Пример #1
0
// update IMU delta angle and delta velocity measurements
void NavEKF2_core::readIMUData()
{
    const AP_InertialSensor &ins = _ahrs->get_ins();

    // average IMU sampling rate
    dtIMUavg = 1.0f/ins.get_sample_rate();

    // the imu sample time is used as a common time reference throughout the filter
    imuSampleTime_ms = hal.scheduler->millis();

    // use the nominated imu or primary if not available
    if (ins.use_accel(imu_index)) {
        readDeltaVelocity(imu_index, imuDataNew.delVel, imuDataNew.delVelDT);
    } else {
        readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
    }

    // Get delta angle data from primary gyro or primary if not available
    if (ins.use_gyro(imu_index)) {
        readDeltaAngle(imu_index, imuDataNew.delAng);
    } else {
        readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
    }
    imuDataNew.delAngDT = max(ins.get_delta_time(),1.0e-4f);

    // get current time stamp
    imuDataNew.time_ms = imuSampleTime_ms;

    // save data in the FIFO buffer
    StoreIMU();

    // extract the oldest available data from the FIFO buffer
    imuDataDelayed = storedIMU[fifoIndexDelayed];

}
// update IMU delta angle and delta velocity measurements
void NavEKF2_core::readIMUData()
{
    const AP_InertialSensor &ins = _ahrs->get_ins();

    // average IMU sampling rate
    dtIMUavg = 1.0f/ins.get_sample_rate();

    // the imu sample time is used as a common time reference throughout the filter
    imuSampleTime_ms = hal.scheduler->millis();

    if (ins.use_accel(0) && ins.use_accel(1)) {
        // dual accel mode
        // delta time from each IMU
        float dtDelVel0 = dtIMUavg;
        float dtDelVel1 = dtIMUavg;
        // delta velocity vector from each IMU
        Vector3f delVel0, delVel1;

        // Get delta velocity and time data from each IMU
        readDeltaVelocity(0, delVel0, dtDelVel0);
        readDeltaVelocity(1, delVel1, dtDelVel1);

        // apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 0
        float alpha = 1.0f - 5.0f*dtDelVel0;
        imuNoiseFiltState0 = maxf(ins.get_vibration_levels(0).length(), alpha*imuNoiseFiltState0);

        // apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 1
        alpha = 1.0f - 5.0f*dtDelVel1;
        imuNoiseFiltState1 = maxf(ins.get_vibration_levels(1).length(), alpha*imuNoiseFiltState1);

        // calculate the filtered difference between acceleration vectors from IMU 0 and 1
        // apply a LPF filter with a 1.0 second time constant
        alpha = constrain_float(0.5f*(dtDelVel0 + dtDelVel1),0.0f,1.0f);
        accelDiffFilt = (ins.get_accel(0) - ins.get_accel(1)) * alpha + accelDiffFilt * (1.0f - alpha);
        float accelDiffLength = accelDiffFilt.length();

        // Check the difference for excessive error and use the IMU with less noise
        // Apply hysteresis to prevent rapid switching
        if (accelDiffLength > 1.8f || (accelDiffLength > 1.2f && lastImuSwitchState != IMUSWITCH_MIXED)) {
            if (lastImuSwitchState == IMUSWITCH_MIXED) {
                // no previous fail so switch to the IMU with least noise
                if (imuNoiseFiltState0 < imuNoiseFiltState1) {
                    lastImuSwitchState = IMUSWITCH_IMU0;
                    // Get data from IMU 0
                    imuDataNew.delVel = delVel0;
                    imuDataNew.delVelDT = dtDelVel0;
                } else {
                    lastImuSwitchState = IMUSWITCH_IMU1;
                    // Get data from IMU 1
                    imuDataNew.delVel = delVel1;
                    imuDataNew.delVelDT = dtDelVel1;
                }
            } else if (lastImuSwitchState == IMUSWITCH_IMU0) {
                // IMU 1 previously failed so require 5 m/s/s less noise on IMU 1 to switch
                if (imuNoiseFiltState0 - imuNoiseFiltState1 > 5.0f) {
                    // IMU 1 is significantly less noisy, so switch
                    lastImuSwitchState = IMUSWITCH_IMU1;
                    // Get data from IMU 1
                    imuDataNew.delVel = delVel1;
                    imuDataNew.delVelDT = dtDelVel1;
                }
            } else {
                // IMU 0 previously failed so require 5 m/s/s less noise on IMU 0 to switch across
                if (imuNoiseFiltState1 - imuNoiseFiltState0 > 5.0f) {
                    // IMU 0 is significantly less noisy, so switch
                    lastImuSwitchState = IMUSWITCH_IMU0;
                    // Get data from IMU 0
                    imuDataNew.delVel = delVel0;
                    imuDataNew.delVelDT = dtDelVel0;
                }
            }
        } else {
            lastImuSwitchState = IMUSWITCH_MIXED;
            // Use a blend of both accelerometers
            imuDataNew.delVel = (delVel0 + delVel1)*0.5f;
            imuDataNew.delVelDT = (dtDelVel0 + dtDelVel1)*0.5f;
        }
    } else {
        // single accel mode - one of the first two accelerometers are unhealthy, not available or de-selected by the user
        // set the switch state based on the IMU we are using to make the data source selection visible
        if (ins.use_accel(0)) {
            readDeltaVelocity(0, imuDataNew.delVel, imuDataNew.delVelDT);
            lastImuSwitchState = IMUSWITCH_IMU0;
        } else if (ins.use_accel(1)) {
            readDeltaVelocity(1, imuDataNew.delVel, imuDataNew.delVelDT);
            lastImuSwitchState = IMUSWITCH_IMU1;
        } else {
            readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
            switch (ins.get_primary_accel()) {
                case 0:
                    lastImuSwitchState = IMUSWITCH_IMU0;
                    break;
                case 1:
                    lastImuSwitchState = IMUSWITCH_IMU1;
                    break;
                default:
                    // we must be using an IMU which can't be properly represented so we set to "mixed"
                    lastImuSwitchState = IMUSWITCH_MIXED;
                    break;
            }
        }
    }

    // Get delta angle data from promary gyro
    readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
    imuDataNew.delAngDT = max(ins.get_delta_time(),1.0e-4f);

    // get current time stamp
    imuDataNew.time_ms = imuSampleTime_ms;

    // save data in the FIFO buffer
    StoreIMU();

    // extract the oldest available data from the FIFO buffer
    imuDataDelayed = storedIMU[fifoIndexDelayed];

}