Пример #1
0
/*====================================================================================================*/
void SysTick_Handler( void )
{
  u16 MOTOR[4] = {0};
  s16 Pitch = 0, Roll = 0, Yaw = 0;

  static u16 SysTick_Cnt = 0;
  static s16 *FIFO_X, *FIFO_Y, *FIFO_Z;
  static s16 FIFO_ACC[3][16] = {0}, FIFO_GYR[3][16] = {0}/*, FIFO_MAG[3][16] = {0}*/;
  static u32 Correction_Time = 0;

  /* Time Count */
  if(SysTick_Cnt == SampleRateFreg) {
    SysTick_Cnt = 0;
    Time_Sec++;
    if(Time_Sec == 60) {	// 0~59
      Time_Sec = 0;
      Time_Min++;
      if(Time_Sec == 60)
        Time_Min = 0;
    }
  }
  SysTick_Cnt++;

  /* 500Hz, Read Accelerometer, Gyroscope, Magnetometer */
  Sensor_Read(SampleRateFreg);

  /* Offset */
  Acc.X -= Acc.OffsetX;
  Acc.Y -= Acc.OffsetY;
  Acc.Z -= Acc.OffsetZ;
  Gyr.X -= Gyr.OffsetX;
  Gyr.Y -= Gyr.OffsetY;
  Gyr.Z -= Gyr.OffsetZ;

  #define MAFIFO_SIZE 250
  switch(SEN_STATE) {

    /************************** CorrectSelect ***********************************/
    case SEN_CORR:
//      SEN_STATE = (KEY == KEY_ON) ? SEN_GYR : SEN_NUMQ;
      SEN_STATE = SEN_GYR;
      break;

    /************************** CorrectGyr **************************************/
    case SEN_GYR:
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 分配記憶體給 MaveAve 使用
          FIFO_X = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Y = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Z = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_X, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Y, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Z, 0, MAFIFO_SIZE*sizeof(s16));
          Correction_Time = SampleRateFreg;
          break;
        case 1:   // 等待 FIFO 填滿靜態資料
          /* 移動平均 Simple Moving Average */
          Gyr.X = (s16)MoveAve_SMA(Gyr.X, FIFO_X, MAFIFO_SIZE);
          Gyr.Y = (s16)MoveAve_SMA(Gyr.Y, FIFO_Y, MAFIFO_SIZE);
          Gyr.Z = (s16)MoveAve_SMA(Gyr.Z, FIFO_Z, MAFIFO_SIZE);
          Correction_Time++;
          break;
        case 2:   // 釋放記憶體 & 計算陀螺儀偏移量
          free(FIFO_X);
          free(FIFO_Y);
          free(FIFO_Z);
          Gyr.OffsetX += (Gyr.X - GYR_X_OFFSET);  // 角速度為 0dps
          Gyr.OffsetY += (Gyr.Y - GYR_Y_OFFSET);  // 角速度為 0dps
          Gyr.OffsetZ += (Gyr.Z - GYR_Z_OFFSET);  // 角速度為 0dps
          Correction_Time = 0;
          SEN_STATE = SEN_ACC;
          break;
      }
      break;

    /************************** CorrectAcc **************************************/
    case SEN_ACC:
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 分配記憶體給 MaveAve 使用
          FIFO_X = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Y = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Z = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_X, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Y, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Z, 0, MAFIFO_SIZE*sizeof(s16));
          Correction_Time = SampleRateFreg;
          break;
        case 1:   // 等待 FIFO 填滿靜態資料
          /* 移動平均 Simple Moving Average */
          Acc.X = (s16)MoveAve_SMA(Acc.X, FIFO_X, MAFIFO_SIZE);
          Acc.Y = (s16)MoveAve_SMA(Acc.Y, FIFO_Y, MAFIFO_SIZE);
          Acc.Z = (s16)MoveAve_SMA(Acc.Z, FIFO_Z, MAFIFO_SIZE);
          Correction_Time++;
          break;
        case 2:   // 釋放記憶體 & 計算加速度計偏移量
          free(FIFO_X);
          free(FIFO_Y);
          free(FIFO_Z);
          Acc.OffsetX += (Acc.X - ACC_X_OFFSET);  // 重力加速度為 0g
          Acc.OffsetY += (Acc.Y - ACC_Y_OFFSET);  // 重力加速度為 0g
          Acc.OffsetZ += (Acc.Z - ACC_Z_OFFSET);  // 重力加速度為 1g
          Correction_Time = 0;

//          SEN_STATE = SEN_MAG;
          SEN_STATE = SEN_NUMQ;
          break;
      }
      break;

    /************************** CorrectMag **************************************/
    case SEN_MAG:
      SEN_STATE = SEN_NUMQ;
      break;

    /************************** Quaternion **************************************/
    case SEN_NUMQ:
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 等待 FIFO 填滿靜態資料
          /* 加權移動平均法 Weighted Moving Average */
          Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 16);
          Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 16);
          Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 16);
          Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 16);
          Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 16);
          Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 16);

          Correction_Time++;
          break;
        case 1:

          /* 加權移動平均法 Weighted Moving Average */
          Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 16);
          Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 16);
          Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 16);
          Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 16);
          Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 16);
          Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 16);

          /* To Physical */
          Acc.TrueX  = Acc.X*MPU9250A_4g;       // g/LSB
          Acc.TrueY  = Acc.Y*MPU9250A_4g;       // g/LSB
          Acc.TrueZ  = Acc.Z*MPU9250A_4g;       // g/LSB
          Gyr.TrueX  = Gyr.X*MPU9250G_2000dps;  // dps/LSB
          Gyr.TrueY  = Gyr.Y*MPU9250G_2000dps;  // dps/LSB
          Gyr.TrueZ  = Gyr.Z*MPU9250G_2000dps;  // dps/LSB

          AngE.Pitch = toDeg(atan2f(Acc.TrueY, Acc.TrueZ));
          AngE.Roll  = toDeg(-asinf(Acc.TrueX));
//          AngE.Yaw   = toDeg(atan2f(Ellipse[3], Ellipse[4]))+180.0f;

          Quaternion_ToNumQ(&NumQ, &AngE);

          Correction_Time = 0;
          SEN_STATE = SEN_ALG;
          break;
      }
      break;

    /************************** Algorithm ***************************************/
    case SEN_ALG:

      /* 加權移動平均法 Weighted Moving Average */
      Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 8);
      Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 8);
      Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 8);
      Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 8);
      Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 8);
      Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 8);

      /* To Physical */
      Acc.TrueX = Acc.X*MPU9250A_4g;       // g/LSB
      Acc.TrueY = Acc.Y*MPU9250A_4g;       // g/LSB
      Acc.TrueZ = Acc.Z*MPU9250A_4g;       // g/LSB
      Gyr.TrueX = Gyr.X*MPU9250G_2000dps;  // dps/LSB
      Gyr.TrueY = Gyr.Y*MPU9250G_2000dps;  // dps/LSB
      Gyr.TrueZ = Gyr.Z*MPU9250G_2000dps;  // dps/LSB

      /* Get Attitude */
      AHRS_Update();

      if((KEY_LL == 1) && (KEY_RR == 1))  {	PID_Roll.Kp += 0.001f;	PID_Pitch.Kp += 0.001f;  }
      if((KEY_LL == 1) && (KEY_RP == 1))  {	PID_Roll.Kp -= 0.001f;	PID_Pitch.Kp -= 0.001f;  }
//      if((KEY_LL == 1) && (KEY_RR == 1))  {	PID_Roll.Ki += 0.0001f;	PID_Pitch.Ki += 0.0001f; }
//      if((KEY_LL == 1) && (KEY_RR == 1))  {	PID_Roll.Ki -= 0.0001f;	PID_Pitch.Ki -= 0.0001f; }
      if((KEY_LR == 1) && (KEY_RR == 1))  {	PID_Roll.Kd += 0.0001f;	PID_Pitch.Kd += 0.0001f; }
      if((KEY_LR == 1) && (KEY_RP == 1))  {	PID_Roll.Kd -= 0.0001f;	PID_Pitch.Kd -= 0.0001f; }
//      if((KEY_RR == 1) && (KEY_RR == 1))  {	PID_Yaw.Kd += 0.0001f; }
//      if((KEY_RR == 1) && (KEY_RR == 1))  {	PID_Yaw.Kd -= 0.0001f; }

      /* Get ZeroErr */
      PID_Pitch.ZeroErr = (fp32)((s16)EXP_PITCH/4.5f);
      PID_Roll.ZeroErr  = (fp32)((s16)EXP_ROLL/4.5f);
      PID_Yaw.ZeroErr   = (fp32)((s16)EXP_YAW)+180.0f;

      /* PID */
      Roll  = (s16)PID_AHRS_Cal(&PID_Roll,  AngE.Roll,  Gyr.TrueX);
      Pitch = (s16)PID_AHRS_Cal(&PID_Pitch, AngE.Pitch, Gyr.TrueY);
      Yaw   = (s16)(PID_Yaw.Kd*Gyr.TrueZ);

//      Roll  = 0;
//      Pitch = 0;
      Yaw   = 0;

      /* Motor Ctrl */
      MOTOR[0] = BasicThr + Pitch + Roll + Yaw;
      MOTOR[1] = BasicThr - Pitch + Roll - Yaw;
      MOTOR[2] = BasicThr - Pitch - Roll + Yaw;
      MOTOR[3] = BasicThr + Pitch - Roll - Yaw;

      /* Check Connection */
      #define NoSignal 1  // 1 sec
      if(KEY_RL == 1) {
        // Close Thr
        PID_Pitch.SumErr = 0.0f;
        PID_Roll.SumErr  = 0.0f;
        PID_Yaw.SumErr   = 0.0f;
        Ctrl_MotorTHR(MOTOR_THR_MIN, MOTOR_THR_MIN, MOTOR_THR_MIN, MOTOR_THR_MIN);
      }
      else if(((Time_Sec-RF_RecvData.Time.Sec)>NoSignal) || ((Time_Sec-RF_RecvData.Time.Sec)<-NoSignal))
        Ctrl_MotorTHR(MOTOR_THR_MIN, MOTOR_THR_MIN, MOTOR_THR_MIN, MOTOR_THR_MIN);
      else {
        // Thr Ctrl
        Ctrl_MotorTHR(MOTOR[0], MOTOR[1], MOTOR[2], MOTOR[3]);
      }
      break;

    /************************** Error *******************************************/
    default:
      while(1);
  }
}
Пример #2
0
/*=====================================================================================================*/
void SysTick_Handler( void )
{
  static s16 *FIFO_X, *FIFO_Y, *FIFO_Z;
  static s16 FIFO_ACC[3][16] = {0}, FIFO_GYR[3][16] = {0}, FIFO_MAG[3][16] = {0};
  static u32 Correction_Time = 0;

  /* Time Count */
  if(SysTick_Cnt == SampleRateFreg) {
    SysTick_Cnt = 0;
    Time_Sec++;
    if(Time_Sec == 60) {	// 0~59
      Time_Sec = 0;
      Time_Min++;
      if(Time_Sec == 60)
        Time_Min = 0;
    }
  }
  SysTick_Cnt++;

  /* 100Hz, Read Barometer */
  /* 500Hz, Read Accelerometer, Gyroscope, Magnetometer */
  Sensor_Read(SampleRateFreg);

  /* Offset */
  Acc.X += Acc.OffsetX;
  Acc.Y += Acc.OffsetY;
  Acc.Z += Acc.OffsetZ;
  Gyr.X += Gyr.OffsetX;
  Gyr.Y += Gyr.OffsetY;
  Gyr.Z += Gyr.OffsetZ;
  Mag.X *= Mag.AdjustX;
  Mag.Y *= Mag.AdjustY;
  Mag.Z *= Mag.AdjustZ;
  Temp.T -= Temp.OffsetT;

  #define MAFIFO_SIZE 250
  switch(SEN_STATE) {

    /************************** CorrectSelect ***********************************/
    case SEN_CORR:
      SEN_STATE = (KEY == KEY_ON) ? SEN_GYR : SEN_NUMQ;
      break;

    /************************** CorrectGyr **************************************/
    case SEN_GYR:
      LED_R = !LED_R;
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 分配記憶體給 MaveAve 使用
          FIFO_X = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Y = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Z = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_X, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Y, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Z, 0, MAFIFO_SIZE*sizeof(s16));
          Correction_Time = SampleRateFreg;
          break;
        case 1:   // 等待 FIFO 填滿靜態資料
          /* 移動平均 Simple Moving Average */
          Gyr.X = (s16)MoveAve_SMA(Gyr.X, FIFO_X, MAFIFO_SIZE);
          Gyr.Y = (s16)MoveAve_SMA(Gyr.Y, FIFO_Y, MAFIFO_SIZE);
          Gyr.Z = (s16)MoveAve_SMA(Gyr.Z, FIFO_Z, MAFIFO_SIZE);
          Correction_Time++;
          break;
        case 2:   // 釋放記憶體 & 計算陀螺儀偏移量
          free(FIFO_X);
          free(FIFO_Y);
          free(FIFO_Z);
          Gyr.OffsetX += (Gyr.X - GYR_X_OFFSET);  // 角速度為 0dps
          Gyr.OffsetY += (Gyr.Y - GYR_Y_OFFSET);  // 角速度為 0dps
          Gyr.OffsetZ += (Gyr.Z - GYR_Z_OFFSET);  // 角速度為 0dps
          Correction_Time = 0;
          SEN_STATE = SEN_ACC;
          break;
      }
      break;

    /************************** CorrectAcc **************************************/
    case SEN_ACC:
      LED_R = !LED_R;
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 分配記憶體給 MaveAve 使用
          FIFO_X = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Y = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          FIFO_Z = (s16*)malloc(MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_X, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Y, 0, MAFIFO_SIZE*sizeof(s16));
          memset(FIFO_Z, 0, MAFIFO_SIZE*sizeof(s16));
          Correction_Time = SampleRateFreg;
          break;
        case 1:   // 等待 FIFO 填滿靜態資料
          /* 移動平均 Simple Moving Average */
          Acc.X = (s16)MoveAve_SMA(Acc.X, FIFO_X, MAFIFO_SIZE);
          Acc.Y = (s16)MoveAve_SMA(Acc.Y, FIFO_Y, MAFIFO_SIZE);
          Acc.Z = (s16)MoveAve_SMA(Acc.Z, FIFO_Z, MAFIFO_SIZE);
          Correction_Time++;
          break;
        case 2:   // 釋放記憶體 & 計算加速度計偏移量
          free(FIFO_X);
          free(FIFO_Y);
          free(FIFO_Z);
          Acc.OffsetX += (Acc.X - ACC_X_OFFSET);  // 重力加速度為 0g
          Acc.OffsetY += (Acc.Y - ACC_Y_OFFSET);  // 重力加速度為 0g
          Acc.OffsetZ += (Acc.Z - ACC_Z_OFFSET);  // 重力加速度為 1g
          Correction_Time = 0;
          SEN_STATE = SEN_MAG;
          break;
      }
      break;

    /************************** CorrectMag **************************************/
    case SEN_MAG:
      LED_R = !LED_R;
      SEN_STATE = SEN_NUMQ;
      break;

    /************************** Quaternion **************************************/
    case SEN_NUMQ:
      LED_G = !LED_G;
      switch((u16)(Correction_Time/SampleRateFreg)) {
        case 0:   // 等待 FIFO 填滿靜態資料
          /* 加權移動平均法 Weighted Moving Average */
          Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 8);
          Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 8);
          Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 8);
          Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 8);
          Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 8);
          Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 8);
          Mag.X = (s16)MoveAve_WMA(Mag.X, FIFO_MAG[0], 16);
          Mag.Y = (s16)MoveAve_WMA(Mag.Y, FIFO_MAG[1], 16);
          Mag.Z = (s16)MoveAve_WMA(Mag.Z, FIFO_MAG[2], 16);
          Correction_Time++;
          break;
        case 1:

          /* 加權移動平均法 Weighted Moving Average */
          Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 8);
          Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 8);
          Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 8);
          Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 8);
          Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 8);
          Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 8);
          Mag.X = (s16)MoveAve_WMA(Mag.X, FIFO_MAG[0], 16);
          Mag.Y = (s16)MoveAve_WMA(Mag.Y, FIFO_MAG[1], 16);
          Mag.Z = (s16)MoveAve_WMA(Mag.Z, FIFO_MAG[2], 16);

          /* To Physical */
          Acc.TrueX = Acc.X*MPU9150A_4g;        // g/LSB
          Acc.TrueY = Acc.Y*MPU9150A_4g;        // g/LSB
          Acc.TrueZ = Acc.Z*MPU9150A_4g;        // g/LSB
          Gyr.TrueX = Gyr.X*MPU9150G_2000dps;   // dps/LSB
          Gyr.TrueY = Gyr.Y*MPU9150G_2000dps;   // dps/LSB
          Gyr.TrueZ = Gyr.Z*MPU9150G_2000dps;   // dps/LSB
          Mag.TrueX = Mag.X*MPU9150M_1200uT;    // uT/LSB
          Mag.TrueY = Mag.Y*MPU9150M_1200uT;    // uT/LSB
          Mag.TrueZ = Mag.Z*MPU9150M_1200uT;    // uT/LSB

//          Ellipse[3] = ( Mag.X*arm_cos_f32(Mag.EllipseSita)+Mag.Y*arm_sin_f32(Mag.EllipseSita))/Mag.EllipseB;
//          Ellipse[4] = (-Mag.X*arm_sin_f32(Mag.EllipseSita)+Mag.Y*arm_cos_f32(Mag.EllipseSita))/Mag.EllipseA;

          AngE.Pitch = toDeg(atan2f(Acc.TrueY, Acc.TrueZ));
          AngE.Roll  = toDeg(-asinf(Acc.TrueX));
//          AngE.Yaw   = toDeg(atan2f(Ellipse[3], Ellipse[4]))+180.0f;

          Quaternion_ToNumQ(&NumQ, &AngE);

          Correction_Time = 0;
          SEN_STATE = SEN_ALG;
          break;
      }
      break;

    /************************** Algorithm ***************************************/
    case SEN_ALG:

      /* 加權移動平均法 Weighted Moving Average */
      Acc.X = (s16)MoveAve_WMA(Acc.X, FIFO_ACC[0], 8);
      Acc.Y = (s16)MoveAve_WMA(Acc.Y, FIFO_ACC[1], 8);
      Acc.Z = (s16)MoveAve_WMA(Acc.Z, FIFO_ACC[2], 8);
      Gyr.X = (s16)MoveAve_WMA(Gyr.X, FIFO_GYR[0], 8);
      Gyr.Y = (s16)MoveAve_WMA(Gyr.Y, FIFO_GYR[1], 8);
      Gyr.Z = (s16)MoveAve_WMA(Gyr.Z, FIFO_GYR[2], 8);
      Mag.X = (s16)MoveAve_WMA(Mag.X, FIFO_MAG[0], 16);
      Mag.Y = (s16)MoveAve_WMA(Mag.Y, FIFO_MAG[1], 16);
      Mag.Z = (s16)MoveAve_WMA(Mag.Z, FIFO_MAG[2], 16);

      /* To Physical */
      Acc.TrueX  = Acc.X*MPU9150A_4g;       // g/LSB
      Acc.TrueY  = Acc.Y*MPU9150A_4g;       // g/LSB
      Acc.TrueZ  = Acc.Z*MPU9150A_4g;       // g/LSB
      Gyr.TrueX  = Gyr.X*MPU9150G_2000dps;  // dps/LSB
      Gyr.TrueY  = Gyr.Y*MPU9150G_2000dps;  // dps/LSB
      Gyr.TrueZ  = Gyr.Z*MPU9150G_2000dps;  // dps/LSB
      Mag.TrueX  = Mag.X*MPU9150M_1200uT;   // uT/LSB
      Mag.TrueY  = Mag.Y*MPU9150M_1200uT;   // uT/LSB
      Mag.TrueZ  = Mag.Z*MPU9150M_1200uT;   // uT/LSB
      Temp.TrueT = Temp.T*MPU9150T_85degC;  // degC/LSB

      /* Get Attitude Angle */
      AHRS_Update();

      break;

    /************************** Error *******************************************/
    default:
      LED_R = LED_OFF;
      LED_G = LED_OFF;
      LED_B = LED_OFF;
      while(1) {
        LED_R = !LED_R;
        Delay_100ms(10);
      }
  }
}