overflow_int== TRUE)
  {
    spix->RSER |=SPI_RSER_RFOF_RE_MASK;
  }
  else
  {
    spix->RSER &= ~SPI_RSER_RFOF_RE_MASK;
  }
  //选择使能txFIFO有数据进入队列中断或者DMA请求
  if(txFIFO_Fill_int== TRUE)
  {
    spix->RSER |=SPI_RSER_TFFF_RE_MASK;
  }
  else
  {
    spix->RSER &= ~SPI_RSER_TFFF_RE_MASK;
  }
  //选择使能rxFIFO非空中断或者DMA请求
  if(rxFIFO_Drain_int== TRUE)
  {
    spix->RSER |=SPI_RSER_RFDF_RE_MASK;
  }
  else
  {
    spix->RSER &= ~SPI_RSER_RFDF_RE_MASK;
  }
  //选择使能txFIFO中断或者DMA请求
  if(txFIFO_req == SPI_FIFO_DMAREQUEST)
  {
    spix->RSER |=SPI_RSER_TFFF_DIRS_MASK;
  }
  else
  {
    spix->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
  }
  //选择使能rxFIFO中断或者DMA请求
  if(rxFIFO_req == SPI_FIFO_DMAREQUEST)
  {
    spix->RSER |= SPI_RSER_RFDF_DIRS_MASK;
  }
  else 
  {
    spix->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
  }
  //添加中断回调函数

  if(spix == SPI0)
  {
    if(tx_complete_int == TRUE)
    { SPI0_ISR[SPI_TxComplete_Int] = TxComplete_isr; }
    if(QueueEnd_Request_int == TRUE)
    { SPI0_ISR[SPI_QueueEndReq_Int] = QueueEndReq_isr; }
    if(txFIFO_underflow_int == TRUE)
    { SPI0_ISR[SPI_TxFIFO_UnderflowInt] = UnderflowInt_isr; }
    if(rxFIFO_overflow_int == TRUE)
    { SPI0_ISR[SPI_RxFIFO_OverflowInt] = OverflowInt_isr; }
    if(txFIFO_Fill_int == TRUE && txFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI0_ISR[SPI_TxFIFO_FillInt] = FillInt_isr; }
    if(rxFIFO_Drain_int == TRUE && rxFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI0_ISR[SPI_RxFIFO_DrainInt] = DrainInt_isr; }
  }
  else if (spix == SPI1)
  {
    if(tx_complete_int == TRUE)
    { SPI1_ISR[SPI_TxComplete_Int] = TxComplete_isr; }
    if(QueueEnd_Request_int == TRUE)
    { SPI1_ISR[SPI_QueueEndReq_Int] = QueueEndReq_isr; }
    if(txFIFO_underflow_int == TRUE)
    { SPI1_ISR[SPI_TxFIFO_UnderflowInt] = UnderflowInt_isr; }
    if(rxFIFO_overflow_int == TRUE)
    { SPI1_ISR[SPI_RxFIFO_OverflowInt] = OverflowInt_isr; }
    if(txFIFO_Fill_int == TRUE && txFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI1_ISR[SPI_TxFIFO_FillInt] = FillInt_isr; }
    if(rxFIFO_Drain_int == TRUE && rxFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI1_ISR[SPI_RxFIFO_DrainInt] = DrainInt_isr; }
  }
  else if (spix == SPI2)
  {
    if(tx_complete_int == TRUE)
    { SPI2_ISR[SPI_TxComplete_Int] = TxComplete_isr; }
    if(QueueEnd_Request_int == TRUE)
    { SPI2_ISR[SPI_QueueEndReq_Int] = QueueEndReq_isr; }
    if(txFIFO_underflow_int == TRUE)
    { SPI2_ISR[SPI_TxFIFO_UnderflowInt] = UnderflowInt_isr; }
    if(rxFIFO_overflow_int == TRUE)
    { SPI2_ISR[SPI_RxFIFO_OverflowInt] = OverflowInt_isr; }
    if(txFIFO_Fill_int == TRUE && txFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI2_ISR[SPI_TxFIFO_FillInt] = FillInt_isr; }
    if(rxFIFO_Drain_int == TRUE && rxFIFO_req == SPI_FIFO_INTREQUEST)
    { SPI2_ISR[SPI_RxFIFO_DrainInt] = DrainInt_isr; }
  }
/*
  //配置SPI CTAR寄存器,设置SPI的总线时序
  //MSB first
  spix->CTAR[0] &= (~SPI_CTAR_LSBFE_MASK);
  //DBR sck double
  spix->CTAR[0] |=  (SPI_CTAR_DBR_MASK 
          //baud rate div = 1
                      |SPI_CTAR_PBR()
          //set date frame length = 7+1
                      |SPI_CTAR_FMSZ(7));        
                       
  //设置SPI总线频率
  //SCK总线频率 = g_bus_clock/ SCK_DIV_x                                             
  spix->CTAR[0] |=SPI_CTAR_BR(sck_div);

  //tCSC = (1/g_bus_clock) x PCSSCK x CSSCK
  //tCSC = 1/50,000,000 x PCSSCK x CSSCK
  spix->CTAR[0] |=SPI_CTAR_PCSSCK(1); 
  spix->CTAR[0] |=SPI_CTAR_CSSCK(1);  
  
  //tDT = (1/g_bus_clock) x PDT x DT
  spix->CTAR[0] |=SPI_CTAR_DT(1);
  spix->CTAR[0] |=SPI_CTAR_PDT(1);
  
  //Config the Delay of the last edge of SCK and the negation of PCS
  //tASC = (1/g_bus_clock) x PASC x ASC
  spix->CTAR[0] |=SPI_CTAR_PASC(1);
  spix->CTAR[0] |=SPI_CTAR_ASC(1);
  */
 
  //清除标志位
  spix->SR |=  (SPI_SR_RFDF_MASK   
              |SPI_SR_RFOF_MASK
              |SPI_SR_TFFF_MASK
              |SPI_SR_TFUF_MASK
              |SPI_SR_TCF_MASK
              |SPI_SR_EOQF_MASK);
    
  spix->CTAR[0] = (0
                |SPI_CTAR_PBR(0)
                |SPI_CTAR_PDT(0)
                |SPI_CTAR_BR(0)
                |SPI_CTAR_FMSZ(0x07));

  //使能spix 
  //enable transfers
  spix->MCR &=~SPI_MCR_HALT_MASK; 
  
  return 1;
}
Пример #13
0
/*
*******************************************************************************
* void SpiSetDelayAfterPDT( SPI_MemMapPtr base , uint8_t delay)
*******************************************************************************
* Input         : base : Pointer to SPI0/ SPI1 /SPI2 Register Base 	
* 				  delay : Selects the Delay after Transfer Prescaler value
* Output        : void
* Description   : Set delay after transfer prescaler value for SPI
*******************************************************************************
*/
void SpiSetDelayAfterPDT( SPI_MemMapPtr base , uint8_t delay)
{
	SPI_CTAR_REG(base,0) |= SPI_CTAR_PDT(delay);

}//End of SpiSetDelayAfterPDT
Пример #14
0
/*********************************************************
* Name: SPI_Init
* Desc: Initialize SPI2 Module
* Parameter: None
* Return: None             
**********************************************************/
void SPI_Init(void)
{
    /*Body*/
    /* set PORTE pin 1 to DSPI1.SOUT*/
#ifdef MCU_MK70F12
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(7);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(7);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);    

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_DSPI1_MASK;
#elif defined MCU_MK20D5
	/* set PORTD pin 1 to SPI0.SOUT*/
	PORTD_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTD pin 1 to SPI0.SCK*/
	PORTD_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTD pin 3 to SPI0.SIN*/
	PORTD_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTD pin 0 to SPI0.CS0*/
	PORTD_PCR0 =  PORT_PCR_MUX(2);    

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI0_MASK;
#elif defined MCU_MK20D7
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#elif defined MCU_MK40D7
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#elif defined MCU_MK40N512VMD100
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#elif defined MCU_MK53N512CMD100
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#elif defined MCU_MK60N512VMD100
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK;
#elif defined MCU_MK21D5
        SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
	/* set PORTB pin 16 to DSPI1.SOUT*/
	PORTB_PCR16 =  PORT_PCR_MUX(2);
	/* set PORTB pin 11 to DSPI1.SCK*/
	PORTB_PCR11 =  PORT_PCR_MUX(2);
	/* set PORTB pin 17 to DSPI1.SIN*/
	PORTB_PCR17 =  PORT_PCR_MUX(2);
	/* set PORTB pin 10 to DSPI1.CS0*/
	PORTB_PCR10 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_SPI1_MASK | SIM_SCGC6_DMAMUX_MASK;
#elif defined MCU_MKL25Z4
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);
	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC4 |= SIM_SCGC4_SPI1_MASK;
	SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK;
#else
	/* set PORTE pin 1 to DSPI1.SOUT*/
	PORTE_PCR1 =  PORT_PCR_MUX(2);
	/* set PORTE pin 2 to DSPI1.SCK*/
	PORTE_PCR2 =  PORT_PCR_MUX(2);
	/* set PORTE pin 3 to DSPI1.SIN*/
	PORTE_PCR3 =  PORT_PCR_MUX(2);
	/* set PORTE pin 4 to DSPI1.CS0*/
	PORTE_PCR4 =  PORT_PCR_MUX(2);

	SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
	/* Enable clock gate to DSPI1 module */
	SIM_SCGC6 |= SIM_SCGC6_DMAMUX_SPI1_MASK;
#endif

	/* Enable master mode, disable both transmit and receive FIFO buffers,
   set the inactive state for PCS2 high, enable the module (MDIS = 0),
   delay the sample point from the leading edge of the clock and halt
   any transfer
	 */
#ifdef MCU_MK20D5
	SPI0_MCR = (SPI_MCR_MSTR_MASK   |
			SPI_MCR_PCSIS(1)    |
			SPI_MCR_SMPL_PT(2)  |
			SPI_MCR_HALT_MASK);

	SPI0_MCR |= (SPI_MCR_CLR_RXF_MASK | SPI_MCR_CLR_TXF_MASK);
#elif defined MCU_MKL25Z4
  
	PORTE_PCR4 =  PORT_PCR_MUX(1);
	GPIOE_PDDR |= (1<<4);
	SPI_clr_SS();
	

	SPI1_C2 = SPI_C2_SPISWAI_MASK;     
	SPI1_C1 = SPI_C1_SPE_MASK | SPI_C1_MSTR_MASK | SPI_C1_SSOE_MASK;
	
#else
	SPI1_MCR = (SPI_MCR_MSTR_MASK   |
			SPI_MCR_PCSIS(1)    |
			SPI_MCR_SMPL_PT(2)  |
			SPI_MCR_HALT_MASK);

	SPI1_MCR |= (SPI_MCR_CLR_RXF_MASK | SPI_MCR_CLR_TXF_MASK);
#endif
	/* DSPI clock 375 KHz */
	/* The system clock fsys = 68 MHz */
	// K60: bus clock: 48MHz, DSPI clock: ~107 KHz
	// K70: bus clock: 60MHz, DSPI clock: ~156 KHz
	/* Value to be passed in SPI_Send_byte() function to DPI_CTAR0 register */
#ifdef MCU_MKL25Z4
	/* 375KHz SPI clock */
	SPI1_BR = SPI_BR_SPPR(7) | SPI_BR_SPR(5);             /*  SCK = 10us */
#else
#ifdef MCU_MK70F12
    gSPI_BaudRate = (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0x07));
#else
    gSPI_BaudRate = (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0x06));
#endif
    /* Configure the rest of the delays */
    gSPI_BeforeTransfDelay = (SPI_CTAR_CSSCK(1) | SPI_CTAR_CSSCK(0x04));
    gSPI_AfterTransfDelay  = (SPI_CTAR_PASC(3) | SPI_CTAR_ASC(0x04));
    gSPI_InterTransfDelay  = (SPI_CTAR_PDT(3)  | SPI_CTAR_DT(0x05));  
#endif
}/*EndBody*/