Пример #1
0
//=================================================================================================
void Terrain::Rebuild(bool smooth)
{
	assert(state == 2);

	VTerrain* v;

	V(mesh->LockVertexBuffer(0, (void**)&v));

#define TRI(xx,zz) v[n++].pos.y = h[x+xx+(z+zz)*hszer]

	uint n = 0;
	for(uint z = 0; z < n_tiles; ++z)
	{
		for(uint x = 0; x < n_tiles; ++x)
		{
			TRI(0, 0);
			TRI(0, 1);
			TRI(1, 0);
			CalculateNormal(v[n - 3], v[n - 2], v[n - 1]);

			TRI(0, 1);
			TRI(1, 1);
			TRI(1, 0);
			CalculateNormal(v[n - 3], v[n - 2], v[n - 1]);
		}
	}
#undef TRI

	if(smooth)
		SmoothNormals(v);

	V(mesh->UnlockVertexBuffer());
}
Пример #2
0
//=================================================================================================
void Terrain::SmoothNormals()
{
	assert(state > 0);

	VTerrain* v;
	V(mesh->LockVertexBuffer(0, (void**)&v));

	SmoothNormals(v);

	V(mesh->UnlockVertexBuffer());
}
Пример #3
0
//=================================================================================================
void Terrain::Build(bool smooth)
{
	assert(state == 1);

	HRESULT hr = D3DXCreateMeshFVF(n_tris, n_verts, D3DXMESH_MANAGED | D3DXMESH_32BIT, VTerrain::fvf, device, &mesh);
	if(FAILED(hr))
		throw Format("Failed to create new terrain mesh (%d)!", hr);

	VTerrain* v;
	//word* idx;
	uint* idx;
	uint n = 0;
	//uint index = 0;

	V(mesh->LockVertexBuffer(0, (void**)&v));
	V(mesh->LockIndexBuffer(0, (void**)&idx));

#define TRI(xx,zz,uu,vv) v[n++] = VTerrain((x+xx)*tile_size, h[x+xx+(z+zz)*hszer], (z+zz)*tile_size, float(uu)/uv_mod, float(vv)/uv_mod,\
	((float)(x+xx)) / n_tiles, ((float)(z+zz)) / n_tiles)

	for(uint z = 0; z < n_tiles; ++z)
	{
		for(uint x = 0; x < n_tiles; ++x)
		{
			int u1 = (x%uv_mod);
			int u2 = ((x + 1) % uv_mod);
			if(u2 == 0)
				u2 = uv_mod;
			int v1 = (z%uv_mod);
			int v2 = ((z + 1) % uv_mod);
			if(v2 == 0)
				v2 = uv_mod;

			TRI(0, 0, u1, v1);
			TRI(0, 1, u1, v2);
			TRI(1, 0, u2, v1);
			CalculateNormal(v[n - 3], v[n - 2], v[n - 1]);

			TRI(0, 1, u1, v2);
			TRI(1, 1, u2, v2);
			TRI(1, 0, u2, v1);
			CalculateNormal(v[n - 3], v[n - 2], v[n - 1]);
		}
	}
#undef TRI

	for(uint z = 0; z < n_parts; ++z)
	{
		for(uint x = 0; x < n_parts; ++x)
		{
			const uint z_start = z*tiles_per_part,
				z_end = z_start + tiles_per_part,
				x_start = x*tiles_per_part,
				x_end = x_start + tiles_per_part;

			for(uint zz = z_start; zz < z_end; ++zz)
			{
				for(uint xx = x_start; xx < x_end; ++xx)
				{
					for(uint j = 0; j < 6; ++j)
					{
						*idx = (xx + zz*n_tiles) * 6 + j;
						++idx;
					}
				}
			}
		}
	}

	V(mesh->UnlockIndexBuffer());

	state = 2;

	if(smooth)
		SmoothNormals(v);

	V(mesh->UnlockVertexBuffer());
}
Пример #4
0
//  Here we process mesh geometry for given node.
//  Vertices for the geometry from the all meshes of the scene are allocated in 
//  one big vertex pool. One vertex can occur several times in this pool, because
//  we add 3 new vertices for every face.
//  After all meshes in the scene are processed, this pool is collapsed to remove
//  duplicate vertices.
void RBExport::ProcessMesh( INode* node )
{
    if (!node->Renderable() || node->IsNodeHidden())
    {
        return;
    }
    
    ObjectState os      = node->EvalWorldState( m_CurTime );
    Object*     pObject = os.obj;
    if (!pObject) 
    {
        Warn( "Could not evaluate object state in node <%s>. Mesh was skipped.", node->GetName() );
        return;
    }
    Matrix3 nodeTM          = node->GetNodeTM( m_CurTime );
    Matrix3 nodeTMAfterWSM  = node->GetObjTMAfterWSM( m_CurTime );
    Matrix3 mOffs           = nodeTMAfterWSM*Inverse( nodeTM );

    //  triangulate
    TriObject* pTriObj = 0;
    if (pObject->CanConvertToType( Class_ID( TRIOBJ_CLASS_ID, 0 ) )) 
    { 
        pTriObj = (TriObject*)pObject->ConvertToType( m_CurTime, Class_ID( TRIOBJ_CLASS_ID, 0 ) );
    }
    bool bReleaseTriObj = (pTriObj != pObject);
    if (!pTriObj) 
    {
        Warn( "Could not triangulate mesh in node <%s>. Node was skipped", node->GetName() );
        return;
    }

    if (!MeshModStackIsValid( node ))
    {
        Warn( "Modifier stack for node %s should be collapsed or contain only Skin modifier.", 
                node->GetName() );
    }

    //  ensure, that vertex winding direction in polygon is CCW
    Matrix3 objTM = node->GetObjTMAfterWSM( m_CurTime );
    bool bNegScale = (DotProd( CrossProd( objTM.GetRow(0), objTM.GetRow(1) ), objTM.GetRow(2) ) >= 0.0);

    int vx[3];
    if (bNegScale) 
    {
        vx[0] = 0; 
        vx[1] = 1; 
        vx[2] = 2; 
    } 
    else 
    { 
        vx[0] = 2; 
        vx[1] = 1; 
        vx[2] = 0; 
    }

    Mesh& mesh = pTriObj->GetMesh();

    bool bHasTexCoord    = (mesh.numTVerts != 0);
    bool bHasVertexColor = (mesh.numCVerts != 0) && m_pConfig->m_bExportVertexColors;
    bool bHasNormal      = m_pConfig->m_bExportNormals; 
    bool bHasSkin        = ProcessSkin( node );

    //  some cosmetics
    BOOL res = mesh.RemoveDegenerateFaces();
    if (res) 
    {
        Spam( "Degenerate faces were fixed." );
    }

    res = mesh.RemoveIllegalFaces();
    if (res) 
    {
        Spam( "Degenerate indices were fixed." );
    }
    
    ExpNode* pExpNode = GetExportedNode( node );
    if (!pExpNode)
    {
        return;
    }

    int numPri     = mesh.getNumFaces();
    int numVert    = mesh.numVerts;

    //  initialize helper array for building vertices' 0-circles
    VertexPtrArray vertexEntry;
    vertexEntry.resize( numVert );
    memset( &vertexEntry[0], 0, sizeof( ExpVertex* )*numVert );

    Spam( "Original mesh has %d vertices and %d faces.", numVert, numPri );
    bool bHasVoidFaces = false;

    //  loop on mesh faces
    for (int i = 0; i < numPri; i++)
    {
        Face& face = mesh.faces[i];

        //  calculate face normal
        const Point3& v0 = mesh.verts[face.v[vx[0]]]; 
        const Point3& v1 = mesh.verts[face.v[vx[1]]]; 
        const Point3& v2 = mesh.verts[face.v[vx[2]]]; 
        Point3 normal = -Normalize( (v1 - v0)^(v2 - v1) ); 
        normal = mOffs.VectorTransform( normal );
        normal = c_FlipTM.VectorTransform( normal );

        //  loop on face vertices
        ExpVertex* pFaceVertex[3];
        for (int j = 0; j < 3; j++)
        {
            ExpVertex v;
            v.mtlID  = pExpNode->GetMaterialIdx( face.getMatID() );            
            v.nodeID = pExpNode->m_Index;

            if (v.mtlID < 0)
            {
                bHasVoidFaces = true;
            }
            
            //  extract vertex position and apply world-space modifier to it
            int vIdx    = face.v[vx[j]];
            Point3 pt   = mesh.verts[vIdx];
            pt = mOffs.PointTransform( pt );
            pt = c_FlipTM.PointTransform( pt );
            
            v.index = vIdx;
            v.pos   = Vec3( pt.x, pt.y, pt.z );
            //v.pos *= m_WorldScale;

            //  extract skinning info
            if (bHasSkin)
            {
                GetSkinInfo( v );
            }

            //  assign normal
            if (bHasNormal)
            {
                v.normal  = Vec3( normal.x, normal.y, normal.z );
                v.smGroup = face.smGroup;
            }
            
            //  extract vertex colors
            if (bHasVertexColor)    
            {
                const VertColor& vcol = mesh.vertCol[mesh.vcFace[i].t[vx[j]]];
                v.color = ColorToDWORD( Color( vcol.x, vcol.y, vcol.z ) );
            }

            //  extract texture coordinates
            if (bHasTexCoord)   
            {
                const Point3& texCoord = mesh.tVerts[mesh.tvFace[i].t[vx[j]]];
                v.uv.x = texCoord.x;
                v.uv.y = 1.0f - texCoord.y;

                //  second texture coordinate channel
                if (mesh.getNumMaps() > 1 && mesh.mapSupport( 2 ))
                {
                    UVVert* pUVVert = mesh.mapVerts( 2 );
                    TVFace* pTVFace = mesh.mapFaces( 2 );
                    if (pUVVert && pTVFace)
                    {
                        const Point3& tc2 = pUVVert[pTVFace[i].t[vx[j]]];
                        v.uv2.x = tc2.x;
                        v.uv2.y = 1.0f - tc2.y;
                    }
                }
            }

            //  allocate new vertex 
            pFaceVertex[j] = AddVertex( v );

            //  we want vertices in the 0-ring neighborhood to be linked into closed linked list
            if (vertexEntry[vIdx] == NULL) 
            {
                vertexEntry[vIdx] = pFaceVertex[j];
                pFaceVertex[j]->pNext = pFaceVertex[j];
            }
            else
            {
                vertexEntry[vIdx]->AddToZeroRing( pFaceVertex[j] );
            }
        }
        AddPolygon( pFaceVertex[0], pFaceVertex[1], pFaceVertex[2] );

        if (IsCanceled())
        {
            return;
        }
    }

    //  correct normals at vertices corresponding to smoothing groups
    SmoothNormals( vertexEntry );

    //  put vertices into set (this removes duplicate vertices)
    for (int i = 0; i < numVert; i++)
    {
        ExpVertex::ZeroRingIterator it( vertexEntry[i] );
        while (it)
        {
            VertexSet::iterator sIt = m_VertexSet.find( it );
            if (sIt == m_VertexSet.end())
            {
                m_VertexSet.insert( it );
            }
            else
            {
                it->pBase = (*sIt);
            }
            ++it;
        }
    }

    if (bReleaseTriObj) 
    {
        delete pTriObj;
    }

    if (bHasVoidFaces)
    {
        Warn( "Mesh %s has faces with no material assigned.", node->GetName() );
    }
} // RBExport::ProcessMesh