void psgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A, int *perm_c, int *perm_r, equed_t *equed, float *R, float *C, SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth, float *rcond, float *ferr, float *berr, superlu_memusage_t *superlu_memusage, int *info) { /* * -- SuperLU MT routine (version 2.0) -- * Lawrence Berkeley National Lab, Univ. of California Berkeley, * and Xerox Palo Alto Research Center. * September 10, 2007 * * Purpose * ======= * * psgssvx() solves the system of linear equations A*X=B or A'*X=B, using * the LU factorization from sgstrf(). Error bounds on the solution and * a condition estimate are also provided. It performs the following steps: * * 1. If A is stored column-wise (A->Stype = NC): * * 1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate * the system: * trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B * trans = TRANS: (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B * trans = CONJ: (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A is * overwritten by diag(R)*A*diag(C) and B by diag(R)*B * (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ). * * 1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix * that usually preserves sparsity. * For more details of this step, see ssp_colorder.c. * * 1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to * factor the matrix A (after equilibration if fact = EQUILIBRATE) as * Pr*A*Pc = L*U, with Pr determined by partial pivoting. * * 1.4. Compute the reciprocal pivot growth factor. * * 1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine * returns with info = i. Otherwise, the factored form of A is used to * estimate the condition number of the matrix A. If the reciprocal of * the condition number is less than machine precision, * info = A->ncol+1 is returned as a warning, but the routine still * goes on to solve for X and computes error bounds as described below. * * 1.6. The system of equations is solved for X using the factored form * of A. * * 1.7. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * 1.8. If equilibration was used, the matrix X is premultiplied by * diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ) * so that it solves the original system before equilibration. * * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm * to the tranpose of A: * * 2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate * the system: * trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B * trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B * trans = CONJ: (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A' is * overwritten by diag(R)*A'*diag(C) and B by diag(R)*B * (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ). * * 2.2. Permute columns of transpose(A) (rows of A), * forming transpose(A)*Pc, where Pc is a permutation matrix that * usually preserves sparsity. * For more details of this step, see ssp_colorder.c. * * 2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to * factor the matrix A (after equilibration if fact = EQUILIBRATE) as * Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by * partial pivoting. * * 2.4. Compute the reciprocal pivot growth factor. * * 2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine * returns with info = i. Otherwise, the factored form of transpose(A) * is used to estimate the condition number of the matrix A. * If the reciprocal of the condition number is less than machine * precision, info = A->nrow+1 is returned as a warning, but the * routine still goes on to solve for X and computes error bounds * as described below. * * 2.6. The system of equations is solved for X using the factored form * of transpose(A). * * 2.7. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * 2.8. If equilibration was used, the matrix X is premultiplied by * diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ) * so that it solves the original system before equilibration. * * See supermatrix.h for the definition of 'SuperMatrix' structure. * * Arguments * ========= * * nprocs (input) int * Number of processes (or threads) to be spawned and used to perform * the LU factorization by psgstrf(). There is a single thread of * control to call psgstrf(), and all threads spawned by psgstrf() * are terminated before returning from psgstrf(). * * superlumt_options (input) superlumt_options_t* * The structure defines the input parameters and data structure * to control how the LU factorization will be performed. * The following fields should be defined for this structure: * * o fact (fact_t) * Specifies whether or not the factored form of the matrix * A is supplied on entry, and if not, whether the matrix A should * be equilibrated before it is factored. * = FACTORED: On entry, L, U, perm_r and perm_c contain the * factored form of A. If equed is not NOEQUIL, the matrix A has * been equilibrated with scaling factors R and C. * A, L, U, perm_r are not modified. * = DOFACT: The matrix A will be factored, and the factors will be * stored in L and U. * = EQUILIBRATE: The matrix A will be equilibrated if necessary, * then factored into L and U. * * o trans (trans_t) * Specifies the form of the system of equations: * = NOTRANS: A * X = B (No transpose) * = TRANS: A**T * X = B (Transpose) * = CONJ: A**H * X = B (Transpose) * * o refact (yes_no_t) * Specifies whether this is first time or subsequent factorization. * = NO: this factorization is treated as the first one; * = YES: it means that a factorization was performed prior to this * one. Therefore, this factorization will re-use some * existing data structures, such as L and U storage, column * elimination tree, and the symbolic information of the * Householder matrix. * * o panel_size (int) * A panel consists of at most panel_size consecutive columns. * * o relax (int) * To control degree of relaxing supernodes. If the number * of nodes (columns) in a subtree of the elimination tree is less * than relax, this subtree is considered as one supernode, * regardless of the row structures of those columns. * * o diag_pivot_thresh (float) * Diagonal pivoting threshold. At step j of the Gaussian * elimination, if * abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)), * use A_jj as pivot, else use A_ij with maximum magnitude. * 0 <= diag_pivot_thresh <= 1. The default value is 1, * corresponding to partial pivoting. * * o usepr (yes_no_t) * Whether the pivoting will use perm_r specified by the user. * = YES: use perm_r; perm_r is input, unchanged on exit. * = NO: perm_r is determined by partial pivoting, and is output. * * o drop_tol (double) (NOT IMPLEMENTED) * Drop tolerance parameter. At step j of the Gaussian elimination, * if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij. * 0 <= drop_tol <= 1. The default value of drop_tol is 0, * corresponding to not dropping any entry. * * o work (void*) of size lwork * User-supplied work space and space for the output data structures. * Not referenced if lwork = 0; * * o lwork (int) * Specifies the length of work array. * = 0: allocate space internally by system malloc; * > 0: use user-supplied work array of length lwork in bytes, * returns error if space runs out. * = -1: the routine guesses the amount of space needed without * performing the factorization, and returns it in * superlu_memusage->total_needed; no other side effects. * * A (input/output) SuperMatrix* * Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where * A->nrow = A->ncol. Currently, the type of A can be: * Stype = NC or NR, Dtype = _D, Mtype = GE. In the future, * more general A will be handled. * * On entry, If superlumt_options->fact = FACTORED and equed is not * NOEQUIL, then A must have been equilibrated by the scaling factors * in R and/or C. On exit, A is not modified * if superlumt_options->fact = FACTORED or DOFACT, or * if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL. * * On exit, if superlumt_options->fact = EQUILIBRATE and equed is not * NOEQUIL, A is scaled as follows: * If A->Stype = NC: * equed = ROW: A := diag(R) * A * equed = COL: A := A * diag(C) * equed = BOTH: A := diag(R) * A * diag(C). * If A->Stype = NR: * equed = ROW: transpose(A) := diag(R) * transpose(A) * equed = COL: transpose(A) := transpose(A) * diag(C) * equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C). * * perm_c (input/output) int* * If A->Stype = NC, Column permutation vector of size A->ncol, * which defines the permutation matrix Pc; perm_c[i] = j means * column i of A is in position j in A*Pc. * On exit, perm_c may be overwritten by the product of the input * perm_c and a permutation that postorders the elimination tree * of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree * is already in postorder. * * If A->Stype = NR, column permutation vector of size A->nrow, * which describes permutation of columns of tranpose(A) * (rows of A) as described above. * * perm_r (input/output) int* * If A->Stype = NC, row permutation vector of size A->nrow, * which defines the permutation matrix Pr, and is determined * by partial pivoting. perm_r[i] = j means row i of A is in * position j in Pr*A. * * If A->Stype = NR, permutation vector of size A->ncol, which * determines permutation of rows of transpose(A) * (columns of A) as described above. * * If superlumt_options->usepr = NO, perm_r is output argument; * If superlumt_options->usepr = YES, the pivoting routine will try * to use the input perm_r, unless a certain threshold criterion * is violated. In that case, perm_r is overwritten by a new * permutation determined by partial pivoting or diagonal * threshold pivoting. * * equed (input/output) equed_t* * Specifies the form of equilibration that was done. * = NOEQUIL: No equilibration. * = ROW: Row equilibration, i.e., A was premultiplied by diag(R). * = COL: Column equilibration, i.e., A was postmultiplied by diag(C). * = BOTH: Both row and column equilibration, i.e., A was replaced * by diag(R)*A*diag(C). * If superlumt_options->fact = FACTORED, equed is an input argument, * otherwise it is an output argument. * * R (input/output) double*, dimension (A->nrow) * The row scale factors for A or transpose(A). * If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A) * (if A->Stype = NR) is multiplied on the left by diag(R). * If equed = NOEQUIL or COL, R is not accessed. * If fact = FACTORED, R is an input argument; otherwise, R is output. * If fact = FACTORED and equed = ROW or BOTH, each element of R must * be positive. * * C (input/output) double*, dimension (A->ncol) * The column scale factors for A or transpose(A). * If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A) * (if A->Stype = NR) is multiplied on the right by diag(C). * If equed = NOEQUIL or ROW, C is not accessed. * If fact = FACTORED, C is an input argument; otherwise, C is output. * If fact = FACTORED and equed = COL or BOTH, each element of C must * be positive. * * L (output) SuperMatrix* * The factor L from the factorization * Pr*A*Pc=L*U (if A->Stype = NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype = NR). * Uses compressed row subscripts storage for supernodes, i.e., * L has types: Stype = SCP, Dtype = _D, Mtype = TRLU. * * U (output) SuperMatrix* * The factor U from the factorization * Pr*A*Pc=L*U (if A->Stype = NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype = NR). * Uses column-wise storage scheme, i.e., U has types: * Stype = NCP, Dtype = _D, Mtype = TRU. * * B (input/output) SuperMatrix* * B has types: Stype = DN, Dtype = _D, Mtype = GE. * On entry, the right hand side matrix. * On exit, * if equed = NOEQUIL, B is not modified; otherwise * if A->Stype = NC: * if trans = NOTRANS and equed = ROW or BOTH, B is overwritten * by diag(R)*B; * if trans = TRANS or CONJ and equed = COL of BOTH, B is * overwritten by diag(C)*B; * if A->Stype = NR: * if trans = NOTRANS and equed = COL or BOTH, B is overwritten * by diag(C)*B; * if trans = TRANS or CONJ and equed = ROW of BOTH, B is * overwritten by diag(R)*B. * * X (output) SuperMatrix* * X has types: Stype = DN, Dtype = _D, Mtype = GE. * If info = 0 or info = A->ncol+1, X contains the solution matrix * to the original system of equations. Note that A and B are modified * on exit if equed is not NOEQUIL, and the solution to the * equilibrated system is inv(diag(C))*X if trans = NOTRANS and * equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ * and equed = ROW or BOTH. * * recip_pivot_growth (output) float* * The reciprocal pivot growth factor computed as * max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ). * If recip_pivot_growth is much less than 1, the stability of the * LU factorization could be poor. * * rcond (output) float* * The estimate of the reciprocal condition number of the matrix A * after equilibration (if done). If rcond is less than the machine * precision (in particular, if rcond = 0), the matrix is singular * to working precision. This condition is indicated by a return * code of info > 0. * * ferr (output) float*, dimension (B->ncol) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * berr (output) float*, dimension (B->ncol) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * superlu_memusage (output) superlu_memusage_t* * Record the memory usage statistics, consisting of following fields: * - for_lu (float) * The amount of space used in bytes for L\U data structures. * - total_needed (float) * The amount of space needed in bytes to perform factorization. * - expansions (int) * The number of memory expansions during the LU factorization. * * info (output) int* * = 0: successful exit * < 0: if info = -i, the i-th argument had an illegal value * > 0: if info = i, and i is * <= A->ncol: U(i,i) is exactly zero. The factorization has * been completed, but the factor U is exactly * singular, so the solution and error bounds * could not be computed. * = A->ncol+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular to * working precision. Nevertheless, the solution and * error bounds are computed because there are a number * of situations where the computed solution can be more * accurate than the value of RCOND would suggest. * > A->ncol+1: number of bytes allocated when memory allocation * failure occurred, plus A->ncol. * */ NCformat *Astore; DNformat *Bstore, *Xstore; float *Bmat, *Xmat; int ldb, ldx, nrhs; SuperMatrix *AA; /* A in NC format used by the factorization routine.*/ SuperMatrix AC; /* Matrix postmultiplied by Pc */ int colequ, equil, dofact, notran, rowequ; char norm[1]; trans_t trant; int i, j, info1; float amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin; int n, relax, panel_size; Gstat_t Gstat; double t0; /* temporary time */ double *utime; flops_t *ops, flopcnt; /* External functions */ extern float slangs(char *, SuperMatrix *); extern double slamch_(char *); Astore = A->Store; Bstore = B->Store; Xstore = X->Store; Bmat = Bstore->nzval; Xmat = Xstore->nzval; n = A->ncol; ldb = Bstore->lda; ldx = Xstore->lda; nrhs = B->ncol; superlumt_options->perm_c = perm_c; superlumt_options->perm_r = perm_r; *info = 0; dofact = (superlumt_options->fact == DOFACT); equil = (superlumt_options->fact == EQUILIBRATE); notran = (superlumt_options->trans == NOTRANS); if (dofact || equil) { *equed = NOEQUIL; rowequ = FALSE; colequ = FALSE; } else { rowequ = (*equed == ROW) || (*equed == BOTH); colequ = (*equed == COL) || (*equed == BOTH); smlnum = slamch_("Safe minimum"); bignum = 1. / smlnum; } /* ------------------------------------------------------------ Test the input parameters. ------------------------------------------------------------*/ if ( nprocs <= 0 ) *info = -1; else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED)) || (!notran && (superlumt_options->trans != TRANS) && (superlumt_options->trans != CONJ)) || (superlumt_options->refact != YES && superlumt_options->refact != NO) || (superlumt_options->usepr != YES && superlumt_options->usepr != NO) || superlumt_options->lwork < -1 ) *info = -2; else if ( A->nrow != A->ncol || A->nrow < 0 || (A->Stype != SLU_NC && A->Stype != SLU_NR) || A->Dtype != SLU_S || A->Mtype != SLU_GE ) *info = -3; else if ((superlumt_options->fact == FACTORED) && !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6; else { if (rowequ) { rcmin = bignum; rcmax = 0.; for (j = 0; j < A->nrow; ++j) { rcmin = SUPERLU_MIN(rcmin, R[j]); rcmax = SUPERLU_MAX(rcmax, R[j]); } if (rcmin <= 0.) *info = -7; else if ( A->nrow > 0) rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum); else rowcnd = 1.; } if (colequ && *info == 0) { rcmin = bignum; rcmax = 0.; for (j = 0; j < A->nrow; ++j) { rcmin = SUPERLU_MIN(rcmin, C[j]); rcmax = SUPERLU_MAX(rcmax, C[j]); } if (rcmin <= 0.) *info = -8; else if (A->nrow > 0) colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum); else colcnd = 1.; } if (*info == 0) { if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) || B->Stype != SLU_DN || B->Dtype != SLU_S || B->Mtype != SLU_GE ) *info = -11; else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) || B->ncol != X->ncol || X->Stype != SLU_DN || X->Dtype != SLU_S || X->Mtype != SLU_GE ) *info = -12; } } if (*info != 0) { i = -(*info); xerbla_("psgssvx", &i); return; } /* ------------------------------------------------------------ Allocate storage and initialize statistics variables. ------------------------------------------------------------*/ panel_size = superlumt_options->panel_size; relax = superlumt_options->relax; StatAlloc(n, nprocs, panel_size, relax, &Gstat); StatInit(n, nprocs, &Gstat); utime = Gstat.utime; ops = Gstat.ops; /* ------------------------------------------------------------ Convert A to NC format when necessary. ------------------------------------------------------------*/ if ( A->Stype == SLU_NR ) { NRformat *Astore = A->Store; AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) ); sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, Astore->nzval, Astore->colind, Astore->rowptr, SLU_NC, A->Dtype, A->Mtype); if ( notran ) { /* Reverse the transpose argument. */ trant = TRANS; notran = 0; } else { trant = NOTRANS; notran = 1; } } else { /* A->Stype == NC */ trant = superlumt_options->trans; AA = A; } /* ------------------------------------------------------------ Diagonal scaling to equilibrate the matrix. ------------------------------------------------------------*/ if ( equil ) { t0 = SuperLU_timer_(); /* Compute row and column scalings to equilibrate the matrix A. */ sgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1); if ( info1 == 0 ) { /* Equilibrate matrix A. */ slaqgs(AA, R, C, rowcnd, colcnd, amax, equed); rowequ = (*equed == ROW) || (*equed == BOTH); colequ = (*equed == COL) || (*equed == BOTH); } utime[EQUIL] = SuperLU_timer_() - t0; } /* ------------------------------------------------------------ Scale the right hand side. ------------------------------------------------------------*/ if ( notran ) { if ( rowequ ) { for (j = 0; j < nrhs; ++j) for (i = 0; i < A->nrow; ++i) { Bmat[i + j*ldb] *= R[i]; } } } else if ( colequ ) { for (j = 0; j < nrhs; ++j) for (i = 0; i < A->nrow; ++i) { Bmat[i + j*ldb] *= C[i]; } } /* ------------------------------------------------------------ Perform the LU factorization. ------------------------------------------------------------*/ if ( dofact || equil ) { /* Obtain column etree, the column count (colcnt_h) and supernode partition (part_super_h) for the Householder matrix. */ t0 = SuperLU_timer_(); sp_colorder(AA, perm_c, superlumt_options, &AC); utime[ETREE] = SuperLU_timer_() - t0; #if ( PRNTlevel >= 2 ) printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", relax, panel_size, sp_ienv(3), sp_ienv(4)); fflush(stdout); #endif /* Compute the LU factorization of A*Pc. */ t0 = SuperLU_timer_(); psgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info); utime[FACT] = SuperLU_timer_() - t0; flopcnt = 0; for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops; ops[FACT] = flopcnt; if ( superlumt_options->lwork == -1 ) { superlu_memusage->total_needed = *info - A->ncol; return; } } if ( *info > 0 ) { if ( *info <= A->ncol ) { /* Compute the reciprocal pivot growth factor of the leading rank-deficient *info columns of A. */ *recip_pivot_growth = sPivotGrowth(*info, AA, perm_c, L, U); } } else { /* ------------------------------------------------------------ Compute the reciprocal pivot growth factor *recip_pivot_growth. ------------------------------------------------------------*/ *recip_pivot_growth = sPivotGrowth(A->ncol, AA, perm_c, L, U); /* ------------------------------------------------------------ Estimate the reciprocal of the condition number of A. ------------------------------------------------------------*/ t0 = SuperLU_timer_(); if ( notran ) { *(unsigned char *)norm = '1'; } else { *(unsigned char *)norm = 'I'; } anorm = slangs(norm, AA); sgscon(norm, L, U, anorm, rcond, info); utime[RCOND] = SuperLU_timer_() - t0; /* ------------------------------------------------------------ Compute the solution matrix X. ------------------------------------------------------------*/ for (j = 0; j < nrhs; j++) /* Save a copy of the right hand sides */ for (i = 0; i < B->nrow; i++) Xmat[i + j*ldx] = Bmat[i + j*ldb]; t0 = SuperLU_timer_(); sgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info); utime[SOLVE] = SuperLU_timer_() - t0; ops[SOLVE] = ops[TRISOLVE]; /* ------------------------------------------------------------ Use iterative refinement to improve the computed solution and compute error bounds and backward error estimates for it. ------------------------------------------------------------*/ t0 = SuperLU_timer_(); sgsrfs(trant, AA, L, U, perm_r, perm_c, *equed, R, C, B, X, ferr, berr, &Gstat, info); utime[REFINE] = SuperLU_timer_() - t0; /* ------------------------------------------------------------ Transform the solution matrix X to a solution of the original system. ------------------------------------------------------------*/ if ( notran ) { if ( colequ ) { for (j = 0; j < nrhs; ++j) for (i = 0; i < A->nrow; ++i) { Xmat[i + j*ldx] *= C[i]; } } } else if ( rowequ ) { for (j = 0; j < nrhs; ++j) for (i = 0; i < A->nrow; ++i) { Xmat[i + j*ldx] *= R[i]; } } /* Set INFO = A->ncol+1 if the matrix is singular to working precision.*/ if ( *rcond < slamch_("E") ) *info = A->ncol + 1; } superlu_sQuerySpace(nprocs, L, U, panel_size, superlu_memusage); /* ------------------------------------------------------------ Deallocate storage after factorization. ------------------------------------------------------------*/ if ( superlumt_options->refact == NO ) { SUPERLU_FREE(superlumt_options->etree); SUPERLU_FREE(superlumt_options->colcnt_h); SUPERLU_FREE(superlumt_options->part_super_h); } if ( dofact || equil ) { Destroy_CompCol_Permuted(&AC); } if ( A->Stype == SLU_NR ) { Destroy_SuperMatrix_Store(AA); SUPERLU_FREE(AA); } /* ------------------------------------------------------------ Print timings, then deallocate statistic variables. ------------------------------------------------------------*/ #ifdef PROFILE { SCPformat *Lstore = (SCPformat *) L->Store; ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat); } #endif PrintStat(&Gstat); StatFree(&Gstat); }
void pzgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info ) { /* * -- SuperLU MT routine (version 2.0) -- * Lawrence Berkeley National Lab, Univ. of California Berkeley, * and Xerox Palo Alto Research Center. * September 10, 2007 * * Purpose * ======= * * PZGSSV solves the system of linear equations A*X=B, using the parallel * LU factorization routine PZGSTRF. It performs the following steps: * * 1. If A is stored column-wise (A->Stype = NC): * * 1.1. Permute the columns of A, forming A*Pc, where Pc is a * permutation matrix. * For more details of this step, see sp_preorder.c. * * 1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined * by Gaussian elimination with partial pivoting. * L is unit lower triangular with offdiagonal entries * bounded by 1 in magnitude, and U is upper triangular. * * 1.3. Solve the system of equations A*X=B using the factored * form of A. * * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm * to the tranpose of A: * * 2.1. Permute columns of tranpose(A) (rows of A), * forming transpose(A)*Pc, where Pc is a permutation matrix. * For more details of this step, see sp_preorder.c. * * 2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr * determined by Gaussian elimination with partial pivoting. * L is unit lower triangular with offdiagonal entries * bounded by 1 in magnitude, and U is upper triangular. * * 2.3. Solve the system of equations A*X=B using the factored * form of A. * * See supermatrix.h for the definition of "SuperMatrix" structure. * * * Arguments * ========= * * nprocs (input) int * Number of processes (or threads) to be spawned and used to perform * the LU factorization by pzgstrf(). There is a single thread of * control to call pzgstrf(), and all threads spawned by pzgstrf() * are terminated before returning from pzgstrf(). * * A (input) SuperMatrix* * Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where * A->nrow = A->ncol. Currently, the type of A can be: * Stype = NC or NR; Dtype = _D; Mtype = GE. In the future, * more general A will be handled. * * perm_c (input/output) int* * If A->Stype=NC, column permutation vector of size A->ncol, * which defines the permutation matrix Pc; perm_c[i] = j means * column i of A is in position j in A*Pc. * On exit, perm_c may be overwritten by the product of the input * perm_c and a permutation that postorders the elimination tree * of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree * is already in postorder. * * If A->Stype=NR, column permutation vector of size A->nrow * which describes permutation of columns of tranpose(A) * (rows of A) as described above. * * perm_r (output) int*, * If A->Stype=NR, row permutation vector of size A->nrow, * which defines the permutation matrix Pr, and is determined * by partial pivoting. perm_r[i] = j means row i of A is in * position j in Pr*A. * * If A->Stype=NR, permutation vector of size A->ncol, which * determines permutation of rows of transpose(A) * (columns of A) as described above. * * L (output) SuperMatrix* * The factor L from the factorization * Pr*A*Pc=L*U (if A->Stype=NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype=NR). * Uses compressed row subscripts storage for supernodes, i.e., * L has types: Stype = SCP, Dtype = _D, Mtype = TRLU. * * U (output) SuperMatrix* * The factor U from the factorization * Pr*A*Pc=L*U (if A->Stype=NC) or * Pr*transpose(A)*Pc=L*U (if A->Stype=NR). * Use column-wise storage scheme, i.e., U has types: * Stype = NCP, Dtype = _D, Mtype = TRU. * * B (input/output) SuperMatrix* * B has types: Stype = DN, Dtype = _D, Mtype = GE. * On entry, the right hand side matrix. * On exit, the solution matrix if info = 0; * * info (output) int* * = 0: successful exit * > 0: if info = i, and i is * <= A->ncol: U(i,i) is exactly zero. The factorization has * been completed, but the factor U is exactly singular, * so the solution could not be computed. * > A->ncol: number of bytes allocated when memory allocation * failure occurred, plus A->ncol. * */ trans_t trans; NCformat *Astore; DNformat *Bstore; SuperMatrix *AA; /* A in NC format used by the factorization routine.*/ SuperMatrix AC; /* Matrix postmultiplied by Pc */ int i, n, panel_size, relax; fact_t fact; yes_no_t refact, usepr; double diag_pivot_thresh, drop_tol; void *work; int lwork; superlumt_options_t superlumt_options; Gstat_t Gstat; double t; /* Temporary time */ double *utime; flops_t *ops, flopcnt; /* ------------------------------------------------------------ Test the input parameters. ------------------------------------------------------------*/ Astore = A->Store; Bstore = B->Store; *info = 0; if ( nprocs <= 0 ) *info = -1; else if ( A->nrow != A->ncol || A->nrow < 0 || (A->Stype != SLU_NC && A->Stype != SLU_NR) || A->Dtype != SLU_Z || A->Mtype != SLU_GE ) *info = -2; else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(1, A->nrow) )*info = -7; if ( *info != 0 ) { i = -(*info); xerbla_("pzgssv", &i); return; } #if 0 /* Use the best sequential code. if this part is commented out, we will use the parallel code run on one processor. */ if ( nprocs == 1 ) { return; } #endif fact = EQUILIBRATE; refact = NO; trans = NOTRANS; panel_size = sp_ienv(1); relax = sp_ienv(2); diag_pivot_thresh = 1.0; usepr = NO; drop_tol = 0.0; work = NULL; lwork = 0; /* ------------------------------------------------------------ Allocate storage and initialize statistics variables. ------------------------------------------------------------*/ n = A->ncol; StatAlloc(n, nprocs, panel_size, relax, &Gstat); StatInit(n, nprocs, &Gstat); utime = Gstat.utime; ops = Gstat.ops; /* ------------------------------------------------------------ Convert A to NC format when necessary. ------------------------------------------------------------*/ if ( A->Stype == SLU_NR ) { NRformat *Astore = A->Store; AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) ); zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, Astore->nzval, Astore->colind, Astore->rowptr, SLU_NC, A->Dtype, A->Mtype); trans = TRANS; } else if ( A->Stype == SLU_NC ) AA = A; /* ------------------------------------------------------------ Initialize the option structure superlumt_options using the user-input parameters; Apply perm_c to the columns of original A to form AC. ------------------------------------------------------------*/ pzgstrf_init(nprocs, fact, trans, refact, panel_size, relax, diag_pivot_thresh, usepr, drop_tol, perm_c, perm_r, work, lwork, AA, &AC, &superlumt_options, &Gstat); /* ------------------------------------------------------------ Compute the LU factorization of A. The following routine will create nprocs threads. ------------------------------------------------------------*/ pzgstrf(&superlumt_options, &AC, perm_r, L, U, &Gstat, info); flopcnt = 0; for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops; ops[FACT] = flopcnt; #if ( PRNTlevel==1 ) printf("nprocs = %d, flops %e, Mflops %.2f\n", nprocs, flopcnt, flopcnt/utime[FACT]*1e-6); printf("Parameters: w %d, relax %d, maxsuper %d, rowblk %d, colblk %d\n", sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5)); fflush(stdout); #endif /* ------------------------------------------------------------ Solve the system A*X=B, overwriting B with X. ------------------------------------------------------------*/ if ( *info == 0 ) { t = SuperLU_timer_(); zgstrs (trans, L, U, perm_r, perm_c, B, &Gstat, info); utime[SOLVE] = SuperLU_timer_() - t; ops[SOLVE] = ops[TRISOLVE]; } /* ------------------------------------------------------------ Deallocate storage after factorization. ------------------------------------------------------------*/ pxgstrf_finalize(&superlumt_options, &AC); if ( A->Stype == SLU_NR ) { Destroy_SuperMatrix_Store(AA); SUPERLU_FREE(AA); } /* ------------------------------------------------------------ Print timings, then deallocate statistic variables. ------------------------------------------------------------*/ #ifdef PROFILE { SCPformat *Lstore = (SCPformat *) L->Store; ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat); } #endif PrintStat(&Gstat); StatFree(&Gstat); }
main(int argc, char *argv[]) { SuperMatrix A, AC, L, U, B; NCformat *Astore; SCPformat *Lstore; NCPformat *Ustore; superlumt_options_t superlumt_options; pxgstrf_shared_t pxgstrf_shared; pdgstrf_threadarg_t *pdgstrf_threadarg; int nprocs; fact_t fact; trans_t trans; yes_no_t refact, usepr; double u, drop_tol; double *a; int *asub, *xa; int *perm_c; /* column permutation vector */ int *perm_r; /* row permutations from partial pivoting */ void *work; int info, lwork, nrhs, ldx; int m, n, nnz, permc_spec, panel_size, relax; int i, firstfact; double *rhsb, *xact; Gstat_t Gstat; flops_t flopcnt; void parse_command_line(); /* Default parameters to control factorization. */ nprocs = 1; fact = EQUILIBRATE; trans = NOTRANS; panel_size = sp_ienv(1); relax = sp_ienv(2); u = 1.0; usepr = NO; drop_tol = 0.0; work = NULL; lwork = 0; nrhs = 1; /* Get the number of processes from command line. */ parse_command_line(argc, argv, &nprocs); /* Read the input matrix stored in Harwell-Boeing format. */ dreadhb(&m, &n, &nnz, &a, &asub, &xa); /* Set up the sparse matrix data structure for A. */ dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE); if (!(rhsb = doubleMalloc(m * nrhs))) SUPERLU_ABORT("Malloc fails for rhsb[]."); dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE); xact = doubleMalloc(n * nrhs); ldx = n; dGenXtrue(n, nrhs, xact, ldx); dFillRHS(trans, nrhs, xact, ldx, &A, &B); if (!(perm_r = intMalloc(m))) SUPERLU_ABORT("Malloc fails for perm_r[]."); if (!(perm_c = intMalloc(n))) SUPERLU_ABORT("Malloc fails for perm_c[]."); /******************************** * THE FIRST TIME FACTORIZATION * ********************************/ /* ------------------------------------------------------------ Allocate storage and initialize statistics variables. ------------------------------------------------------------*/ StatAlloc(n, nprocs, panel_size, relax, &Gstat); StatInit(n, nprocs, &Gstat); /* ------------------------------------------------------------ Get column permutation vector perm_c[], according to permc_spec: permc_spec = 0: natural ordering permc_spec = 1: minimum degree ordering on structure of A'*A permc_spec = 2: minimum degree ordering on structure of A'+A permc_spec = 3: approximate minimum degree for unsymmetric matrices ------------------------------------------------------------*/ permc_spec = 1; get_perm_c(permc_spec, &A, perm_c); /* ------------------------------------------------------------ Initialize the option structure superlumt_options using the user-input parameters; Apply perm_c to the columns of original A to form AC. ------------------------------------------------------------*/ refact= NO; pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax, u, usepr, drop_tol, perm_c, perm_r, work, lwork, &A, &AC, &superlumt_options, &Gstat); /* ------------------------------------------------------------ Compute the LU factorization of A. The following routine will create nprocs threads. ------------------------------------------------------------*/ pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info); flopcnt = 0; for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops; Gstat.ops[FACT] = flopcnt; /* ------------------------------------------------------------ Solve the system A*X=B, overwriting B with X. ------------------------------------------------------------*/ dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info); printf("\n** Result of sparse LU **\n"); dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */ Destroy_CompCol_Permuted(&AC); /* Free extra arrays in AC. */ /********************************* * THE SUBSEQUENT FACTORIZATIONS * *********************************/ /* ------------------------------------------------------------ Re-initialize statistics variables and options used by the factorization routine pdgstrf(). ------------------------------------------------------------*/ StatInit(n, nprocs, &Gstat); refact= YES; pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax, u, usepr, drop_tol, perm_c, perm_r, work, lwork, &A, &AC, &superlumt_options, &Gstat); /* ------------------------------------------------------------ Compute the LU factorization of A. The following routine will create nprocs threads. ------------------------------------------------------------*/ pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info); flopcnt = 0; for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops; Gstat.ops[FACT] = flopcnt; /* ------------------------------------------------------------ Re-generate right-hand side B, then solve A*X= B. ------------------------------------------------------------*/ dFillRHS(trans, nrhs, xact, ldx, &A, &B); dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info); /* ------------------------------------------------------------ Deallocate storage after factorization. ------------------------------------------------------------*/ pxgstrf_finalize(&superlumt_options, &AC); printf("\n** Result of sparse LU **\n"); dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */ Lstore = (SCPformat *) L.Store; Ustore = (NCPformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); fflush(stdout); SUPERLU_FREE (rhsb); SUPERLU_FREE (xact); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); if ( lwork >= 0 ) { Destroy_SuperNode_SCP(&L); Destroy_CompCol_NCP(&U); } StatFree(&Gstat); }