Пример #1
0
void EncryptionThreadPoolBeginKeyDerivation (TC_EVENT *completionEvent, TC_EVENT *noOutstandingWorkItemEvent, LONG *completionFlag, LONG *outstandingWorkItemCount, int pkcs5Prf, char *password, int passwordLength, char *salt, int iterationCount, char *derivedKey)
{
	EncryptionThreadPoolWorkItem *workItem;

	if (!ThreadPoolRunning)
		TC_THROW_FATAL_EXCEPTION;

	TC_ACQUIRE_MUTEX (&EnqueueMutex);

	workItem = &WorkItemQueue[EnqueuePosition++];
	if (EnqueuePosition >= TC_ENC_THREAD_POOL_QUEUE_SIZE)
		EnqueuePosition = 0;

	while (GetWorkItemState (workItem) != WorkItemFree)
	{
		TC_WAIT_EVENT (WorkItemCompletedEvent);
	}

	workItem->Type = DeriveKeyWork;
	workItem->KeyDerivation.CompletionEvent = completionEvent;
	workItem->KeyDerivation.CompletionFlag = completionFlag;
	workItem->KeyDerivation.DerivedKey = derivedKey;
	workItem->KeyDerivation.IterationCount = iterationCount;
	workItem->KeyDerivation.NoOutstandingWorkItemEvent = noOutstandingWorkItemEvent;
	workItem->KeyDerivation.OutstandingWorkItemCount = outstandingWorkItemCount;
	workItem->KeyDerivation.Password = password;
	workItem->KeyDerivation.PasswordLength = passwordLength;
	workItem->KeyDerivation.Pkcs5Prf = pkcs5Prf;
	workItem->KeyDerivation.Salt = salt;

	InterlockedIncrement (outstandingWorkItemCount);
	TC_CLEAR_EVENT (*noOutstandingWorkItemEvent);

	SetWorkItemState (workItem, WorkItemReady);
	TC_SET_EVENT (WorkItemReadyEvent);
	TC_RELEASE_MUTEX (&EnqueueMutex);
}
Пример #2
0
void EncryptionThreadPoolStop ()
{
	size_t i;

	if (!ThreadPoolRunning)
		return;

	StopPending = TRUE;
	TC_SET_EVENT (WorkItemReadyEvent);

	for (i = 0; i < ThreadCount; ++i)
	{
#ifdef DEVICE_DRIVER
		TCStopThread (ThreadHandles[i], &WorkItemReadyEvent);
#else
		TC_WAIT_EVENT (ThreadHandles[i]);
#endif
	}

	ThreadCount = 0;

#ifndef DEVICE_DRIVER
	DeleteCriticalSection (&DequeueMutex);
	DeleteCriticalSection (&EnqueueMutex);

	CloseHandle (WorkItemReadyEvent);
	CloseHandle (WorkItemCompletedEvent);

	for (i = 0; i < sizeof (WorkItemQueue) / sizeof (WorkItemQueue[0]); ++i)
	{
		if (WorkItemQueue[i].ItemCompletedEvent)
			CloseHandle (WorkItemQueue[i].ItemCompletedEvent);
	}
#endif

	ThreadPoolRunning = FALSE;
}
Пример #3
0
int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo)
{
	char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE];
	KEY_INFO keyInfo;
	PCRYPTO_INFO cryptoInfo;
	char dk[MASTER_KEYDATA_SIZE];
	int enqPkcs5Prf, pkcs5_prf;
	uint16 headerVersion;
	int status = ERR_PARAMETER_INCORRECT;
	int primaryKeyOffset;

	TC_EVENT keyDerivationCompletedEvent;
	TC_EVENT noOutstandingWorkItemEvent;
	KeyDerivationWorkItem *keyDerivationWorkItems;
	KeyDerivationWorkItem *item;
	int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1;
	size_t encryptionThreadCount = GetEncryptionThreadCount();
	size_t queuedWorkItems = 0;
	LONG outstandingWorkItemCount = 0;
	int i;

	if (retHeaderCryptoInfo != NULL)
	{
		cryptoInfo = retHeaderCryptoInfo;
	}
	else
	{
		cryptoInfo = *retInfo = crypto_open ();
		if (cryptoInfo == NULL)
			return ERR_OUTOFMEMORY;
	}

	if (encryptionThreadCount > 1)
	{
		keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		if (!keyDerivationWorkItems)
			return ERR_OUTOFMEMORY;

		for (i = 0; i < pkcs5PrfCount; ++i)
			keyDerivationWorkItems[i].Free = TRUE;

#ifdef DEVICE_DRIVER
		KeInitializeEvent (&keyDerivationCompletedEvent, SynchronizationEvent, FALSE);
		KeInitializeEvent (&noOutstandingWorkItemEvent, SynchronizationEvent, TRUE);
#else
		keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
		if (!keyDerivationCompletedEvent)
		{
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}

		noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL);
		if (!noOutstandingWorkItemEvent)
		{
			CloseHandle (keyDerivationCompletedEvent);
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}
#endif
	}
		
#ifndef DEVICE_DRIVER
	VirtualLock (&keyInfo, sizeof (keyInfo));
	VirtualLock (&dk, sizeof (dk));
#endif

	crypto_loadkey (&keyInfo, password->Text, (int) password->Length);

	// PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password
	memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE);

	// Test all available PKCS5 PRFs
	for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf)
	{
		BOOL lrw64InitDone = FALSE;		// Deprecated/legacy
		BOOL lrw128InitDone = FALSE;	// Deprecated/legacy

		if (encryptionThreadCount > 1)
		{
			// Enqueue key derivation on thread pool
			if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (item->Free)
					{
						item->Free = FALSE;
						item->KeyReady = FALSE;
						item->Pkcs5Prf = enqPkcs5Prf;

						EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent,
							&item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey,
							keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey);
						
						++queuedWorkItems;
						break;
					}
				}

				if (enqPkcs5Prf < LAST_PRF_ID)
					continue;
			}
			else
				--enqPkcs5Prf;

			// Wait for completion of a key derivation
			while (queuedWorkItems > 0)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE)
					{
						pkcs5_prf = item->Pkcs5Prf;
						keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot);
						memcpy (dk, item->DerivedKey, sizeof (dk));

						item->Free = TRUE;
						--queuedWorkItems;
						goto KeyReady;
					}
				}

				if (queuedWorkItems > 0)
					TC_WAIT_EVENT (keyDerivationCompletedEvent);
			}
			continue;
KeyReady:	;
		}
		else
		{
			pkcs5_prf = enqPkcs5Prf;
			keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot);

			switch (pkcs5_prf)
			{
			case RIPEMD160:
				derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA512:
				derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA1:
				// Deprecated/legacy
				derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case WHIRLPOOL:
				derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			default:		
				// Unknown/wrong ID
				TC_THROW_FATAL_EXCEPTION;
			} 
		}

		// Test all available modes of operation
		for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID;
			cryptoInfo->mode <= LAST_MODE_OF_OPERATION;
			cryptoInfo->mode++)
		{
			switch (cryptoInfo->mode)
			{
			case LRW:
			case CBC:
			case INNER_CBC:
			case OUTER_CBC:

				// For LRW (deprecated/legacy), copy the tweak key 
				// For CBC (deprecated/legacy), copy the IV/whitening seed 
				memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE);
				primaryKeyOffset = LEGACY_VOL_IV_SIZE;
				break;

			default:
				primaryKeyOffset = 0;
			}

			// Test all available encryption algorithms
			for (cryptoInfo->ea = EAGetFirst ();
				cryptoInfo->ea != 0;
				cryptoInfo->ea = EAGetNext (cryptoInfo->ea))
			{
				int blockSize;

				if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode))
					continue;	// This encryption algorithm has never been available with this mode of operation

				blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea));

				status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks);
				if (status == ERR_CIPHER_INIT_FAILURE)
					goto err;

				// Init objects related to the mode of operation

				if (cryptoInfo->mode == XTS)
				{
					// Copy the secondary key (if cascade, multiple concatenated)
					memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));

					// Secondary key schedule
					if (!EAInitMode (cryptoInfo))
					{
						status = ERR_MODE_INIT_FAILED;
						goto err;
					}
				}
				else if (cryptoInfo->mode == LRW
					&& (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone))
				{
					// Deprecated/legacy

					if (!EAInitMode (cryptoInfo))
					{
						status = ERR_MODE_INIT_FAILED;
						goto err;
					}

					if (blockSize == 8)
						lrw64InitDone = TRUE;
					else if (blockSize == 16)
						lrw128InitDone = TRUE;
				}

				// Copy the header for decryption
				memcpy (header, encryptedHeader, sizeof (header));

				// Try to decrypt header 

				DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

				// Magic 'TRUE'
				if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x54525545)
					continue;

				// Header version
				headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION);
				
				if (headerVersion > VOLUME_HEADER_VERSION)
				{
					status = ERR_NEW_VERSION_REQUIRED;
					goto err;
				}

				// Check CRC of the header fields
				if (!ReadVolumeHeaderRecoveryMode
					&& headerVersion >= 4
					&& GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC))
					continue;

				// Required program version
				cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION);
				cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x600;

				// Check CRC of the key set
				if (!ReadVolumeHeaderRecoveryMode
					&& GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE))
					continue;

				// Now we have the correct password, cipher, hash algorithm, and volume type

				// Check the version required to handle this volume
				if (cryptoInfo->RequiredProgramVersion > VERSION_NUM)
				{
					status = ERR_NEW_VERSION_REQUIRED;
					goto err;
				}

				// Header version
				cryptoInfo->HeaderVersion = headerVersion;

				// Volume creation time (legacy)
				cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value;

				// Header creation time (legacy)
				cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value;

				// Hidden volume size (if any)
				cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value;

				// Hidden volume status
				cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0);

				// Volume size
				cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE);
				
				// Encrypted area size and length
				cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START);
				cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH);

				// Flags
				cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS);

				// Sector size
				if (headerVersion >= 5)
					cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE);
				else
					cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY;

				if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE
					|| cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE
					|| cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0)
				{
					status = ERR_PARAMETER_INCORRECT;
					goto err;
				}

				// Preserve scheduled header keys if requested			
				if (retHeaderCryptoInfo)
				{
					if (retInfo == NULL)
					{
						cryptoInfo->pkcs5 = pkcs5_prf;
						cryptoInfo->noIterations = keyInfo.noIterations;
						goto ret;
					}

					cryptoInfo = *retInfo = crypto_open ();
					if (cryptoInfo == NULL)
					{
						status = ERR_OUTOFMEMORY;
						goto err;
					}

					memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo));
				}

				// Master key data
				memcpy (keyInfo.master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE);
				memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);

				// PKCS #5
				memcpy (cryptoInfo->salt, keyInfo.salt, PKCS5_SALT_SIZE);
				cryptoInfo->pkcs5 = pkcs5_prf;
				cryptoInfo->noIterations = keyInfo.noIterations;

				// Init the cipher with the decrypted master key
				status = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks);
				if (status == ERR_CIPHER_INIT_FAILURE)
					goto err;

				switch (cryptoInfo->mode)
				{
				case LRW:
				case CBC:
				case INNER_CBC:
				case OUTER_CBC:

					// For LRW (deprecated/legacy), the tweak key
					// For CBC (deprecated/legacy), the IV/whitening seed
					memcpy (cryptoInfo->k2, keyInfo.master_keydata, LEGACY_VOL_IV_SIZE);
					break;

				default:
					// The secondary master key (if cascade, multiple concatenated)
					memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));

				}

				if (!EAInitMode (cryptoInfo))
				{
					status = ERR_MODE_INIT_FAILED;
					goto err;
				}

				status = ERR_SUCCESS;
				goto ret;
			}
		}
	}
	status = ERR_PASSWORD_WRONG;

err:
	if (cryptoInfo != retHeaderCryptoInfo)
	{
		crypto_close(cryptoInfo);
		*retInfo = NULL; 
	}

ret:
	burn (&keyInfo, sizeof (keyInfo));
	burn (dk, sizeof(dk));

#ifndef DEVICE_DRIVER
	VirtualUnlock (&keyInfo, sizeof (keyInfo));
	VirtualUnlock (&dk, sizeof (dk));
#endif

	if (encryptionThreadCount > 1)
	{
		TC_WAIT_EVENT (noOutstandingWorkItemEvent);

		burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		TCfree (keyDerivationWorkItems);

#ifndef DEVICE_DRIVER
		CloseHandle (keyDerivationCompletedEvent);
		CloseHandle (noOutstandingWorkItemEvent);
#endif
	}

	return status;
}
Пример #4
0
void EncryptionThreadPoolDoWork (EncryptionThreadPoolWorkType type, byte *data, const UINT64_STRUCT *startUnitNo, TC_LARGEST_COMPILER_UINT unitCount, PCRYPTO_INFO cryptoInfo)
{
	size_t fragmentCount;
	size_t unitsPerFragment;
	size_t remainder;

	byte *fragmentData;
	TC_LARGEST_COMPILER_UINT fragmentStartUnitNo;

	EncryptionThreadPoolWorkItem *workItem;
	EncryptionThreadPoolWorkItem *firstFragmentWorkItem;
	
	if (unitCount == 0)
		return;
	
	if (!ThreadPoolRunning || unitCount == 1)
	{
		switch (type)
		{
		case DecryptDataUnitsWork:
			DecryptDataUnitsCurrentThread (data, startUnitNo, unitCount, cryptoInfo);
			break;

		case EncryptDataUnitsWork:
			EncryptDataUnitsCurrentThread (data, startUnitNo, unitCount, cryptoInfo);
			break;

		default:
			TC_THROW_FATAL_EXCEPTION;
		}

		return;
	}

	if (unitCount <= ThreadCount)
	{
		fragmentCount = (size_t) unitCount;
		unitsPerFragment = 1;
		remainder = 0;
	}
	else
	{
		/* Note that it is not efficient to divide the data into fragments smaller than a few hundred bytes.
		The reason is that the overhead associated with thread handling would in most cases make a multi-threaded 
		process actually slower than a single-threaded process. */

		fragmentCount = ThreadCount;
		unitsPerFragment = (size_t) unitCount / ThreadCount;
		remainder = (size_t) unitCount % ThreadCount;

		if (remainder > 0)
			++unitsPerFragment;
	}
	
	fragmentData = data;
	fragmentStartUnitNo = startUnitNo->Value;

	TC_ACQUIRE_MUTEX (&EnqueueMutex);
	firstFragmentWorkItem = &WorkItemQueue[EnqueuePosition];

	while (GetWorkItemState (firstFragmentWorkItem) != WorkItemFree)
	{
		TC_WAIT_EVENT (WorkItemCompletedEvent);
	}

	firstFragmentWorkItem->OutstandingFragmentCount = fragmentCount;

	while (fragmentCount-- > 0)
	{
		workItem = &WorkItemQueue[EnqueuePosition++];
		if (EnqueuePosition >= TC_ENC_THREAD_POOL_QUEUE_SIZE)
			EnqueuePosition = 0;

		while (GetWorkItemState (workItem) != WorkItemFree)
		{
			TC_WAIT_EVENT (WorkItemCompletedEvent);
		}

		workItem->Type = type;
		workItem->FirstFragment = firstFragmentWorkItem;

		workItem->Encryption.CryptoInfo = cryptoInfo;
		workItem->Encryption.Data = fragmentData;
		workItem->Encryption.UnitCount = unitsPerFragment;
		workItem->Encryption.StartUnitNo.Value = fragmentStartUnitNo;

 		fragmentData += unitsPerFragment * ENCRYPTION_DATA_UNIT_SIZE;
		fragmentStartUnitNo += unitsPerFragment;

		if (remainder > 0 && --remainder == 0)
			--unitsPerFragment;

		SetWorkItemState (workItem, WorkItemReady);
		TC_SET_EVENT (WorkItemReadyEvent);
	}

	TC_RELEASE_MUTEX (&EnqueueMutex);

	TC_WAIT_EVENT (firstFragmentWorkItem->ItemCompletedEvent);
	SetWorkItemState (firstFragmentWorkItem, WorkItemFree);
	TC_SET_EVENT (WorkItemCompletedEvent);
}
Пример #5
0
static TC_THREAD_PROC EncryptionThreadProc (void *threadArg)
{
	EncryptionThreadPoolWorkItem *workItem;

	while (!StopPending)
	{
		TC_ACQUIRE_MUTEX (&DequeueMutex);

		workItem = &WorkItemQueue[DequeuePosition++];

		if (DequeuePosition >= TC_ENC_THREAD_POOL_QUEUE_SIZE)
			DequeuePosition = 0;

		while (!StopPending && GetWorkItemState (workItem) != WorkItemReady)
		{
			TC_WAIT_EVENT (WorkItemReadyEvent);
		}

		SetWorkItemState (workItem, WorkItemBusy);

		TC_RELEASE_MUTEX (&DequeueMutex);

		if (StopPending)
			break;

		switch (workItem->Type)
		{
		case DecryptDataUnitsWork:
			DecryptDataUnitsCurrentThread (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo);
			break;

		case EncryptDataUnitsWork:
			EncryptDataUnitsCurrentThread (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo);
			break;

		case DeriveKeyWork:
			switch (workItem->KeyDerivation.Pkcs5Prf)
			{
			case RIPEMD160:
				derive_key_ripemd160 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case SHA512:
				derive_key_sha512 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case WHIRLPOOL:
				derive_key_whirlpool (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case SHA1:
				derive_key_sha1 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			default:		
				TC_THROW_FATAL_EXCEPTION;
			} 

			InterlockedExchange (workItem->KeyDerivation.CompletionFlag, TRUE);
			TC_SET_EVENT (*workItem->KeyDerivation.CompletionEvent);
			
			if (InterlockedDecrement (workItem->KeyDerivation.OutstandingWorkItemCount) == 0)
				TC_SET_EVENT (*workItem->KeyDerivation.NoOutstandingWorkItemEvent);

			SetWorkItemState (workItem, WorkItemFree);
			TC_SET_EVENT (WorkItemCompletedEvent);
			continue;

		default:
			TC_THROW_FATAL_EXCEPTION;
		}

		if (workItem != workItem->FirstFragment)
		{
			SetWorkItemState (workItem, WorkItemFree);
			TC_SET_EVENT (WorkItemCompletedEvent);
		}

		if (InterlockedDecrement (&workItem->FirstFragment->OutstandingFragmentCount) == 0)
			TC_SET_EVENT (workItem->FirstFragment->ItemCompletedEvent);
	}

#ifdef DEVICE_DRIVER
	PsTerminateSystemThread (STATUS_SUCCESS);
#else
	_endthreadex (0);
    return 0;
#endif
}
Пример #6
0
///
///	Note: if there are Keyfiles, these must be applied already to the password!
/// int __declspec(dllexport)  __stdcall  CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password) 
int __declspec(dllexport)  __cdecl  CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password)
{
	char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE];
	KEY_INFO keyInfo;
	PCRYPTO_INFO cryptoInfo;
	char dk[MASTER_KEYDATA_SIZE];
	int enqPkcs5Prf, pkcs5_prf;
	uint16 headerVersion;
	int status = ERR_PARAMETER_INCORRECT;
	int primaryKeyOffset;

	TC_EVENT keyDerivationCompletedEvent;
	TC_EVENT noOutstandingWorkItemEvent;
	KeyDerivationWorkItem *keyDerivationWorkItems;
	KeyDerivationWorkItem *item;
	int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1;
	size_t encryptionThreadCount = GetEncryptionThreadCount();
	size_t queuedWorkItems = 0;
	LONG outstandingWorkItemCount = 0;
	int i;

	cryptoInfo = crypto_open();
	if (cryptoInfo == NULL)
		return ERR_OUTOFMEMORY;


	if (encryptionThreadCount > 1)
	{
		keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		if (!keyDerivationWorkItems)
			return ERR_OUTOFMEMORY;

		for (i = 0; i < pkcs5PrfCount; ++i)
			keyDerivationWorkItems[i].Free = TRUE;


		keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
		if (!keyDerivationCompletedEvent)
		{
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}

		noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL);
		if (!noOutstandingWorkItemEvent)
		{
			CloseHandle (keyDerivationCompletedEvent);
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}
	}
		

	VirtualLock (&keyInfo, sizeof (keyInfo));
	VirtualLock (&dk, sizeof (dk));

	crypto_loadkey (&keyInfo, password->Text, (int) password->Length);

	// PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password
	memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE);

	// Test all available PKCS5 PRFs
	for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf)
	{
		BOOL lrw64InitDone = FALSE;		// Deprecated/legacy
		BOOL lrw128InitDone = FALSE;	// Deprecated/legacy

		if (encryptionThreadCount > 1)
		{
			// Enqueue key derivation on thread pool
			if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (item->Free)
					{
						item->Free = FALSE;
						item->KeyReady = FALSE;
						item->Pkcs5Prf = enqPkcs5Prf;

						EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent,
							&item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey,
							keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey);
						
						++queuedWorkItems;
						break;
					}
				}

				if (enqPkcs5Prf < LAST_PRF_ID)
					continue;
			}
			else
				--enqPkcs5Prf;

			// Wait for completion of a key derivation
			while (queuedWorkItems > 0)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE)
					{
						pkcs5_prf = item->Pkcs5Prf;
						keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot);
						memcpy (dk, item->DerivedKey, sizeof (dk));

						item->Free = TRUE;
						--queuedWorkItems;
						goto KeyReady;
					}
				}

				if (queuedWorkItems > 0)
					TC_WAIT_EVENT (keyDerivationCompletedEvent);
			}
			continue;
KeyReady:	;
		}
		else
		{
			pkcs5_prf = enqPkcs5Prf;
			keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot);

			switch (pkcs5_prf)
			{
			case RIPEMD160:
				derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA512:
				derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA1:
				// Deprecated/legacy
				derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case WHIRLPOOL:
				derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			default:		
				// Unknown/wrong ID
				TC_THROW_FATAL_EXCEPTION;
			} 
		}

		// Test all available modes of operation
		for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID;
			cryptoInfo->mode <= LAST_MODE_OF_OPERATION;
			cryptoInfo->mode++)
		{
			switch (cryptoInfo->mode)
			{
			case LRW:
			case CBC:
			case INNER_CBC:
			case OUTER_CBC:

				// For LRW (deprecated/legacy), copy the tweak key 
				// For CBC (deprecated/legacy), copy the IV/whitening seed 
				memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE);
				primaryKeyOffset = LEGACY_VOL_IV_SIZE;
				break;

			default:
				primaryKeyOffset = 0;
			}

			// Test all available encryption algorithms
			for (cryptoInfo->ea = EAGetFirst ();
				cryptoInfo->ea != 0;
				cryptoInfo->ea = EAGetNext (cryptoInfo->ea))
			{
				int blockSize;

				if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode))
					continue;	// This encryption algorithm has never been available with this mode of operation

				blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea));

				status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks);
				if (status == ERR_CIPHER_INIT_FAILURE)
					goto err;

				// Init objects related to the mode of operation

				if (cryptoInfo->mode == XTS)
				{
					// Copy the secondary key (if cascade, multiple concatenated)
					memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));

					// Secondary key schedule
					if (!EAInitMode (cryptoInfo))
					{
						status = ERR_MODE_INIT_FAILED;
						goto err;
					}
				}
				else if (cryptoInfo->mode == LRW
					&& (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone))
				{
					// Deprecated/legacy

					if (!EAInitMode (cryptoInfo))
					{
						status = ERR_MODE_INIT_FAILED;
						goto err;
					}

					if (blockSize == 8)
						lrw64InitDone = TRUE;
					else if (blockSize == 16)
						lrw128InitDone = TRUE;
				}

				// Copy the header for decryption
				memcpy (header, encryptedHeader, sizeof (header));

				// Try to decrypt header 

				DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

				// Magic 'TRUE'
				if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) == 0x54525545){
					status = ERR_SUCCESS;
					goto ret;
				}
			}
		}
	}
	status = ERR_PASSWORD_WRONG;

err:
ret:
	burn (&keyInfo, sizeof (keyInfo));
	burn (dk, sizeof(dk));

	VirtualUnlock (&keyInfo, sizeof (keyInfo));
	VirtualUnlock (&dk, sizeof (dk));

	if (encryptionThreadCount > 1)
	{
	//	TC_WAIT_EVENT (noOutstandingWorkItemEvent);

		burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		TCfree (keyDerivationWorkItems);

		CloseHandle (keyDerivationCompletedEvent);
		CloseHandle (noOutstandingWorkItemEvent);
	}

	return status;
}