void sim_info (SIM_DESC sd, int verbose) { const char *cpu_type; const struct bfd_arch_info *arch; /* Nothing to do if there is no verbose flag set. */ if (verbose == 0 && STATE_VERBOSE_P (sd) == 0) return; arch = STATE_ARCHITECTURE (sd); if (arch->arch == bfd_arch_m68hc11) cpu_type = "68HC11"; else cpu_type = "68HC12"; sim_io_eprintf (sd, "Simulator info:\n"); sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type); sim_get_info (sd, 0); sim_module_info (sd, verbose || STATE_VERBOSE_P (sd)); }
static SIM_RC standard_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg, int is_command) { int i,n; switch ((STANDARD_OPTIONS) opt) { case OPTION_VERBOSE: STATE_VERBOSE_P (sd) = 1; break; #ifdef SIM_HAVE_BIENDIAN case OPTION_ENDIAN: if (strcmp (arg, "big") == 0) { if (WITH_TARGET_BYTE_ORDER == LITTLE_ENDIAN) { sim_io_eprintf (sd, "Simulator compiled for little endian only.\n"); return SIM_RC_FAIL; } /* FIXME:wip: Need to set something in STATE_CONFIG. */ current_target_byte_order = BIG_ENDIAN; } else if (strcmp (arg, "little") == 0) { if (WITH_TARGET_BYTE_ORDER == BIG_ENDIAN) { sim_io_eprintf (sd, "Simulator compiled for big endian only.\n"); return SIM_RC_FAIL; } /* FIXME:wip: Need to set something in STATE_CONFIG. */ current_target_byte_order = LITTLE_ENDIAN; } else { sim_io_eprintf (sd, "Invalid endian specification `%s'\n", arg); return SIM_RC_FAIL; } break; #endif case OPTION_ENVIRONMENT: if (strcmp (arg, "user") == 0) STATE_ENVIRONMENT (sd) = USER_ENVIRONMENT; else if (strcmp (arg, "virtual") == 0) STATE_ENVIRONMENT (sd) = VIRTUAL_ENVIRONMENT; else if (strcmp (arg, "operating") == 0) STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT; else { sim_io_eprintf (sd, "Invalid environment specification `%s'\n", arg); return SIM_RC_FAIL; } if (WITH_ENVIRONMENT != ALL_ENVIRONMENT && WITH_ENVIRONMENT != STATE_ENVIRONMENT (sd)) { char *type; switch (WITH_ENVIRONMENT) { case USER_ENVIRONMENT: type = "user"; break; case VIRTUAL_ENVIRONMENT: type = "virtual"; break; case OPERATING_ENVIRONMENT: type = "operating"; break; } sim_io_eprintf (sd, "Simulator compiled for the %s environment only.\n", type); return SIM_RC_FAIL; } break; case OPTION_ALIGNMENT: if (strcmp (arg, "strict") == 0) { if (WITH_ALIGNMENT == 0 || WITH_ALIGNMENT == STRICT_ALIGNMENT) { current_alignment = STRICT_ALIGNMENT; break; } } else if (strcmp (arg, "nonstrict") == 0) { if (WITH_ALIGNMENT == 0 || WITH_ALIGNMENT == NONSTRICT_ALIGNMENT) { current_alignment = NONSTRICT_ALIGNMENT; break; } } else if (strcmp (arg, "forced") == 0) { if (WITH_ALIGNMENT == 0 || WITH_ALIGNMENT == FORCED_ALIGNMENT) { current_alignment = FORCED_ALIGNMENT; break; } } else { sim_io_eprintf (sd, "Invalid alignment specification `%s'\n", arg); return SIM_RC_FAIL; } switch (WITH_ALIGNMENT) { case STRICT_ALIGNMENT: sim_io_eprintf (sd, "Simulator compiled for strict alignment only.\n"); break; case NONSTRICT_ALIGNMENT: sim_io_eprintf (sd, "Simulator compiled for nonstrict alignment only.\n"); break; case FORCED_ALIGNMENT: sim_io_eprintf (sd, "Simulator compiled for forced alignment only.\n"); break; } return SIM_RC_FAIL; case OPTION_DEBUG: if (! WITH_DEBUG) sim_io_eprintf (sd, "Debugging not compiled in, `-D' ignored\n"); else { for (n = 0; n < MAX_NR_PROCESSORS; ++n) for (i = 0; i < MAX_DEBUG_VALUES; ++i) CPU_DEBUG_FLAGS (STATE_CPU (sd, n))[i] = 1; } break; case OPTION_DEBUG_INSN : if (! WITH_DEBUG) sim_io_eprintf (sd, "Debugging not compiled in, `--debug-insn' ignored\n"); else { for (n = 0; n < MAX_NR_PROCESSORS; ++n) CPU_DEBUG_FLAGS (STATE_CPU (sd, n))[DEBUG_INSN_IDX] = 1; } break; case OPTION_DEBUG_FILE : if (! WITH_DEBUG) sim_io_eprintf (sd, "Debugging not compiled in, `--debug-file' ignored\n"); else { FILE *f = fopen (arg, "w"); if (f == NULL) { sim_io_eprintf (sd, "Unable to open debug output file `%s'\n", arg); return SIM_RC_FAIL; } for (n = 0; n < MAX_NR_PROCESSORS; ++n) CPU_DEBUG_FILE (STATE_CPU (sd, n)) = f; } break; #ifdef SIM_H8300 /* FIXME: Can be moved to h8300 dir. */ case OPTION_H8300: set_h8300h (1,0); break; case OPTION_H8300S: set_h8300h (1,1); break; #endif #ifdef SIM_HAVE_FLATMEM case OPTION_MEM_SIZE: { unsigned long ul = strtol (arg, NULL, 0); /* 16384: some minimal amount */ if (! isdigit (arg[0]) || ul < 16384) { sim_io_eprintf (sd, "Invalid memory size `%s'", arg); return SIM_RC_FAIL; } STATE_MEM_SIZE (sd) = ul; } break; #endif case OPTION_DO_COMMAND: sim_do_command (sd, arg); break; case OPTION_ARCHITECTURE: { const struct bfd_arch_info *ap = bfd_scan_arch (arg); if (ap == NULL) { sim_io_eprintf (sd, "Architecture `%s' unknown\n", arg); return SIM_RC_FAIL; } STATE_ARCHITECTURE (sd) = ap; break; } case OPTION_ARCHITECTURE_INFO: { const char **list = bfd_arch_list(); const char **lp; if (list == NULL) abort (); sim_io_printf (sd, "Possible architectures:"); for (lp = list; *lp != NULL; lp++) sim_io_printf (sd, " %s", *lp); sim_io_printf (sd, "\n"); free (list); break; } case OPTION_TARGET: { STATE_TARGET (sd) = xstrdup (arg); break; } case OPTION_LOAD_LMA: { STATE_LOAD_AT_LMA_P (sd) = 1; break; } case OPTION_LOAD_VMA: { STATE_LOAD_AT_LMA_P (sd) = 0; break; } case OPTION_HELP: sim_print_help (sd, is_command); if (STATE_OPEN_KIND (sd) == SIM_OPEN_STANDALONE) exit (0); /* FIXME: 'twould be nice to do something similar if gdb. */ break; } return SIM_RC_OK; }
int main (int argc, char **argv) { char *name; char **prog_argv = NULL; struct bfd *prog_bfd; enum sim_stop reason; int sigrc = 0; int single_step = 0; RETSIGTYPE (*prev_sigint) (); myname = argv[0] + strlen (argv[0]); while (myname > argv[0] && myname[-1] != '/') --myname; /* INTERNAL: When MYNAME is `step', single step the simulator instead of allowing it to run free. The sole purpose of this HACK is to allow the sim_resume interface's step argument to be tested without having to build/run gdb. */ if (strlen (myname) > 4 && strcmp (myname - 4, "step") == 0) { single_step = 1; } /* Create an instance of the simulator. */ default_callback.init (&default_callback); sd = sim_open (SIM_OPEN_STANDALONE, &default_callback, NULL, argv); if (sd == 0) exit (1); if (STATE_MAGIC (sd) != SIM_MAGIC_NUMBER) { fprintf (stderr, "Internal error - bad magic number in simulator struct\n"); abort (); } /* We can't set the endianness in the callback structure until sim_config is called, which happens in sim_open. */ default_callback.target_endian = (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); /* Was there a program to run? */ prog_argv = STATE_PROG_ARGV (sd); prog_bfd = STATE_PROG_BFD (sd); if (prog_argv == NULL || *prog_argv == NULL) usage (); name = *prog_argv; /* For simulators that don't open prog during sim_open() */ if (prog_bfd == NULL) { prog_bfd = bfd_openr (name, 0); if (prog_bfd == NULL) { fprintf (stderr, "%s: can't open \"%s\": %s\n", myname, name, bfd_errmsg (bfd_get_error ())); exit (1); } if (!bfd_check_format (prog_bfd, bfd_object)) { fprintf (stderr, "%s: \"%s\" is not an object file: %s\n", myname, name, bfd_errmsg (bfd_get_error ())); exit (1); } } if (STATE_VERBOSE_P (sd)) printf ("%s %s\n", myname, name); /* Load the program into the simulator. */ if (sim_load (sd, name, prog_bfd, 0) == SIM_RC_FAIL) exit (1); /* Prepare the program for execution. */ #ifdef HAVE_ENVIRON sim_create_inferior (sd, prog_bfd, prog_argv, environ); #else sim_create_inferior (sd, prog_bfd, prog_argv, NULL); #endif /* To accommodate relative file paths, chdir to sysroot now. We mustn't do this until BFD has opened the program, else we wouldn't find the executable if it has a relative file path. */ if (simulator_sysroot[0] != '\0' && chdir (simulator_sysroot) < 0) { fprintf (stderr, "%s: can't change directory to \"%s\"\n", myname, simulator_sysroot); exit (1); } /* Run/Step the program. */ if (single_step) { do { prev_sigint = signal (SIGINT, cntrl_c); sim_resume (sd, 1/*step*/, 0); signal (SIGINT, prev_sigint); sim_stop_reason (sd, &reason, &sigrc); if ((reason == sim_stopped) && (sigrc == sim_signal_to_host (sd, SIM_SIGINT))) break; /* exit on control-C */ } /* remain on breakpoint or signals in oe mode*/ while (((reason == sim_signalled) && (sigrc == sim_signal_to_host (sd, SIM_SIGTRAP))) || ((reason == sim_stopped) && (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT))); } else { do { #if defined (HAVE_SIGACTION) && defined (SA_RESTART) struct sigaction sa, osa; sa.sa_handler = cntrl_c; sigemptyset (&sa.sa_mask); sa.sa_flags = 0; sigaction (SIGINT, &sa, &osa); prev_sigint = osa.sa_handler; #else prev_sigint = signal (SIGINT, cntrl_c); #endif sim_resume (sd, 0, sigrc); signal (SIGINT, prev_sigint); sim_stop_reason (sd, &reason, &sigrc); if ((reason == sim_stopped) && (sigrc == sim_signal_to_host (sd, SIM_SIGINT))) break; /* exit on control-C */ /* remain on signals in oe mode */ } while ((reason == sim_stopped) && (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)); } /* Print any stats the simulator collected. */ if (STATE_VERBOSE_P (sd)) sim_info (sd, 0); /* Shutdown the simulator. */ sim_close (sd, 0); /* If reason is sim_exited, then sigrc holds the exit code which we want to return. If reason is sim_stopped or sim_signalled, then sigrc holds the signal that the simulator received; we want to return that to indicate failure. */ /* Why did we stop? */ switch (reason) { case sim_signalled: case sim_stopped: if (sigrc != 0) fprintf (stderr, "program stopped with signal %d.\n", sigrc); break; case sim_exited: break; default: fprintf (stderr, "program in undefined state (%d:%d)\n", reason, sigrc); break; } return sigrc; }
void store_fpr (sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, uword64 value) { int err = 0; #ifdef DEBUG printf ("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d, \n", fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia), SizeFGR ()); #endif /* DEBUG */ if (SizeFGR () == 64) { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single: case fmt_word: if (STATE_VERBOSE_P (SD)) sim_io_eprintf (SD, "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n", pr_addr (cia)); FGR[fpr] = (((uword64) 0xDEADC0DE << 32) | (value & 0xFFFFFFFF)); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double: case fmt_long: case fmt_ps: FGR[fpr] = value; FPR_STATE[fpr] = fmt; break; default: FPR_STATE[fpr] = fmt_unknown; err = -1; break; } } else { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single: case fmt_word: FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double: case fmt_long: if ((fpr & 1) == 0) { /* Even register numbers only. */ FGR[fpr+1] = (value >> 32); FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr + 1] = fmt; FPR_STATE[fpr] = fmt; } else { FPR_STATE[fpr] = fmt_unknown; FPR_STATE[fpr ^ 1] = fmt_unknown; SignalException (ReservedInstruction, 0); } break; case fmt_ps: FPR_STATE[fpr] = fmt_unknown; SignalException (ReservedInstruction, 0); break; default: FPR_STATE[fpr] = fmt_unknown; err = -1; break; }