__m256 BVH2Intersector8Chunk<TriangleIntersector>::occluded(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i) { avxb valid = valid_i; avxb terminated = !valid; const BVH2* bvh = This->bvh; STAT3(shadow.travs,1,popcnt(valid),8); NodeRef stack[1+BVH2::maxDepth]; //!< stack of nodes that still need to get traversed NodeRef* stackPtr = stack; //!< current stack pointer NodeRef cur = bvh->root; //!< in cur we track the ID of the current node /* let inactive rays miss all boxes */ const avx3f rdir = rcp_safe(ray.dir); avxf rayFar = select(terminated,avxf(neg_inf),ray.tfar); while (true) { /*! downtraversal loop */ while (likely(cur.isNode())) { STAT3(normal.trav_nodes,1,popcnt(valid),8); /* intersect packet with box of both children */ const Node* node = cur.node(); const size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,0); const size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,1); /*! if two children are hit push both onto stack */ if (likely(hit0 != 0 && hit1 != 0)) { *stackPtr = node->child(0); stackPtr++; cur = node->child(1); } /*! if one child hit, continue with that child */ else { if (likely(hit0 != 0)) cur = node->child(0); else if (likely(hit1 != 0)) cur = node->child(1); else goto pop_node; } } /*! leaf node, intersect all triangles */ { STAT3(shadow.trav_leaves,1,popcnt(valid),8); size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num); for (size_t i=0; i<num; i++) { terminated |= TriangleIntersector::occluded(valid,ray,tri[i],bvh->vertices); if (all(terminated)) return terminated; } /* let terminated rays miss all boxes */ rayFar = select(terminated,avxf(neg_inf),rayFar); } /*! pop next node from stack */ pop_node: if (unlikely(stackPtr == stack)) break; cur = *(--stackPtr); } return terminated; }
static __forceinline bool occluded_vec3f(const Ray& ray, const Triangle1& tri, const void* geom) { /* load triangle */ STAT3(shadow.trav_prims,1,1,1); const Vec3f tri_v0 = tri.v0; const Vec3f tri_v1 = tri.v1; const Vec3f tri_v2 = tri.v2; const Vec3f tri_Ng = tri.Ng; /* calculate denominator */ const Vec3f O = Vec3fa(ray.org); const Vec3f D = Vec3fa(ray.dir); const Vec3f C = tri_v0 - O; const Vec3f R = cross(D,C); const float den = dot(tri_Ng,D); const float absDen = abs(den); const float sgnDen = den < 0.0f ? -1.0f : 1.0f; const Vec3fa e1 = tri_v0-tri_v1; const Vec3fa e2 = tri_v2-tri_v0; /* perform edge tests */ const float U = dot(R,e2) * sgnDen; if (unlikely(U < 0.0f)) return false; const float V = dot(R,e1) * sgnDen; if (unlikely(V < 0.0f)) return false; const float W = absDen-U-V; if (unlikely(W < 0.0f)) return false; /* perform depth test */ const float T = dot(tri_Ng,C) * sgnDen; if (unlikely(absDen*ray.tfar < T)) return false; if (unlikely(T < absDen*ray.tnear)) return false; return true; }
RTCORE_API void rtcIntersect (RTCScene scene, RTCRay& ray) { TRACE(rtcIntersect); STAT3(normal.travs,1,1,1); #if defined(DEBUG) if (!((Scene*)scene)->is_build) process_error(RTC_INVALID_OPERATION,"scene got not committed"); if (((size_t)&ray) & 0x0F) process_error(RTC_INVALID_ARGUMENT,"ray not aligned to 16 bytes"); #endif ((Scene*)scene)->intersect(ray); }
static __forceinline void intersect_vec3f(Ray& ray, const Triangle1& tri, const void* geom) { /* load triangle */ STAT3(normal.trav_prims,1,1,1); const Vec3f tri_v0 = tri.v0; const Vec3f tri_v1 = tri.v1; const Vec3f tri_v2 = tri.v2; const Vec3f tri_Ng = tri.Ng; /* calculate denominator */ const Vec3f O = ray.org; const Vec3f D = ray.dir; const Vec3f C = tri_v0 - O; const Vec3f R = cross(D,C); const float den = dot(tri_Ng,D); const float absDen = abs(den); const float sgnDen = den < 0.0f ? -1.0f : 1.0f; const Vec3f e1 = tri_v0-tri_v1; const Vec3f e2 = tri_v2-tri_v0; /* perform edge tests */ const float U = dot(R,e2) * sgnDen; if (unlikely(U < 0.0f)) return; const float V = dot(R,e1) * sgnDen; if (unlikely(V < 0.0f)) return; const float W = absDen-U-V; if (unlikely(W < 0.0f)) return; /* perform depth test */ const float T = dot(tri_Ng,C) * sgnDen; if (unlikely(absDen*ray.tfar < T)) return; if (unlikely(T < absDen*ray.tnear)) return; /* update hit information */ const float rcpAbsDen = rcp(absDen); ray.u = U * rcpAbsDen; ray.v = V * rcpAbsDen; ray.tfar = T * rcpAbsDen; ray.Ng = tri_Ng; ray.geomID = tri.geomID(); ray.primID = tri.primID(); }
RTCORE_API void rtcIntersect (RTCScene hscene, RTCRay& ray) { Scene* scene = (Scene*) hscene; RTCORE_CATCH_BEGIN; RTCORE_TRACE(rtcIntersect); #if defined(DEBUG) RTCORE_VERIFY_HANDLE(hscene); if (scene->isModified()) throw_RTCError(RTC_INVALID_OPERATION,"scene got not committed"); if (((size_t)&ray) & 0x0F ) throw_RTCError(RTC_INVALID_ARGUMENT, "ray not aligned to 16 bytes"); #endif #if defined(RTCORE_ENABLE_RAYSTREAM_LOGGER) RTCRay old_ray = ray; #endif STAT3(normal.travs,1,1,1); scene->intersect(ray); #if defined(RTCORE_ENABLE_RAYSTREAM_LOGGER) RayStreamLogger::rayStreamLogger.logRay1Intersect(scene,old_ray,ray); #endif RTCORE_CATCH_END(scene->device); }
bool BVH4Intersector1AVX<TriangleIntersector>::occluded(const BVH4Intersector1AVX* This, Ray& ray) { AVX_ZERO_UPPER(); STAT3(shadow.travs,1,1,1); const BVH4* bvh = This->bvh; int swapX = ray.dir.x < 0.0f; int swapY = ray.dir.y < 0.0f; int swapZ = ray.dir.z < 0.0f; int swap = 4*swapX+2*swapY+swapZ; switch (swap) { case 0: return occludedT<TriangleIntersector,false,false,false>(bvh,ray); break; case 1: return occludedT<TriangleIntersector,false,false,true >(bvh,ray); break; case 2: return occludedT<TriangleIntersector,false,true ,false>(bvh,ray); break; case 3: return occludedT<TriangleIntersector,false,true ,true >(bvh,ray); break; case 4: return occludedT<TriangleIntersector,true ,false,false>(bvh,ray); break; case 5: return occludedT<TriangleIntersector,true ,false,true >(bvh,ray); break; case 6: return occludedT<TriangleIntersector,true ,true ,false>(bvh,ray); break; case 7: return occludedT<TriangleIntersector,true ,true ,true >(bvh,ray); break; default: return false; } }
void BVH4Intersector1AVX<TriangleIntersector>::intersect(const BVH4Intersector1AVX* This, Ray& ray) { AVX_ZERO_UPPER(); STAT3(normal.travs,1,1,1); const BVH4* bvh = This->bvh; int swapX = ray.dir.x < 0.0f; int swapY = ray.dir.y < 0.0f; int swapZ = ray.dir.z < 0.0f; int swap = 4*swapX+2*swapY+swapZ; switch (swap) { case 0: intersectT<TriangleIntersector,false,false,false>(bvh,ray); break; case 1: intersectT<TriangleIntersector,false,false,true >(bvh,ray); break; case 2: intersectT<TriangleIntersector,false,true ,false>(bvh,ray); break; case 3: intersectT<TriangleIntersector,false,true ,true >(bvh,ray); break; case 4: intersectT<TriangleIntersector,true ,false,false>(bvh,ray); break; case 5: intersectT<TriangleIntersector,true ,false,true >(bvh,ray); break; case 6: intersectT<TriangleIntersector,true ,true ,false>(bvh,ray); break; case 7: intersectT<TriangleIntersector,true ,true ,true >(bvh,ray); break; } AVX_ZERO_UPPER(); }
void BVH4Intersector4Hybrid<types,robust,PrimitiveIntersector4>::intersect(bool4* valid_i, BVH4* bvh, Ray4& ray) { /* verify correct input */ bool4 valid0 = *valid_i; #if defined(RTCORE_IGNORE_INVALID_RAYS) valid0 &= ray.valid(); #endif assert(all(valid0,ray.tnear > -FLT_MIN)); assert(!(types & BVH4::FLAG_NODE_MB) || all(valid0,ray.time >= 0.0f & ray.time <= 1.0f)); /* load ray */ Vec3f4 ray_org = ray.org; Vec3f4 ray_dir = ray.dir; float4 ray_tnear = ray.tnear, ray_tfar = ray.tfar; const Vec3f4 rdir = rcp_safe(ray_dir); const Vec3f4 org(ray_org), org_rdir = org * rdir; ray_tnear = select(valid0,ray_tnear,float4(pos_inf)); ray_tfar = select(valid0,ray_tfar ,float4(neg_inf)); const float4 inf = float4(pos_inf); Precalculations pre(valid0,ray); /* compute near/far per ray */ Vec3i4 nearXYZ; nearXYZ.x = select(rdir.x >= 0.0f,int4(0*(int)sizeof(float4)),int4(1*(int)sizeof(float4))); nearXYZ.y = select(rdir.y >= 0.0f,int4(2*(int)sizeof(float4)),int4(3*(int)sizeof(float4))); nearXYZ.z = select(rdir.z >= 0.0f,int4(4*(int)sizeof(float4)),int4(5*(int)sizeof(float4))); /* allocate stack and push root node */ float4 stack_near[stackSizeChunk]; NodeRef stack_node[stackSizeChunk]; stack_node[0] = BVH4::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSizeChunk; NodeRef* __restrict__ sptr_node = stack_node + 2; float4* __restrict__ sptr_near = stack_near + 2; while (1) pop: { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef cur = *sptr_node; if (unlikely(cur == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ float4 curDist = *sptr_near; const bool4 active = curDist < ray_tfar; if (unlikely(none(active))) continue; /* switch to single ray traversal */ #if !defined(__WIN32__) || defined(__X86_64__) size_t bits = movemask(active); if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) { for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) { BVH4Intersector4Single<types,robust,PrimitiveIntersector4>::intersect1(bvh, cur, i, pre, ray, ray_org, ray_dir, rdir, ray_tnear, ray_tfar, nearXYZ); } ray_tfar = min(ray_tfar,ray.tfar); continue; } #endif while (1) { /* process normal nodes */ if (likely((types & 0x1) && cur.isNode())) { const bool4 valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),4); const Node* __restrict__ const node = cur.node(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; cur = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<BVH4::N; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4::emptyNode)) break; float4 lnearP; const bool4 lhit = intersect_node<robust>(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP); /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); assert(child != BVH4::emptyNode); const float4 childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = cur; *(sptr_near-1) = curDist; curDist = childDist; cur = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } #if SWITCH_DURING_DOWN_TRAVERSAL == 1 // seems to be the best place for testing utilization if (unlikely(popcnt(ray_tfar > curDist) <= SWITCH_THRESHOLD)) { *sptr_node++ = cur; *sptr_near++ = curDist; goto pop; } #endif } /* process motion blur nodes */ else if (likely((types & 0x10) && cur.isNodeMB())) { const bool4 valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),4); const BVH4::NodeMB* __restrict__ const node = cur.nodeMB(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; cur = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<BVH4::N; i++) { const NodeRef child = node->child(i); if (unlikely(child == BVH4::emptyNode)) break; float4 lnearP; const bool4 lhit = intersect_node(node,i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP); /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); assert(child != BVH4::emptyNode); const float4 childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = cur; *(sptr_near-1) = curDist; curDist = childDist; cur = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } #if SWITCH_DURING_DOWN_TRAVERSAL == 1 // seems to be the best place for testing utilization if (unlikely(popcnt(ray_tfar > curDist) <= SWITCH_THRESHOLD)) { *sptr_node++ = cur; *sptr_near++ = curDist; goto pop; } #endif } else break; }
void BVH4Intersector4Chunk<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray) { /* load ray */ const sseb valid0 = *valid_i; const sse3f rdir = rcp_safe(ray.dir); const sse3f org(ray.org), org_rdir = org * rdir; ssef ray_tnear = select(valid0,ray.tnear,ssef(pos_inf)); ssef ray_tfar = select(valid0,ray.tfar ,ssef(neg_inf)); const ssef inf = ssef(pos_inf); Precalculations pre(valid0,ray); /* allocate stack and push root node */ ssef stack_near[stackSize]; NodeRef stack_node[stackSize]; stack_node[0] = BVH4::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSize; NodeRef* __restrict__ sptr_node = stack_node + 2; ssef* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef curNode = *sptr_node; if (unlikely(curNode == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ ssef curDist = *sptr_near; if (unlikely(none(ray_tfar > curDist))) continue; while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf())) break; const sseb valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),4); const Node* __restrict__ const node = curNode.node(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; curNode = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<BVH4::N; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4::emptyNode)) break; #if defined(__AVX2__) const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); #else const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x; const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y; const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z; const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x; const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y; const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z; #endif #if defined(__SSE4_1__) const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const ssef lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const sseb lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const ssef lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const sseb lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); const ssef childDist = select(lhit,lnearP,inf); const NodeRef child = node->children[i]; assert(child != BVH4::emptyNode); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = curNode; *(sptr_near-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } /* return if stack is empty */ if (unlikely(curNode == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* intersect leaf */ const sseb valid_leaf = ray_tfar > curDist; STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4); size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items); PrimitiveIntersector4::intersect(valid_leaf,pre,ray,prim,items,bvh->geometry); ray_tfar = select(valid_leaf,ray.tfar,ray_tfar); } AVX_ZERO_UPPER(); }
void BVH4iIntersector16Chunk<LeafIntersector,ENABLE_COMPRESSED_BVH4I_NODES>::occluded(mic_i* valid_i, BVH4i* bvh, Ray16& ray) { /* allocate stack */ __aligned(64) mic_f stack_dist[3*BVH4i::maxDepth+1]; __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1]; /* load ray */ const mic_m valid = *(mic_i*)valid_i != mic_i(0); mic_m m_terminated = !valid; const mic3f rdir = rcp_safe(ray.dir); const mic3f org_rdir = ray.org * rdir; mic_f ray_tnear = select(valid,ray.tnear,pos_inf); mic_f ray_tfar = select(valid,ray.tfar ,neg_inf); const mic_f inf = mic_f(pos_inf); /* push root node */ stack_node[0] = BVH4i::invalidNode; stack_dist[0] = inf; stack_node[1] = bvh->root; stack_dist[1] = ray_tnear; NodeRef* __restrict__ sptr_node = stack_node + 2; mic_f* __restrict__ sptr_dist = stack_dist + 2; const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle1 * __restrict__ accel = (Triangle1*)bvh->triPtr(); const mic3f org = ray.org; const mic3f dir = ray.dir; while (1) { const mic_m m_active = !m_terminated; /* pop next node from stack */ NodeRef curNode = *(sptr_node-1); mic_f curDist = *(sptr_dist-1); sptr_node--; sptr_dist--; const mic_m m_stackDist = gt(m_active,ray_tfar,curDist); /* stack emppty ? */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* cull node if behind closest hit point */ if (unlikely(none(m_stackDist))) { continue; } const unsigned int leaf_mask = BVH4I_LEAF_MASK; traverse_chunk_occluded<ENABLE_COMPRESSED_BVH4I_NODES>(curNode, curDist, rdir, org_rdir, ray_tnear, ray_tfar, m_active, sptr_node, sptr_dist, nodes, leaf_mask); /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect leaf */ mic_m m_valid_leaf = gt(m_active,ray_tfar,curDist); STAT3(shadow.trav_leaves,1,popcnt(m_valid_leaf),16); LeafIntersector::occluded16(curNode,m_valid_leaf,dir,org,ray,m_terminated,accel,(Scene*)bvh->geometry); if (unlikely(all(m_terminated))) break; ray_tfar = select(m_terminated,neg_inf,ray_tfar); } store16i(valid & m_terminated,&ray.geomID,0); }
void BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded(avxb* valid_i, BVH8i* bvh, Ray8& ray) { /* load ray */ const avxb valid = *valid_i; avxb terminated = !valid; avx3f ray_org = ray.org, ray_dir = ray.dir; avxf ray_tnear = ray.tnear, ray_tfar = ray.tfar; #if defined(__FIX_RAYS__) const avxf float_range = 0.1f*FLT_MAX; ray_org = clamp(ray_org,avx3f(-float_range),avx3f(+float_range)); ray_dir = clamp(ray_dir,avx3f(-float_range),avx3f(+float_range)); ray_tnear = max(ray_tnear,FLT_MIN); ray_tfar = min(ray_tfar,float(inf)); #endif const avx3f rdir = rcp_safe(ray_dir); const avx3f org(ray_org), org_rdir = org * rdir; ray_tnear = select(valid,ray_tnear,avxf(pos_inf)); ray_tfar = select(valid,ray_tfar ,avxf(neg_inf)); const avxf inf = avxf(pos_inf); /* compute near/far per ray */ avx3i nearXYZ; nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(avxf)),avxi(1*(int)sizeof(avxf))); nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(avxf)),avxi(3*(int)sizeof(avxf))); nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(avxf)),avxi(5*(int)sizeof(avxf))); /* allocate stack and push root node */ avxf stack_near[stackSizeChunk]; NodeRef stack_node[stackSizeChunk]; stack_node[0] = BVH4i::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSizeChunk; NodeRef* __restrict__ sptr_node = stack_node + 2; avxf* __restrict__ sptr_near = stack_near + 2; const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr(); while (1) { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef curNode = *sptr_node; if (unlikely(curNode == BVH4i::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ avxf curDist = *sptr_near; const avxb active = curDist < ray_tfar; if (unlikely(none(active))) continue; /* switch to single ray traversal */ #if !defined(__WIN32__) || defined(__X86_64__) size_t bits = movemask(active); if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) { for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) { if (occluded1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ)) terminated[i] = -1; } if (all(terminated)) break; ray_tfar = select(terminated,avxf(neg_inf),ray_tfar); continue; } #endif while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf())) break; const avxb valid_node = ray_tfar > curDist; STAT3(shadow.trav_nodes,1,popcnt(valid_node),8); const Node* __restrict__ const node = (Node*)curNode.node(nodes); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; curNode = *sptr_node; curDist = *sptr_near; for (unsigned i=0; i<8; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4i::emptyNode)) break; #if defined(__AVX2__) const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const avxf lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const avxb lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const avxf lclipMinX = (node->lower_x[i] - org.x) * rdir.x; const avxf lclipMinY = (node->lower_y[i] - org.y) * rdir.y; const avxf lclipMinZ = (node->lower_z[i] - org.z) * rdir.z; const avxf lclipMaxX = (node->upper_x[i] - org.x) * rdir.x; const avxf lclipMaxY = (node->upper_y[i] - org.y) * rdir.y; const avxf lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z; const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const avxf lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const avxb lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); assert(child != BVH4i::emptyNode); const avxf childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = curNode; *(sptr_near-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) { assert(sptr_node == stack_node); break; } /* intersect leaf */ const avxb valid_leaf = ray_tfar > curDist; STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8); size_t items; const Triangle* prim = (Triangle*) curNode.leaf(accel,items); terminated |= TriangleIntersector8::occluded(!terminated,ray,prim,items,bvh->geometry); if (all(terminated)) break; ray_tfar = select(terminated,avxf(neg_inf),ray_tfar); } store8i(valid & terminated,&ray.geomID,0); AVX_ZERO_UPPER(); }
void BVH4Intersector4Chunk<TriangleIntersector4>::intersect(const BVH4Intersector4Chunk* This, Ray4& ray, const __m128 valid_i) { sseb valid = valid_i; NodeRef invalid = (NodeRef)1; const BVH4* bvh = This->bvh; STAT3(normal.travs,1,popcnt(valid),4); /* load ray into registers */ ssef ray_near = select(valid,ray.tnear,pos_inf); ssef ray_far = select(valid,ray.tfar ,neg_inf); sse3f rdir = rcp_safe(ray.dir); ray.tfar = ray_far; /* allocate stack and push root node */ NodeRef stack_node[3*BVH4::maxDepth+1]; ssef stack_near[3*BVH4::maxDepth+1]; stack_node[0] = invalid; stack_near[0] = ssef(inf); stack_node[1] = bvh->root; stack_near[1] = ray_near; NodeRef* sptr_node = stack_node+2; ssef * sptr_near = stack_near+2; while (1) { /* pop next node from stack */ sptr_node--; sptr_near--; ssef curDist = *sptr_near; NodeRef curNode = *sptr_node; if (unlikely(curNode == invalid)) break; /* cull node if behind closest hit point */ const sseb m_dist = curDist < ray_far; if (unlikely(none(m_dist))) continue; while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf())) break; STAT3(normal.trav_nodes,1,popcnt(valid),4); const Node* const node = curNode.node(bvh->nodePtr()); //NodeRef(curNode).node(nodes); //prefetch<PFHINT_L1>((ssef*)node + 1); // depth first order prefetch /* pop of next node */ sptr_node--; sptr_near--; curNode = *sptr_node; curDist = *sptr_near; for (unsigned i=0;i<4;i++) { const ssef dminx = (ssef(node->lower_x[i]) - ray.org.x) * rdir.x; const ssef dmaxx = (ssef(node->upper_x[i]) - ray.org.x) * rdir.x; const ssef dminy = (ssef(node->lower_y[i]) - ray.org.y) * rdir.y; const ssef dmaxy = (ssef(node->upper_y[i]) - ray.org.y) * rdir.y; const ssef dminz = (ssef(node->lower_z[i]) - ray.org.z) * rdir.z; const ssef dmaxz = (ssef(node->upper_z[i]) - ray.org.z) * rdir.z; const ssef dlowerx = min(dminx,dmaxx); const ssef dupperx = max(dminx,dmaxx); const ssef dlowery = min(dminy,dmaxy); const ssef duppery = max(dminy,dmaxy); const ssef dlowerz = min(dminz,dmaxz); const ssef dupperz = max(dminz,dmaxz); const ssef near = max(dlowerx,dlowery,dlowerz,ray_near); const ssef far = min(dupperx,duppery,dupperz,ray_far ); const sseb mhit = near <= far; const ssef childDist = select(mhit,near,inf); const sseb closer = childDist < curDist; /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(mhit))) { const NodeRef child = node->child(i); //if (child != invalid) { sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(closer)) { *(sptr_node-1) = curNode; *(sptr_near-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack*/ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } } /* return if stack is empty */ if (unlikely(curNode == invalid)) break; /* decode leaf node */ size_t num; STAT3(normal.trav_leaves,1,popcnt(valid),4); Triangle* tri = (Triangle*) curNode.leaf(bvh->triPtr(),num); /* intersect triangles */ for (size_t i=0; i<num; i++) TriangleIntersector4::intersect(valid,ray,tri[i],bvh->vertices); ray_far = ray.tfar; } }
void BVH2Intersector8Chunk<TriangleIntersector>::intersect(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i) { avxb valid = valid_i; const BVH2* bvh = This->bvh; STAT3(normal.travs,1,popcnt(valid),8); struct StackItem { NodeRef ptr; avxf dist; }; StackItem stack[1+BVH2::maxDepth]; //!< stack of nodes that still need to get traversed StackItem* stackPtr = stack; //!< current stack pointer NodeRef cur = bvh->root; //!< in cur we track the ID of the current node /* let inactive rays miss all boxes */ const avx3f rdir = rcp_safe(ray.dir); ray.tfar = select(valid,ray.tfar,avxf(neg_inf)); while (true) { /*! downtraversal loop */ while (likely(cur.isNode())) { STAT3(normal.trav_nodes,1,popcnt(valid),8); /* intersect packet with box of both children */ const Node* node = cur.node(); avxf dist0; size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,0,dist0); avxf dist1; size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,1,dist1); /*! if two children hit, push far node onto stack and continue with closer node */ if (likely(hit0 != 0 && hit1 != 0)) { if (any(valid & (dist0 < dist1))) { stackPtr->ptr = node->child(1); stackPtr->dist = dist1; stackPtr++; cur = node->child(0); } else { stackPtr->ptr = node->child(0); stackPtr->dist = dist0; stackPtr++; cur = node->child(1); } } /*! if one child hit, continue with that child */ else { if (likely(hit0 != 0)) cur = node->child(0); else if (likely(hit1 != 0)) cur = node->child(1); else goto pop_node; } } /*! leaf node, intersect all triangles */ { STAT3(normal.trav_leaves,1,popcnt(valid),8); size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num); for (size_t i=0; i<num; i++) { TriangleIntersector::intersect(valid,ray,tri[i],bvh->vertices); } } /*! pop next node from stack */ pop_node: if (unlikely(stackPtr == stack)) break; --stackPtr; cur = stackPtr->ptr; if (unlikely(all(stackPtr->dist > ray.tfar))) goto pop_node; } }
void BVH4iIntersector16Hybrid<LeafIntersector,ENABLE_COMPRESSED_BVH4I_NODES>::intersect(mic_i* valid_i, BVH4i* bvh, Ray16& ray16) { /* near and node stack */ __aligned(64) mic_f stack_dist[3*BVH4i::maxDepth+1]; __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1]; __aligned(64) NodeRef stack_node_single[3*BVH4i::maxDepth+1]; /* load ray */ const mic_m valid0 = *(mic_i*)valid_i != mic_i(0); const mic3f rdir16 = rcp_safe(ray16.dir); const mic3f org_rdir16 = ray16.org * rdir16; mic_f ray_tnear = select(valid0,ray16.tnear,pos_inf); mic_f ray_tfar = select(valid0,ray16.tfar ,neg_inf); const mic_f inf = mic_f(pos_inf); /* allocate stack and push root node */ stack_node[0] = BVH4i::invalidNode; stack_dist[0] = inf; stack_node[1] = bvh->root; stack_dist[1] = ray_tnear; NodeRef* __restrict__ sptr_node = stack_node + 2; mic_f* __restrict__ sptr_dist = stack_dist + 2; const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle1 * __restrict__ accel = (Triangle1*)bvh->triPtr(); while (1) pop: { /* pop next node from stack */ NodeRef curNode = *(sptr_node-1); mic_f curDist = *(sptr_dist-1); sptr_node--; sptr_dist--; const mic_m m_stackDist = ray_tfar > curDist; /* stack emppty ? */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* cull node if behind closest hit point */ if (unlikely(none(m_stackDist))) continue; /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* switch to single ray mode */ if (unlikely(countbits(m_stackDist) <= BVH4i::hybridSIMDUtilSwitchThreshold)) { float *__restrict__ stack_dist_single = (float*)sptr_dist; store16f(stack_dist_single,inf); /* traverse single ray */ long rayIndex = -1; while((rayIndex = bitscan64(rayIndex,m_stackDist)) != BITSCAN_NO_BIT_SET_64) { stack_node_single[0] = BVH4i::invalidNode; stack_node_single[1] = curNode; size_t sindex = 2; const mic_f org_xyz = loadAOS4to16f(rayIndex,ray16.org.x,ray16.org.y,ray16.org.z); const mic_f dir_xyz = loadAOS4to16f(rayIndex,ray16.dir.x,ray16.dir.y,ray16.dir.z); const mic_f rdir_xyz = loadAOS4to16f(rayIndex,rdir16.x,rdir16.y,rdir16.z); const mic_f org_rdir_xyz = org_xyz * rdir_xyz; const mic_f min_dist_xyz = broadcast1to16f(&ray16.tnear[rayIndex]); mic_f max_dist_xyz = broadcast1to16f(&ray16.tfar[rayIndex]); const unsigned int leaf_mask = BVH4I_LEAF_MASK; while (1) { NodeRef curNode = stack_node_single[sindex-1]; sindex--; traverse_single_intersect<ENABLE_COMPRESSED_BVH4I_NODES>(curNode, sindex, rdir_xyz, org_rdir_xyz, min_dist_xyz, max_dist_xyz, stack_node_single, stack_dist_single, nodes, leaf_mask); /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect one ray against four triangles */ const bool hit = LeafIntersector::intersect(curNode, rayIndex, dir_xyz, org_xyz, min_dist_xyz, max_dist_xyz, ray16, accel, (Scene*)bvh->geometry); if (hit) compactStack(stack_node_single,stack_dist_single,sindex,max_dist_xyz); } } ray_tfar = select(valid0,ray16.tfar ,neg_inf); continue; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// const unsigned int leaf_mask = BVH4I_LEAF_MASK; const mic3f org = ray16.org; const mic3f dir = ray16.dir; while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf(leaf_mask))) break; STAT3(normal.trav_nodes,1,popcnt(ray_tfar > curDist),16); const Node* __restrict__ const node = curNode.node(nodes); prefetch<PFHINT_L1>((mic_f*)node + 0); prefetch<PFHINT_L1>((mic_f*)node + 1); /* pop of next node */ sptr_node--; sptr_dist--; curNode = *sptr_node; curDist = *sptr_dist; #pragma unroll(4) for (unsigned int i=0; i<4; i++) { BVH4i::NodeRef child; mic_f lclipMinX,lclipMinY,lclipMinZ; mic_f lclipMaxX,lclipMaxY,lclipMaxZ; if (!ENABLE_COMPRESSED_BVH4I_NODES) { child = node->lower[i].child; lclipMinX = msub(node->lower[i].x,rdir16.x,org_rdir16.x); lclipMinY = msub(node->lower[i].y,rdir16.y,org_rdir16.y); lclipMinZ = msub(node->lower[i].z,rdir16.z,org_rdir16.z); lclipMaxX = msub(node->upper[i].x,rdir16.x,org_rdir16.x); lclipMaxY = msub(node->upper[i].y,rdir16.y,org_rdir16.y); lclipMaxZ = msub(node->upper[i].z,rdir16.z,org_rdir16.z); } else { BVH4i::QuantizedNode* __restrict__ const compressed_node = (BVH4i::QuantizedNode*)node; child = compressed_node->child(i); const mic_f startXYZ = compressed_node->decompress_startXYZ(); const mic_f diffXYZ = compressed_node->decompress_diffXYZ(); const mic_f clower = compressed_node->decompress_lowerXYZ(startXYZ,diffXYZ); const mic_f cupper = compressed_node->decompress_upperXYZ(startXYZ,diffXYZ); lclipMinX = msub(mic_f(clower[4*i+0]),rdir16.x,org_rdir16.x); lclipMinY = msub(mic_f(clower[4*i+1]),rdir16.y,org_rdir16.y); lclipMinZ = msub(mic_f(clower[4*i+2]),rdir16.z,org_rdir16.z); lclipMaxX = msub(mic_f(cupper[4*i+0]),rdir16.x,org_rdir16.x); lclipMaxY = msub(mic_f(cupper[4*i+1]),rdir16.y,org_rdir16.y); lclipMaxZ = msub(mic_f(cupper[4*i+2]),rdir16.z,org_rdir16.z); } if (unlikely(i >=2 && child == BVH4i::invalidNode)) break; const mic_f lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const mic_f lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const mic_m lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); const mic_f childDist = select(lhit,lnearP,inf); const mic_m m_child_dist = childDist < curDist; /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { sptr_node++; sptr_dist++; /* push cur node onto stack and continue with hit child */ if (any(m_child_dist)) { *(sptr_node-1) = curNode; *(sptr_dist-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack*/ else { *(sptr_node-1) = child; *(sptr_dist-1) = childDist; const char* __restrict__ const pnode = (char*)child.node(nodes); prefetch<PFHINT_L2>(pnode + 0); prefetch<PFHINT_L2>(pnode + 64); } assert(sptr_node - stack_node < BVH4i::maxDepth); } } #if SWITCH_ON_DOWN_TRAVERSAL == 1 const mic_m curUtil = ray_tfar > curDist; if (unlikely(countbits(curUtil) <= BVH4i::hybridSIMDUtilSwitchThreshold)) { *sptr_node++ = curNode; *sptr_dist++ = curDist; goto pop; } #endif } /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect leaf */ const mic_m m_valid_leaf = ray_tfar > curDist; STAT3(normal.trav_leaves,1,popcnt(m_valid_leaf),16); LeafIntersector::intersect16(curNode,m_valid_leaf,dir,org,ray16,accel,(Scene*)bvh->geometry); ray_tfar = select(m_valid_leaf,ray16.tfar,ray_tfar); }
__forceinline bool occludedT(const BVH4* bvh, Ray& ray) { typedef typename TriangleIntersector::Triangle Triangle; typedef StackItemT<size_t> StackItem; typedef typename BVH4::NodeRef NodeRef; typedef typename BVH4::Node Node; /*! stack state */ NodeRef stack[1+3*BVH4::maxDepth]; //!< stack of nodes that still need to get traversed NodeRef* stackPtr = stack+1; //!< current stack pointer stack[0] = bvh->root; /*! load the ray into SIMD registers */ const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f)); const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f)); const avxf flipSignX = swapX ? neg_pos : pos_neg; const avxf flipSignY = swapY ? neg_pos : pos_neg; const avxf flipSignZ = swapZ ? neg_pos : pos_neg; const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const Vector3f ray_rdir = rcp_safe(ray.dir); const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ); const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir); const avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar)); const void* nodePtr = bvh->nodePtr(); const void* triPtr = bvh->triPtr(); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = (NodeRef) *stackPtr; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(shadow.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(nodePtr); #if defined (__AVX2__) || defined(__MIC__) const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x); const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y); const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z); #else const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x; const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y; const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z; #endif const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX; const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY; const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ; const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar); const ssef tNear = extract<0>(tNearFar); const ssef tFar = extract<1>(tNearFar); size_t mask = movemask(-tNear >= tFar); /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bsf(mask); mask = __btc(mask,r); if (likely(mask == 0)) { cur = node->child(r); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const float d0 = tNear[r]; r = __bsf(mask); mask = __btc(mask,r); NodeRef c1 = node->child(r); const float d1 = tNear[r]; if (likely(mask == 0)) { if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; } else { *stackPtr = c0; stackPtr++; cur = c1; continue; } } *stackPtr = c0; stackPtr++; *stackPtr = c1; stackPtr++; /*! three children are hit */ r = __bsf(mask); mask = __btc(mask,r); cur = node->child(r); *stackPtr = cur; stackPtr++; if (likely(mask == 0)) { stackPtr--; continue; } /*! four children are hit */ cur = node->child(3); } /*! this is a leaf node */ STAT3(shadow.trav_leaves,1,1,1); size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num); for (size_t i=0; i<num; i++) { if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) { AVX_ZERO_UPPER(); return true; } } } AVX_ZERO_UPPER(); return false; }
__forceinline bool BVH4Intersector4Hybrid<PrimitiveIntersector4>::occluded1(const BVH4* bvh, NodeRef root, size_t k, Ray4& ray, const sse3f& ray_org, const sse3f& ray_dir, const sse3f& ray_rdir, const ssef& ray_tnear, const ssef& ray_tfar) { /*! stack state */ NodeRef stack[stackSizeSingle]; //!< stack of nodes that still need to get traversed NodeRef* stackPtr = stack+1; //!< current stack pointer NodeRef* stackEnd = stack+stackSizeSingle; stack[0] = root; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = ray_dir.x[k] >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef); const size_t nearY = ray_dir.y[k] >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef); const size_t nearZ = ray_dir.z[k] >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef); /*! load the ray into SIMD registers */ const sse3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]); const sse3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]); const sse3f norg = -org, org_rdir(org*rdir); const ssef rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = (NodeRef) *stackPtr; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(shadow.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(); const size_t farX = nearX ^ 16, farY = nearY ^ 16, farZ = nearZ ^ 16; #if defined (__AVX2__) const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x); const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y); const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z); const ssef tFarX = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x); const ssef tFarY = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y); const ssef tFarZ = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x; const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y; const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z; const ssef tFarX = (norg.x + load4f((const char*)node+farX )) * rdir.x; const ssef tFarY = (norg.y + load4f((const char*)node+farY )) * rdir.y; const ssef tFarZ = (norg.z + load4f((const char*)node+farZ )) * rdir.z; #endif #if defined(__SSE4_1__) const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear)); const ssef tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar )); const sseb vmask = cast(tNear) > cast(tFar); size_t mask = movemask(vmask)^0xf; #else const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear); const ssef tFar = min(tFarX ,tFarY ,tFarZ ,rayFar); const sseb vmask = tNear <= tFar; size_t mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const float d0 = tNear[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const float d1 = tNear[r]; assert(c0 != BVH4::emptyNode); assert(c1 != BVH4::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; } else { *stackPtr = c0; stackPtr++; cur = c1; continue; } } assert(stackPtr < stackEnd); *stackPtr = c0; stackPtr++; assert(stackPtr < stackEnd); *stackPtr = c1; stackPtr++; /*! three children are hit */ r = __bscf(mask); cur = node->child(r); assert(cur != BVH4::emptyNode); if (likely(mask == 0)) continue; assert(stackPtr < stackEnd); *stackPtr = cur; stackPtr++; /*! four children are hit */ cur = node->child(3); assert(cur != BVH4::emptyNode); } /*! this is a leaf node */ STAT3(shadow.trav_leaves,1,1,1); size_t num; Primitive* prim = (Primitive*) cur.leaf(num); if (PrimitiveIntersector4::occluded(ray,k,prim,num,bvh->geometry)) { ray.geomID[k] = 0; return true; } } return false; }
__forceinline void BVH4Intersector4Hybrid<PrimitiveIntersector4>::intersect1(const BVH4* bvh, NodeRef root, size_t k, Ray4& ray, const sse3f& ray_org, const sse3f& ray_dir, const sse3f& ray_rdir, const ssef& ray_tnear, const ssef& ray_tfar) { /*! stack state */ StackItem stack[stackSizeSingle]; //!< stack of nodes StackItem* stackPtr = stack+1; //!< current stack pointer StackItem* stackEnd = stack+stackSizeSingle; stack[0].ptr = root; stack[0].dist = neg_inf; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = ray_dir.x[k] >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef); const size_t nearY = ray_dir.y[k] >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef); const size_t nearZ = ray_dir.z[k] >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef); /*! load the ray into SIMD registers */ const sse3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]); const sse3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]); const sse3f norg = -org, org_rdir(org*rdir); ssef rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = NodeRef(stackPtr->ptr); /*! if popped node is too far, pop next one */ if (unlikely(stackPtr->dist > ray.tfar[k])) continue; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(normal.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(); const size_t farX = nearX ^ 16, farY = nearY ^ 16, farZ = nearZ ^ 16; #if defined (__AVX2__) const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x); const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y); const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z); const ssef tFarX = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x); const ssef tFarY = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y); const ssef tFarZ = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x; const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y; const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z; const ssef tFarX = (norg.x + load4f((const char*)node+farX )) * rdir.x; const ssef tFarY = (norg.y + load4f((const char*)node+farY )) * rdir.y; const ssef tFarZ = (norg.z + load4f((const char*)node+farZ )) * rdir.z; #endif #if defined(__SSE4_1__) const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear)); const ssef tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar )); const sseb vmask = cast(tNear) > cast(tFar); size_t mask = movemask(vmask)^0xf; #else const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear); const ssef tFar = min(tFarX ,tFarY ,tFarZ ,rayFar); const sseb vmask = tNear <= tFar; size_t mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const float d0 = tNear[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const float d1 = tNear[r]; assert(c0 != BVH4::emptyNode); assert(c1 != BVH4::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; } else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; } } /*! Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ assert(stackPtr < stackEnd); stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; assert(stackPtr < stackEnd); stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c != BVH4::emptyNode); if (likely(mask == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; continue; } /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c != BVH4::emptyNode); sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; } /*! this is a leaf node */ STAT3(normal.trav_leaves,1,1,1); size_t num; Primitive* prim = (Primitive*) cur.leaf(num); PrimitiveIntersector4::intersect(ray,k,prim,num,bvh->geometry); rayFar = ray.tfar[k]; } }
void BVH4Intersector4Hybrid<PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray) { /* load ray */ const sseb valid0 = *valid_i; sse3f ray_org = ray.org, ray_dir = ray.dir; ssef ray_tnear = ray.tnear, ray_tfar = ray.tfar; #if defined(__FIX_RAYS__) const ssef float_range = 0.1f*FLT_MAX; ray_org = clamp(ray_org,sse3f(-float_range),sse3f(+float_range)); ray_dir = clamp(ray_dir,sse3f(-float_range),sse3f(+float_range)); ray_tnear = max(ray_tnear,FLT_MIN); ray_tfar = min(ray_tfar,float(inf)); #endif const sse3f rdir = rcp_safe(ray_dir); const sse3f org(ray_org), org_rdir = org * rdir; ray_tnear = select(valid0,ray_tnear,ssef(pos_inf)); ray_tfar = select(valid0,ray_tfar ,ssef(neg_inf)); const ssef inf = ssef(pos_inf); /* allocate stack and push root node */ ssef stack_near[stackSizeChunk]; NodeRef stack_node[stackSizeChunk]; stack_node[0] = BVH4::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSizeChunk; NodeRef* __restrict__ sptr_node = stack_node + 2; ssef* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef curNode = *sptr_node; if (unlikely(curNode == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ ssef curDist = *sptr_near; const sseb active = curDist < ray_tfar; if (unlikely(none(active))) continue; /* switch to single ray traversal */ #if !defined(__WIN32__) || defined(__X86_64__) size_t bits = movemask(active); if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) { for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) { intersect1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar); } ray_tfar = ray.tfar; continue; } #endif while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf())) break; const sseb valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),4); const Node* __restrict__ const node = curNode.node(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; curNode = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<4; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4::emptyNode)) break; #if defined(__AVX2__) const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); #else const ssef lclipMinX = (node->lower_x[i] - org.x) * rdir.x; const ssef lclipMinY = (node->lower_y[i] - org.y) * rdir.y; const ssef lclipMinZ = (node->lower_z[i] - org.z) * rdir.z; const ssef lclipMaxX = (node->upper_x[i] - org.x) * rdir.x; const ssef lclipMaxY = (node->upper_y[i] - org.y) * rdir.y; const ssef lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z; #endif #if defined(__SSE4_1__) const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const ssef lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const sseb lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const ssef lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const sseb lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); const ssef childDist = select(lhit,lnearP,inf); const NodeRef child = node->children[i]; assert(child != BVH4::emptyNode); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = curNode; *(sptr_near-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } /* return if stack is empty */ if (unlikely(curNode == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* intersect leaf */ const sseb valid_leaf = ray_tfar > curDist; STAT3(normal.trav_leaves,1,popcnt(valid_leaf),4); size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items); PrimitiveIntersector4::intersect(valid_leaf,ray,prim,items,bvh->geometry); ray_tfar = select(valid_leaf,ray.tfar,ray_tfar); } AVX_ZERO_UPPER(); }
__forceinline void BVH8iIntersector8Hybrid<TriangleIntersector8>::intersect1(const BVH8i* bvh, NodeRef root, const size_t k, Ray8& ray,const avx3f &ray_org, const avx3f &ray_dir, const avx3f &ray_rdir, const avxf &ray_tnear, const avxf &ray_tfar, const avx3i& nearXYZ) { /*! stack state */ StackItemInt64 stack[stackSizeSingle]; //!< stack of nodes StackItemInt64* stackPtr = stack+1; //!< current stack pointer StackItemInt64* stackEnd = stack+stackSizeSingle; stack[0].ptr = root; stack[0].dist = neg_inf; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = nearXYZ.x[k]; const size_t nearY = nearXYZ.y[k]; const size_t nearZ = nearXYZ.z[k]; /*! load the ray into SIMD registers */ const avx3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]); const avx3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]); const avx3f org_rdir(org*rdir); avxf rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr(); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = NodeRef(stackPtr->ptr); /*! if popped node is too far, pop next one */ if (unlikely(*(float*)&stackPtr->dist > ray.tfar[k])) continue; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(normal.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = (Node*)cur.node(nodes); const size_t farX = nearX ^ sizeof(avxf), farY = nearY ^ sizeof(avxf), farZ = nearZ ^ sizeof(avxf); #if defined (__AVX2__) const avxf tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x); const avxf tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y); const avxf tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z); const avxf tFarX = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x); const avxf tFarY = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y); const avxf tFarZ = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const avxf tNearX = (load8f((const char*)node+nearX) - org.x) * rdir.x; const avxf tNearY = (load8f((const char*)node+nearY) - org.y) * rdir.y; const avxf tNearZ = (load8f((const char*)node+nearZ) - org.z) * rdir.z; const avxf tFarX = (load8f((const char*)node+farX ) - org.x) * rdir.x; const avxf tFarY = (load8f((const char*)node+farY ) - org.y) * rdir.y; const avxf tFarZ = (load8f((const char*)node+farZ ) - org.z) * rdir.z; #endif #if defined(__AVX2__) const avxf tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear)); const avxf tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar )); const avxb vmask = cast(tNear) > cast(tFar); unsigned int mask = movemask(vmask)^0xff; #else const avxf tNear = max(tNearX,tNearY,tNearZ,rayNear); const avxf tFar = min(tFarX ,tFarY ,tFarZ ,rayFar); const avxb vmask = tNear <= tFar; unsigned int mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4i::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r]; assert(c0 != BVH4i::emptyNode); assert(c1 != BVH4i::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; } else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; } } /*! Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ assert(stackPtr < stackEnd); stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; assert(stackPtr < stackEnd); stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); NodeRef c = node->child(r); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c0 != BVH4i::emptyNode); if (likely(mask == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; continue; } /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); c = node->child(r); d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c != BVH4i::emptyNode); if (likely(mask == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; continue; } while(1) { r = __bscf(mask); c = node->child(r); d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; if (unlikely(mask == 0)) break; } cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; } /*! this is a leaf node */ STAT3(normal.trav_leaves,1,1,1); size_t num; Triangle* prim = (Triangle*) cur.leaf(accel,num); TriangleIntersector8::intersect(ray,k,prim,num,bvh->geometry); rayFar = ray.tfar[k]; } }
void BVH4MBIntersector1<TriangleIntersector>::intersect(const BVH4MB* bvh, Ray& ray) { AVX_ZERO_UPPER(); STAT3(normal.travs,1,1,1); /*! stack state */ Base* popCur = bvh->root; //!< pre-popped top node from the stack float popDist = neg_inf; //!< pre-popped distance of top node from the stack StackItem stack[1+3*BVH4MB::maxDepth]; //!< stack of nodes that still need to get traversed StackItem* stackPtr = stack+1; //!< current stack pointer /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = ray.dir.x >= 0 ? 0*2*sizeof(ssef) : 1*2*sizeof(ssef); const size_t nearY = ray.dir.y >= 0 ? 2*2*sizeof(ssef) : 3*2*sizeof(ssef); const size_t nearZ = ray.dir.z >= 0 ? 4*2*sizeof(ssef) : 5*2*sizeof(ssef); const size_t farX = nearX ^ 32; const size_t farY = nearY ^ 32; const size_t farZ = nearZ ^ 32; /*! load the ray into SIMD registers */ const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const Vec3fa ray_rdir = rcp_safe(ray.dir); const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z); const ssef rayNear(ray.tnear); ssef rayFar(ray.tfar); while (true) { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; Base* cur = popCur; /*! if popped node is too far, pop next one */ if (unlikely(popDist > ray.tfar)) { popCur = (Base*)stackPtr[-1].ptr; popDist = stackPtr[-1].dist; continue; } next: /*! we mostly go into the inner node case */ if (likely(cur->isNode())) { STAT3(normal.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur->node(); const ssef* pNearX = (const ssef*)((const char*)node+nearX); const ssef* pNearY = (const ssef*)((const char*)node+nearY); const ssef* pNearZ = (const ssef*)((const char*)node+nearZ); const ssef tNearX = (norg.x + ssef(pNearX[0]) + ray.time*pNearX[1]) * rdir.x; const ssef tNearY = (norg.y + ssef(pNearY[0]) + ray.time*pNearY[1]) * rdir.y; const ssef tNearZ = (norg.z + ssef(pNearZ[0]) + ray.time*pNearZ[1]) * rdir.z; const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear); const ssef* pFarX = (const ssef*)((const char*)node+farX); const ssef* pFarY = (const ssef*)((const char*)node+farY); const ssef* pFarZ = (const ssef*)((const char*)node+farZ); const ssef tFarX = (norg.x + ssef(pFarX[0]) + ray.time*pFarX[1]) * rdir.x; const ssef tFarY = (norg.y + ssef(pFarY[0]) + ray.time*pFarY[1]) * rdir.y; const ssef tFarZ = (norg.z + ssef(pFarZ[0]) + ray.time*pFarZ[1]) * rdir.z; popCur = (Base*) stackPtr[-1].ptr; //!< pre-pop of topmost stack item popDist = stackPtr[-1].dist; //!< pre-pop of distance of topmost stack item const ssef tFar = min(tFarX,tFarY,tFarZ,rayFar); size_t _hit = movemask(tNear <= tFar); /*! if no child is hit, pop next node */ if (unlikely(_hit == 0)) continue; /*! one child is hit, continue with that child */ size_t r = __bsf(_hit); _hit = __btc(_hit,r); if (likely(_hit == 0)) { cur = node->child[r]; goto next; } /*! two children are hit, push far child, and continue with closer child */ Base* c0 = node->child[r]; const float d0 = tNear[r]; r = __bsf(_hit); _hit = __btc(_hit,r); Base* c1 = node->child[r]; const float d1 = tNear[r]; if (likely(_hit == 0)) { if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; goto next; } else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; goto next; } } /*! Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ r = __bsf(_hit); _hit = __btc(_hit,r); Base* c = node->child[r]; float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; if (likely(_hit == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); cur = (Base*) stackPtr[-1].ptr; stackPtr--; goto next; } /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ r = __bsf(_hit); _hit = __btc(_hit,r); c = node->child[r]; d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); cur = (Base*) stackPtr[-1].ptr; stackPtr--; goto next; } /*! this is a leaf node */ else { STAT3(normal.trav_leaves,1,1,1); size_t num; Triangle* tri = (Triangle*) cur->leaf(num); for (size_t i=0; i<num; i++) TriangleIntersector::intersect(ray,tri[i],bvh->geometry); popCur = (Base*) stackPtr[-1].ptr; //!< pre-pop of topmost stack item popDist = stackPtr[-1].dist; //!< pre-pop of distance of topmost stack item rayFar = ray.tfar; } } AVX_ZERO_UPPER(); }
__forceinline bool BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded1(const BVH8i* bvh, NodeRef root, const size_t k, Ray8& ray,const avx3f &ray_org, const avx3f &ray_dir, const avx3f &ray_rdir, const avxf &ray_tnear, const avxf &ray_tfar, const avx3i& nearXYZ) { /*! stack state */ NodeRef stack[stackSizeSingle]; //!< stack of nodes that still need to get traversed NodeRef* stackPtr = stack+1; //!< current stack pointer NodeRef* stackEnd = stack+stackSizeSingle; stack[0] = root; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = nearXYZ.x[k]; const size_t nearY = nearXYZ.y[k]; const size_t nearZ = nearXYZ.z[k]; /*! load the ray into SIMD registers */ const avx3f org (ray_org .x[k],ray_org .y[k],ray_org .z[k]); const avx3f rdir(ray_rdir.x[k],ray_rdir.y[k],ray_rdir.z[k]); const avx3f norg = -org, org_rdir(org*rdir); const avxf rayNear(ray_tnear[k]), rayFar(ray_tfar[k]); const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr(); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = (NodeRef) *stackPtr; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(shadow.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = (Node*)cur.node(nodes); const size_t farX = nearX ^ sizeof(avxf), farY = nearY ^ sizeof(avxf), farZ = nearZ ^ sizeof(avxf); #if defined (__AVX2__) const avxf tNearX = msub(load8f((const char*)node+nearX), rdir.x, org_rdir.x); const avxf tNearY = msub(load8f((const char*)node+nearY), rdir.y, org_rdir.y); const avxf tNearZ = msub(load8f((const char*)node+nearZ), rdir.z, org_rdir.z); const avxf tFarX = msub(load8f((const char*)node+farX ), rdir.x, org_rdir.x); const avxf tFarY = msub(load8f((const char*)node+farY ), rdir.y, org_rdir.y); const avxf tFarZ = msub(load8f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const avxf tNearX = (norg.x + load8f((const char*)node+nearX)) * rdir.x; const avxf tNearY = (norg.y + load8f((const char*)node+nearY)) * rdir.y; const avxf tNearZ = (norg.z + load8f((const char*)node+nearZ)) * rdir.z; const avxf tFarX = (norg.x + load8f((const char*)node+farX )) * rdir.x; const avxf tFarY = (norg.y + load8f((const char*)node+farY )) * rdir.y; const avxf tFarZ = (norg.z + load8f((const char*)node+farZ )) * rdir.z; #endif #if defined(__AVX2__) const avxf tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,rayNear)); const avxf tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,rayFar )); const avxb vmask = cast(tNear) > cast(tFar); unsigned int mask = movemask(vmask)^0xff; #else const avxf tNear = max(tNearX,tNearY,tNearZ,rayNear); const avxf tFar = min(tFarX ,tFarY ,tFarZ ,rayFar); const avxb vmask = tNear <= tFar; unsigned int mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4i::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r]; assert(c0 != BVH4i::emptyNode); assert(c1 != BVH4i::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; } else { *stackPtr = c0; stackPtr++; cur = c1; continue; } } assert(stackPtr < stackEnd); *stackPtr = c0; stackPtr++; assert(stackPtr < stackEnd); *stackPtr = c1; stackPtr++; /*! three children are hit */ r = __bscf(mask); cur = node->child(r); assert(cur != BVH4i::emptyNode); if (likely(mask == 0)) continue; while(1) { r = __bscf(mask); NodeRef c = node->child(r); *stackPtr = c; stackPtr++; if (unlikely(mask == 0)) break; } cur = (NodeRef) stackPtr[-1]; stackPtr--; // assert(stackPtr < stackEnd); // *stackPtr = cur; stackPtr++; // /*! four children are hit */ // cur = node->child(3); // assert(cur != BVH4i::emptyNode); } /*! this is a leaf node */ STAT3(shadow.trav_leaves,1,1,1); size_t num; Triangle* prim = (Triangle*) cur.leaf(accel,num); if (TriangleIntersector8::occluded(ray,k,prim,num,bvh->geometry)) { ray.geomID[k] = 0; return true; } } return false; }
void BVH8Intersector8Chunk<PrimitiveIntersector8>::intersect(avxb* valid_i, BVH8* bvh, Ray8& ray) { #if defined(__AVX__) /* load ray */ const avxb valid0 = *valid_i; const avx3f rdir = rcp_safe(ray.dir); const avx3f org_rdir = ray.org * rdir; avxf ray_tnear = select(valid0,ray.tnear,pos_inf); avxf ray_tfar = select(valid0,ray.tfar ,neg_inf); const avxf inf = avxf(pos_inf); Precalculations pre(valid0,ray); /* allocate stack and push root node */ avxf stack_near[3*BVH8::maxDepth+1]; NodeRef stack_node[3*BVH8::maxDepth+1]; stack_node[0] = BVH8::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* __restrict__ sptr_node = stack_node + 2; avxf* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ sptr_node--; sptr_near--; NodeRef cur = *sptr_node; if (unlikely(cur == BVH8::invalidNode)) break; /* cull node if behind closest hit point */ avxf curDist = *sptr_near; if (unlikely(none(ray_tfar > curDist))) continue; while (1) { /* test if this is a leaf node */ if (unlikely(cur.isLeaf())) break; const avxb valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),8); const Node* __restrict__ const node = (BVH8::Node*)cur.node(); /* pop of next node */ sptr_node--; sptr_near--; cur = *sptr_node; // FIXME: this trick creates issues with stack depth curDist = *sptr_near; for (unsigned i=0; i<BVH8::N; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH8::emptyNode)) break; #if defined(__AVX2__) const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const avxf lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const avxb lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const avxf lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x; const avxf lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y; const avxf lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z; const avxf lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x; const avxf lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y; const avxf lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z; const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const avxf lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const avxb lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { const avxf childDist = select(lhit,lnearP,inf); const NodeRef child = node->children[i]; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *sptr_node = cur; *sptr_near = curDist; sptr_node++; sptr_near++; curDist = childDist; cur = child; } /* push hit child onto stack*/ else { *sptr_node = child; *sptr_near = childDist; sptr_node++; sptr_near++; } assert(sptr_node - stack_node < BVH8::maxDepth); } } } /* return if stack is empty */ if (unlikely(cur == BVH8::invalidNode)) break; /* intersect leaf */ assert(cur != BVH8::emptyNode); const avxb valid_leaf = ray_tfar > curDist; STAT3(normal.trav_leaves,1,popcnt(valid_leaf),8); size_t items; const Triangle* tri = (Triangle*) cur.leaf(items); PrimitiveIntersector8::intersect(valid_leaf,pre,ray,tri,items,bvh->geometry); ray_tfar = select(valid_leaf,ray.tfar,ray_tfar); } AVX_ZERO_UPPER(); #endif }
void BVH4Intersector4Chunk<types,robust,PrimitiveIntersector4>::intersect(sseb* valid_i, BVH4* bvh, Ray4& ray) { /* load ray */ const sseb valid0 = *valid_i; const sse3f rdir = rcp_safe(ray.dir); const sse3f org(ray.org), org_rdir = org * rdir; ssef ray_tnear = select(valid0,ray.tnear,ssef(pos_inf)); ssef ray_tfar = select(valid0,ray.tfar ,ssef(neg_inf)); const ssef inf = ssef(pos_inf); Precalculations pre(valid0,ray); /* allocate stack and push root node */ ssef stack_near[stackSize]; NodeRef stack_node[stackSize]; stack_node[0] = BVH4::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSize; NodeRef* __restrict__ sptr_node = stack_node + 2; ssef* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef cur = *sptr_node; if (unlikely(cur == BVH4::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ ssef curDist = *sptr_near; if (unlikely(none(ray_tfar > curDist))) continue; while (1) { /* process normal nodes */ if (likely((types & 0x1) && cur.isNode())) { const sseb valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),8); const Node* __restrict__ const node = cur.node(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; cur = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<BVH4::N; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4::emptyNode)) break; ssef lnearP; const sseb lhit = node->intersect<robust>(i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP); /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); const ssef childDist = select(lhit,lnearP,inf); const NodeRef child = node->children[i]; assert(child != BVH4::emptyNode); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = cur; *(sptr_near-1) = curDist; curDist = childDist; cur = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } /* process motion blur nodes */ else if (likely((types & 0x10) && cur.isNodeMB())) { const sseb valid_node = ray_tfar > curDist; STAT3(normal.trav_nodes,1,popcnt(valid_node),8); const BVH4::NodeMB* __restrict__ const node = cur.nodeMB(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; cur = *sptr_node; curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<BVH4::N; i++) { const NodeRef child = node->child(i); if (unlikely(child == BVH4::emptyNode)) break; ssef lnearP; const sseb lhit = node->intersect(i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP); /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); assert(child != BVH4::emptyNode); const ssef childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = cur; *(sptr_near-1) = curDist; curDist = childDist; cur = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } else break; }
__forceinline void intersectT(const BVH4* bvh, Ray& ray) { typedef typename TriangleIntersector::Triangle Triangle; typedef StackItemT<size_t> StackItem; typedef typename BVH4::NodeRef NodeRef; typedef typename BVH4::Node Node; /*! stack state */ StackItem stack[1+3*BVH4::maxDepth]; //!< stack of nodes StackItem* stackPtr = stack+1; //!< current stack pointer stack[0].ptr = bvh->root; stack[0].dist = neg_inf; /*! load the ray into SIMD registers */ const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f)); const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f)); const avxf flipSignX = swapX ? neg_pos : pos_neg; const avxf flipSignY = swapY ? neg_pos : pos_neg; const avxf flipSignZ = swapZ ? neg_pos : pos_neg; const Vector3f ray_rdir = rcp_safe(ray.dir); const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ); const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir); avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar)); const void* nodePtr = bvh->nodePtr(); const void* triPtr = bvh->triPtr(); /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = NodeRef(stackPtr->ptr); /*! if popped node is too far, pop next one */ if (unlikely(stackPtr->dist > ray.tfar)) continue; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(normal.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(nodePtr); #if defined (__AVX2__) || defined(__MIC__) const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x); const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y); const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z); #else const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x; const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y; const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z; #endif const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX; const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY; const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ; const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar); const ssef tNear = extract<0>(tNearFar); const ssef tFar = extract<1>(tNearFar); size_t mask = movemask(-tNear >= tFar); /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bsf(mask); mask = __btc(mask,r); if (likely(mask == 0)) { cur = node->child(r); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const float d0 = tNear[r]; r = __bsf(mask); mask = __btc(mask,r); NodeRef c1 = node->child(r); const float d1 = tNear[r]; if (likely(mask == 0)) { if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; } else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; } } /*! Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ r = __bsf(mask); mask = __btc(mask,r); NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; if (likely(mask == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; continue; } /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ r = __bsf(mask); mask = __btc(mask,r); c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; } /*! this is a leaf node */ STAT3(normal.trav_leaves,1,1,1); size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num); for (size_t i=0; i<num; i++) TriangleIntersector::intersect(ray,tri[i],bvh->vertices); rayNearFar = insert<1>(rayNearFar,-ssef(ray.tfar)); } }
void BVH4MBIntersector1<TriangleIntersector>::occluded(const BVH4MB* bvh, Ray& ray) { AVX_ZERO_UPPER(); STAT3(shadow.travs,1,1,1); /*! stack state */ Base* stack[1+3*BVH4MB::maxDepth]; //!< stack of nodes that still need to get traversed Base** stackPtr = stack+1; //!< current stack pointer stack[0] = bvh->root; //!< push first node onto stack /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = (ray.dir.x >= 0) ? 0*2*sizeof(ssef) : 1*2*sizeof(ssef); const size_t nearY = (ray.dir.y >= 0) ? 2*2*sizeof(ssef) : 3*2*sizeof(ssef); const size_t nearZ = (ray.dir.z >= 0) ? 4*2*sizeof(ssef) : 5*2*sizeof(ssef); const size_t farX = nearX ^ 32; const size_t farY = nearY ^ 32; const size_t farZ = nearZ ^ 32; /*! load the ray into SIMD registers */ const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const Vec3fa ray_rdir = rcp_safe(ray.dir); const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z); const ssef rayNear(ray.tnear); const ssef rayFar (ray.tfar); /*! pop node from stack */ while (true) { /* finish when the stack is empty */ if (unlikely(stackPtr == stack)) break; Base* cur = *(--stackPtr); /*! this is an inner node */ if (likely(cur->isNode())) { STAT3(shadow.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur->node(); const ssef* pNearX = (const ssef*)((const char*)node+nearX); const ssef* pNearY = (const ssef*)((const char*)node+nearY); const ssef* pNearZ = (const ssef*)((const char*)node+nearZ); const ssef tNearX = (norg.x + ssef(pNearX[0]) + ray.time*pNearX[1]) * rdir.x; const ssef tNearY = (norg.y + ssef(pNearY[0]) + ray.time*pNearY[1]) * rdir.y; const ssef tNearZ = (norg.z + ssef(pNearZ[0]) + ray.time*pNearZ[1]) * rdir.z; const ssef tNear = max(tNearX,tNearY,tNearZ,rayNear); const ssef* pFarX = (const ssef*)((const char*)node+farX); const ssef* pFarY = (const ssef*)((const char*)node+farY); const ssef* pFarZ = (const ssef*)((const char*)node+farZ); const ssef tFarX = (norg.x + ssef(pFarX[0]) + ray.time*pFarX[1]) * rdir.x; const ssef tFarY = (norg.y + ssef(pFarY[0]) + ray.time*pFarY[1]) * rdir.y; const ssef tFarZ = (norg.z + ssef(pFarZ[0]) + ray.time*pFarZ[1]) * rdir.z; const ssef tFar = min(tFarX,tFarY,tFarZ,rayFar); size_t _hit = movemask(tNear <= tFar); /*! push hit nodes onto stack */ if (likely(_hit == 0)) continue; size_t r = __bsf(_hit); _hit = __btc(_hit,r); *stackPtr = node->child[r]; stackPtr++; if (likely(_hit == 0)) continue; r = __bsf(_hit); _hit = __btc(_hit,r); *stackPtr = node->child[r]; stackPtr++; if (likely(_hit == 0)) continue; r = __bsf(_hit); _hit = __btc(_hit,r); *stackPtr = node->child[r]; stackPtr++; if (likely(_hit == 0)) continue; r = __bsf(_hit); _hit = __btc(_hit,r); *stackPtr = node->child[r]; stackPtr++; } /*! this is a leaf node */ else { STAT3(shadow.trav_leaves,1,1,1); size_t num; Triangle* tri = (Triangle*) cur->leaf(num); for (size_t i=0; i<num; i++) if (TriangleIntersector::occluded(ray,tri[i],bvh->geometry)) { ray.geomID = 0; break; } } } AVX_ZERO_UPPER(); }
void BVH4Intersector1<PrimitiveIntersector>::occluded(const BVH4* bvh, Ray& ray) { /*! stack state */ NodeRef stack[stackSize]; //!< stack of nodes that still need to get traversed NodeRef* stackPtr = stack+1; //!< current stack pointer NodeRef* stackEnd = stack+stackSize; stack[0] = bvh->root; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = ray.dir.x >= 0 ? 0*sizeof(ssef) : 1*sizeof(ssef); const size_t nearY = ray.dir.y >= 0 ? 2*sizeof(ssef) : 3*sizeof(ssef); const size_t nearZ = ray.dir.z >= 0 ? 4*sizeof(ssef) : 5*sizeof(ssef); #if 0 // FIXME: why is this slower /*! load the ray */ Vec3fa ray_org = ray.org; Vec3fa ray_dir = ray.dir; ssef ray_near = max(ray.tnear,FLT_MIN); // we do not support negative tnear values in this kernel due to integer optimizations ssef ray_far = ray.tfar; #if defined(__FIX_RAYS__) const float float_range = 0.1f*FLT_MAX; ray_org = clamp(ray_org,Vec3fa(-float_range),Vec3fa(+float_range)); ray_dir = clamp(ray_dir,Vec3fa(-float_range),Vec3fa(+float_range)); ray_far = min(ray_far,float(inf)); #endif const Vec3fa ray_rdir = rcp_safe(ray_dir); const sse3f org(ray_org), dir(ray_dir); const sse3f norg(-ray_org), rdir(ray_rdir), org_rdir(ray_org*ray_rdir); #else /*! load the ray into SIMD registers */ const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const Vec3fa ray_rdir = rcp_safe(ray.dir); const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z); const Vec3fa ray_org_rdir = ray.org*ray_rdir; const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z); const ssef ray_near(ray.tnear); ssef ray_far(ray.tfar); #endif /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = (NodeRef) *stackPtr; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(shadow.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(); const size_t farX = nearX ^ 16, farY = nearY ^ 16, farZ = nearZ ^ 16; #if defined (__AVX2__) const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x); const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y); const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z); const ssef tFarX = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x); const ssef tFarY = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y); const ssef tFarZ = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x; const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y; const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z; const ssef tFarX = (norg.x + load4f((const char*)node+farX )) * rdir.x; const ssef tFarY = (norg.y + load4f((const char*)node+farY )) * rdir.y; const ssef tFarZ = (norg.z + load4f((const char*)node+farZ )) * rdir.z; #endif #if defined(__SSE4_1__) const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near)); const ssef tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far )); const sseb vmask = cast(tNear) > cast(tFar); size_t mask = movemask(vmask)^0xf; #else const ssef tNear = max(tNearX,tNearY,tNearZ,ray_near); const ssef tFar = min(tFarX ,tFarY ,tFarZ ,ray_far); const sseb vmask = tNear <= tFar; size_t mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r]; assert(c0 != BVH4::emptyNode); assert(c1 != BVH4::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; } else { *stackPtr = c0; stackPtr++; cur = c1; continue; } } assert(stackPtr < stackEnd); *stackPtr = c0; stackPtr++; assert(stackPtr < stackEnd); *stackPtr = c1; stackPtr++; /*! three children are hit */ r = __bscf(mask); cur = node->child(r); assert(cur != BVH4::emptyNode); if (likely(mask == 0)) continue; assert(stackPtr < stackEnd); *stackPtr = cur; stackPtr++; /*! four children are hit */ cur = node->child(3); assert(cur != BVH4::emptyNode); } /*! this is a leaf node */ STAT3(shadow.trav_leaves,1,1,1); size_t num; Primitive* prim = (Primitive*) cur.leaf(num); if (PrimitiveIntersector::occluded(ray,prim,num,bvh->geometry)) { ray.geomID = 0; break; } } AVX_ZERO_UPPER(); }
void BVH4iIntersector4Chunk<TriangleIntersector4>::occluded(sseb* valid_i, BVH4i* bvh, Ray4& ray) { /* load node and primitive array */ const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr(); /* load ray */ const sseb valid = *valid_i; sseb terminated = !valid; const sse3f rdir = rcp_safe(ray.dir); const sse3f org_rdir = ray.org * rdir; ssef ray_tnear = select(valid,ray.tnear,pos_inf); ssef ray_tfar = select(valid,ray.tfar ,neg_inf); const ssef inf = ssef(pos_inf); /* allocate stack and push root node */ ssef stack_near[3*BVH4i::maxDepth+1]; NodeRef stack_node[3*BVH4i::maxDepth+1]; stack_node[0] = BVH4i::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* __restrict__ sptr_node = stack_node + 2; ssef* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ sptr_node--; sptr_near--; NodeRef curNode = *sptr_node; if (unlikely(curNode == BVH4i::invalidNode)) break; /* cull node if behind closest hit point */ ssef curDist = *sptr_near; if (unlikely(none(ray_tfar > curDist))) continue; while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf())) break; const sseb valid_node = ray_tfar > curDist; STAT3(shadow.trav_nodes,1,popcnt(valid_node),4); const Node* __restrict__ const node = curNode.node(nodes); /* pop of next node */ sptr_node--; sptr_near--; curNode = *sptr_node; // FIXME: this trick creates issues with stack depth curDist = *sptr_near; #pragma unroll(4) for (unsigned i=0; i<4; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH4i::emptyNode)) break; #if defined(__AVX2__) const ssef lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const ssef lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const ssef lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const ssef lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const ssef lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const ssef lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); const ssef lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const ssef lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const sseb lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const ssef lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x; const ssef lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y; const ssef lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z; const ssef lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x; const ssef lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y; const ssef lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z; const ssef lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const ssef lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const sseb lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { const ssef childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = curNode; *(sptr_near-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack*/ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } assert(sptr_node - stack_node < BVH4i::maxDepth); } } } /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect leaf */ const sseb valid_leaf = ray_tfar > curDist; STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),4); size_t items; const Triangle* tri = (Triangle*) curNode.leaf(accel, items); terminated |= TriangleIntersector4::occluded(!terminated,ray,tri,items,bvh->geometry); if (all(terminated)) break; ray_tfar = select(terminated,neg_inf,ray_tfar); } store4i(valid & terminated,&ray.geomID,0); AVX_ZERO_UPPER(); }
void BVH4Intersector1<PrimitiveIntersector>::intersect(const BVH4* bvh, Ray& ray) { /*! stack state */ StackItemInt32<NodeRef> stack[stackSize]; //!< stack of nodes StackItemInt32<NodeRef>* stackPtr = stack+1; //!< current stack pointer StackItemInt32<NodeRef>* stackEnd = stack+stackSize; stack[0].ptr = bvh->root; stack[0].dist = neg_inf; /*! offsets to select the side that becomes the lower or upper bound */ const size_t nearX = ray.dir.x >= 0.0f ? 0*sizeof(ssef) : 1*sizeof(ssef); const size_t nearY = ray.dir.y >= 0.0f ? 2*sizeof(ssef) : 3*sizeof(ssef); const size_t nearZ = ray.dir.z >= 0.0f ? 4*sizeof(ssef) : 5*sizeof(ssef); #if 0 // FIXME: why is this slower /*! load the ray */ Vec3fa ray_org = ray.org; Vec3fa ray_dir = ray.dir; ssef ray_near = max(ray.tnear,FLT_MIN); // we do not support negative tnear values in this kernel due to integer optimizations ssef ray_far = ray.tfar; #if defined(__FIX_RAYS__) const float float_range = 0.1f*FLT_MAX; ray_org = clamp(ray_org,Vec3fa(-float_range),Vec3fa(+float_range)); ray_dir = clamp(ray_dir,Vec3fa(-float_range),Vec3fa(+float_range)); ray_far = min(ray_far,float(inf)); #endif const Vec3fa ray_rdir = rcp_safe(ray_dir); const sse3f org(ray_org), dir(ray_dir); const sse3f norg(-ray_org), rdir(ray_rdir), org_rdir(ray_org*ray_rdir); #else /*! load the ray into SIMD registers */ const sse3f norg(-ray.org.x,-ray.org.y,-ray.org.z); const Vec3fa ray_rdir = rcp_safe(ray.dir); const sse3f rdir(ray_rdir.x,ray_rdir.y,ray_rdir.z); const Vec3fa ray_org_rdir = ray.org*ray_rdir; const sse3f org_rdir(ray_org_rdir.x,ray_org_rdir.y,ray_org_rdir.z); const ssef ray_near(ray.tnear); ssef ray_far(ray.tfar); #endif /* pop loop */ while (true) pop: { /*! pop next node */ if (unlikely(stackPtr == stack)) break; stackPtr--; NodeRef cur = NodeRef(stackPtr->ptr); /*! if popped node is too far, pop next one */ if (unlikely(*(float*)&stackPtr->dist > ray.tfar)) continue; /* downtraversal loop */ while (true) { /*! stop if we found a leaf */ if (unlikely(cur.isLeaf())) break; STAT3(normal.trav_nodes,1,1,1); /*! single ray intersection with 4 boxes */ const Node* node = cur.node(); const size_t farX = nearX ^ 16, farY = nearY ^ 16, farZ = nearZ ^ 16; #if defined (__AVX2__) const ssef tNearX = msub(load4f((const char*)node+nearX), rdir.x, org_rdir.x); const ssef tNearY = msub(load4f((const char*)node+nearY), rdir.y, org_rdir.y); const ssef tNearZ = msub(load4f((const char*)node+nearZ), rdir.z, org_rdir.z); const ssef tFarX = msub(load4f((const char*)node+farX ), rdir.x, org_rdir.x); const ssef tFarY = msub(load4f((const char*)node+farY ), rdir.y, org_rdir.y); const ssef tFarZ = msub(load4f((const char*)node+farZ ), rdir.z, org_rdir.z); #else const ssef tNearX = (norg.x + load4f((const char*)node+nearX)) * rdir.x; const ssef tNearY = (norg.y + load4f((const char*)node+nearY)) * rdir.y; const ssef tNearZ = (norg.z + load4f((const char*)node+nearZ)) * rdir.z; const ssef tFarX = (norg.x + load4f((const char*)node+farX )) * rdir.x; const ssef tFarY = (norg.y + load4f((const char*)node+farY )) * rdir.y; const ssef tFarZ = (norg.z + load4f((const char*)node+farZ )) * rdir.z; #endif #if defined(__SSE4_1__) const ssef tNear = maxi(maxi(tNearX,tNearY),maxi(tNearZ,ray_near)); const ssef tFar = mini(mini(tFarX ,tFarY ),mini(tFarZ ,ray_far )); const sseb vmask = cast(tNear) > cast(tFar); size_t mask = movemask(vmask)^0xf; #else const ssef tNear = max(tNearX,tNearY,tNearZ,ray_near); const ssef tFar = min(tFarX ,tFarY ,tFarZ ,ray_far); const sseb vmask = tNear <= tFar; size_t mask = movemask(vmask); #endif /*! if no child is hit, pop next node */ if (unlikely(mask == 0)) goto pop; /*! one child is hit, continue with that child */ size_t r = __bscf(mask); if (likely(mask == 0)) { cur = node->child(r); assert(cur != BVH4::emptyNode); continue; } /*! two children are hit, push far child, and continue with closer child */ NodeRef c0 = node->child(r); const unsigned int d0 = ((unsigned int*)&tNear)[r]; r = __bscf(mask); NodeRef c1 = node->child(r); const unsigned int d1 = ((unsigned int*)&tNear)[r]; assert(c0 != BVH4::emptyNode); assert(c1 != BVH4::emptyNode); if (likely(mask == 0)) { assert(stackPtr < stackEnd); if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; } else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; } } /*! Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ assert(stackPtr < stackEnd); stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; assert(stackPtr < stackEnd); stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); NodeRef c = node->child(r); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c != BVH4::emptyNode); if (likely(mask == 0)) { sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; continue; } /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ assert(stackPtr < stackEnd); r = __bscf(mask); c = node->child(r); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; assert(c != BVH4::emptyNode); sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; } /*! this is a leaf node */ STAT3(normal.trav_leaves,1,1,1); size_t num; Primitive* prim = (Primitive*) cur.leaf(num); PrimitiveIntersector::intersect(ray,prim,num,bvh->geometry); ray_far = ray.tfar; } }
void BVH4mbIntersector16Hybrid<LeafIntersector>::intersect(int16* valid_i, BVH4mb* bvh, Ray16& ray16) { /* near and node stack */ __aligned(64) float16 stack_dist[3*BVH4i::maxDepth+1]; __aligned(64) NodeRef stack_node[3*BVH4i::maxDepth+1]; __aligned(64) NodeRef stack_node_single[3*BVH4i::maxDepth+1]; /* load ray */ const bool16 valid0 = *(int16*)valid_i != int16(0); const Vec3f16 rdir16 = rcp_safe(ray16.dir); const Vec3f16 org_rdir16 = ray16.org * rdir16; float16 ray_tnear = select(valid0,ray16.tnear,pos_inf); float16 ray_tfar = select(valid0,ray16.tfar ,neg_inf); const float16 inf = float16(pos_inf); /* allocate stack and push root node */ stack_node[0] = BVH4i::invalidNode; stack_dist[0] = inf; stack_node[1] = bvh->root; stack_dist[1] = ray_tnear; NodeRef* __restrict__ sptr_node = stack_node + 2; float16* __restrict__ sptr_dist = stack_dist + 2; const Node * __restrict__ nodes = (Node *)bvh->nodePtr(); const BVH4mb::Triangle01 * __restrict__ accel = (BVH4mb::Triangle01 *)bvh->triPtr(); while (1) pop: { /* pop next node from stack */ NodeRef curNode = *(sptr_node-1); float16 curDist = *(sptr_dist-1); sptr_node--; sptr_dist--; const bool16 m_stackDist = ray_tfar > curDist; /* stack emppty ? */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* cull node if behind closest hit point */ if (unlikely(none(m_stackDist))) continue; /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* switch to single ray mode */ if (unlikely(countbits(m_stackDist) <= BVH4i::hybridSIMDUtilSwitchThreshold)) { float *__restrict__ stack_dist_single = (float*)sptr_dist; store16f(stack_dist_single,inf); /* traverse single ray */ long rayIndex = -1; while((rayIndex = bitscan64(rayIndex,m_stackDist)) != BITSCAN_NO_BIT_SET_64) { stack_node_single[0] = BVH4i::invalidNode; stack_node_single[1] = curNode; size_t sindex = 2; const float16 org_xyz = loadAOS4to16f(rayIndex,ray16.org.x,ray16.org.y,ray16.org.z); const float16 dir_xyz = loadAOS4to16f(rayIndex,ray16.dir.x,ray16.dir.y,ray16.dir.z); const float16 rdir_xyz = loadAOS4to16f(rayIndex,rdir16.x,rdir16.y,rdir16.z); const float16 org_rdir_xyz = org_xyz * rdir_xyz; const float16 min_dist_xyz = broadcast1to16f(&ray16.tnear[rayIndex]); float16 max_dist_xyz = broadcast1to16f(&ray16.tfar[rayIndex]); const float16 time = broadcast1to16f(&ray16.time[rayIndex]); const unsigned int leaf_mask = BVH4I_LEAF_MASK; while (1) { NodeRef curNode = stack_node_single[sindex-1]; sindex--; traverse_single_intersect(curNode, sindex, rdir_xyz, org_rdir_xyz, min_dist_xyz, max_dist_xyz, time, stack_node_single, stack_dist_single, nodes, leaf_mask); /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect one ray against four triangles */ const bool hit = LeafIntersector::intersect(curNode, rayIndex, dir_xyz, org_xyz, min_dist_xyz, max_dist_xyz, ray16, accel, (Scene*)bvh->geometry); if (hit) compactStack(stack_node_single,stack_dist_single,sindex,max_dist_xyz); } } ray_tfar = select(valid0,ray16.tfar ,neg_inf); continue; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// const unsigned int leaf_mask = BVH4I_LEAF_MASK; const float16 time = ray16.time; const float16 one_time = (float16::one() - time); while (1) { /* test if this is a leaf node */ if (unlikely(curNode.isLeaf(leaf_mask))) break; STAT3(normal.trav_nodes,1,popcnt(ray_tfar > curDist),16); const Node* __restrict__ const node = curNode.node(nodes); const BVH4mb::Node* __restrict__ const nodeMB = (BVH4mb::Node*)node; /* pop of next node */ sptr_node--; sptr_dist--; curNode = *sptr_node; curDist = *sptr_dist; prefetch<PFHINT_L1>((char*)node + 0*64); prefetch<PFHINT_L1>((char*)node + 1*64); prefetch<PFHINT_L1>((char*)node + 2*64); prefetch<PFHINT_L1>((char*)node + 3*64); #pragma unroll(4) for (unsigned int i=0; i<4; i++) { const NodeRef child = node->lower[i].child; const float16 lower_x = one_time * nodeMB->lower[i].x + time * nodeMB->lower_t1[i].x; const float16 lower_y = one_time * nodeMB->lower[i].y + time * nodeMB->lower_t1[i].y; const float16 lower_z = one_time * nodeMB->lower[i].z + time * nodeMB->lower_t1[i].z; const float16 upper_x = one_time * nodeMB->upper[i].x + time * nodeMB->upper_t1[i].x; const float16 upper_y = one_time * nodeMB->upper[i].y + time * nodeMB->upper_t1[i].y; const float16 upper_z = one_time * nodeMB->upper[i].z + time * nodeMB->upper_t1[i].z; if (unlikely(i >=2 && child == BVH4i::invalidNode)) break; const float16 lclipMinX = msub(lower_x,rdir16.x,org_rdir16.x); const float16 lclipMinY = msub(lower_y,rdir16.y,org_rdir16.y); const float16 lclipMinZ = msub(lower_z,rdir16.z,org_rdir16.z); const float16 lclipMaxX = msub(upper_x,rdir16.x,org_rdir16.x); const float16 lclipMaxY = msub(upper_y,rdir16.y,org_rdir16.y); const float16 lclipMaxZ = msub(upper_z,rdir16.z,org_rdir16.z); const float16 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const float16 lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const bool16 lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); const float16 childDist = select(lhit,lnearP,inf); const bool16 m_child_dist = childDist < curDist; /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { sptr_node++; sptr_dist++; /* push cur node onto stack and continue with hit child */ if (any(m_child_dist)) { *(sptr_node-1) = curNode; *(sptr_dist-1) = curDist; curDist = childDist; curNode = child; } /* push hit child onto stack*/ else { *(sptr_node-1) = child; *(sptr_dist-1) = childDist; } assert(sptr_node - stack_node < BVH4i::maxDepth); } } #if SWITCH_ON_DOWN_TRAVERSAL == 1 const bool16 curUtil = ray_tfar > curDist; if (unlikely(countbits(curUtil) <= BVH4i::hybridSIMDUtilSwitchThreshold)) { *sptr_node++ = curNode; *sptr_dist++ = curDist; goto pop; } #endif } /* return if stack is empty */ if (unlikely(curNode == BVH4i::invalidNode)) break; /* intersect leaf */ const bool16 m_valid_leaf = ray_tfar > curDist; STAT3(normal.trav_leaves,1,popcnt(m_valid_leaf),16); LeafIntersector::intersect16(curNode, m_valid_leaf, ray16.dir, ray16.org, ray16, accel, (Scene*)bvh->geometry); ray_tfar = select(m_valid_leaf,ray16.tfar,ray_tfar); }
void BVH8Intersector8Hybrid<PrimitiveIntersector8>::occluded(bool8* valid_i, BVH8* bvh, Ray8& ray) { /* load ray */ const bool8 valid = *valid_i; bool8 terminated = !valid; Vec3f8 ray_org = ray.org, ray_dir = ray.dir; float8 ray_tnear = ray.tnear, ray_tfar = ray.tfar; const Vec3f8 rdir = rcp_safe(ray_dir); const Vec3f8 org(ray_org), org_rdir = org * rdir; ray_tnear = select(valid,ray_tnear,float8(pos_inf)); ray_tfar = select(valid,ray_tfar ,float8(neg_inf)); const float8 inf = float8(pos_inf); Precalculations pre(valid,ray); /* compute near/far per ray */ Vec3i8 nearXYZ; nearXYZ.x = select(rdir.x >= 0.0f,int8(0*(int)sizeof(float8)),int8(1*(int)sizeof(float8))); nearXYZ.y = select(rdir.y >= 0.0f,int8(2*(int)sizeof(float8)),int8(3*(int)sizeof(float8))); nearXYZ.z = select(rdir.z >= 0.0f,int8(4*(int)sizeof(float8)),int8(5*(int)sizeof(float8))); /* allocate stack and push root node */ float8 stack_near[stackSizeChunk]; NodeRef stack_node[stackSizeChunk]; stack_node[0] = BVH8::invalidNode; stack_near[0] = inf; stack_node[1] = bvh->root; stack_near[1] = ray_tnear; NodeRef* stackEnd = stack_node+stackSizeChunk; NodeRef* __restrict__ sptr_node = stack_node + 2; float8* __restrict__ sptr_near = stack_near + 2; while (1) { /* pop next node from stack */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; NodeRef cur = *sptr_node; if (unlikely(cur == BVH8::invalidNode)) { assert(sptr_node == stack_node); break; } /* cull node if behind closest hit point */ float8 curDist = *sptr_near; const bool8 active = curDist < ray_tfar; if (unlikely(none(active))) continue; /* switch to single ray traversal */ #if !defined(__WIN32__) || defined(__X86_64__) size_t bits = movemask(active); if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) { for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) { if (occluded1(bvh,cur,i,pre,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ)) terminated[i] = -1; } if (all(terminated)) break; ray_tfar = select(terminated,float8(neg_inf),ray_tfar); continue; } #endif while (1) { /* test if this is a leaf node */ if (unlikely(cur.isLeaf())) break; const bool8 valid_node = ray_tfar > curDist; STAT3(shadow.trav_nodes,1,popcnt(valid_node),8); const Node* __restrict__ const node = (Node*)cur.node(); /* pop of next node */ assert(sptr_node > stack_node); sptr_node--; sptr_near--; cur = *sptr_node; curDist = *sptr_near; for (unsigned i=0; i<BVH8::N; i++) { const NodeRef child = node->children[i]; if (unlikely(child == BVH8::emptyNode)) break; #if defined(__AVX2__) const float8 lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x); const float8 lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y); const float8 lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z); const float8 lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x); const float8 lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y); const float8 lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z); const float8 lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ)); const float8 lfarP = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ)); const bool8 lhit = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar); #else const float8 lclipMinX = (node->lower_x[i] - org.x) * rdir.x; const float8 lclipMinY = (node->lower_y[i] - org.y) * rdir.y; const float8 lclipMinZ = (node->lower_z[i] - org.z) * rdir.z; const float8 lclipMaxX = (node->upper_x[i] - org.x) * rdir.x; const float8 lclipMaxY = (node->upper_y[i] - org.y) * rdir.y; const float8 lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z; const float8 lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ)); const float8 lfarP = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ)); const bool8 lhit = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar); #endif /* if we hit the child we choose to continue with that child if it is closer than the current next child, or we push it onto the stack */ if (likely(any(lhit))) { assert(sptr_node < stackEnd); assert(child != BVH8::emptyNode); const float8 childDist = select(lhit,lnearP,inf); sptr_node++; sptr_near++; /* push cur node onto stack and continue with hit child */ if (any(childDist < curDist)) { *(sptr_node-1) = cur; *(sptr_near-1) = curDist; curDist = childDist; cur = child; } /* push hit child onto stack */ else { *(sptr_node-1) = child; *(sptr_near-1) = childDist; } } } } /* return if stack is empty */ if (unlikely(cur == BVH8::invalidNode)) { assert(sptr_node == stack_node); break; } /* intersect leaf */ assert(cur != BVH8::emptyNode); const bool8 valid_leaf = ray_tfar > curDist; STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8); size_t items; const Triangle* prim = (Triangle*) cur.leaf(items); terminated |= PrimitiveIntersector8::occluded(!terminated,pre,ray,prim,items,bvh->scene); if (all(terminated)) break; ray_tfar = select(terminated,float8(neg_inf),ray_tfar); } store8i(valid & terminated,&ray.geomID,0); AVX_ZERO_UPPER(); }