void SkPathStroker::quad_to(const SkPoint pts[3], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC, int subDivide) { if (!set_normal_unitnormal(pts[1], pts[2], fRadius, normalBC, unitNormalBC)) { // pts[1] nearly equals pts[2], so just draw a line to pts[2] this->line_to(pts[2], normalAB); *normalBC = normalAB; *unitNormalBC = unitNormalAB; return; } if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) { SkPoint tmp[5]; SkVector norm, unit; SkChopQuadAtHalf(pts, tmp); this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide); this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide); } else { SkVector normalB; normalB = pts[2] - pts[0]; normalB.rotateCCW(); SkScalar dot = SkPoint::DotProduct(unitNormalAB, *unitNormalBC); SkAssertResult(normalB.setLength(SkScalarDiv(fRadius, SkScalarSqrt((SK_Scalar1 + dot)/2)))); fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY); fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY); } }
void SkPathStroker::quad_to(const SkPoint pts[3], const SkVector& normalAB, const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC, int subDivide) { if (!set_normal_unitnormal(pts[1], pts[2], fRadius, normalBC, unitNormalBC)) { // pts[1] nearly equals pts[2], so just draw a line to pts[2] this->line_to(pts[2], normalAB); *normalBC = normalAB; *unitNormalBC = unitNormalAB; return; } if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) { SkPoint tmp[5]; SkVector norm, unit; SkChopQuadAtHalf(pts, tmp); this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide); this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide); } else { SkVector normalB, unitB; SkAssertResult(set_normal_unitnormal(pts[0], pts[2], fRadius, &normalB, &unitB)); fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY); fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY); } }
SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3], SkScalar distance, int mint, int maxt, int ptIndex) { if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) { SkPoint tmp[5]; int halft = (mint + maxt) >> 1; SkChopQuadAtHalf(pts, tmp); distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex); distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex); } else {
static void add_quads(const SkPoint p[3], int subdiv, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert) { SkASSERT(subdiv >= 0); if (subdiv) { SkPoint newP[5]; SkChopQuadAtHalf(p, newP); add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); } else { bloat_quad(p, toDevice, toSrc, *vert); set_uv_quad(p, *vert); *vert += kQuadNumVertices; } }