void WebcamCapture::run() { Mat orig; TimerCreate(); while (isRunning()) { TimerUpdate(); vector<unsigned char> m_status; vector<float> m_error; vector<Point2f> trackedPts; if (vc->isOpened()) { if (vc->read(orig)) dh_out->WriteFrame(orig); } else { this->exit(-1); } TimerElapsed(); } vc->release(); this->exit(0); }
void WebcamCapture::run() { Mat orig; // макрос для создания таймера TimerCreate(); while (isRunning()) { TimerUpdate(); vector<unsigned char> m_status; vector<float> m_error; vector<Point2f> trackedPts; // если камера инициализирована и можно считать // изображение, то добавляем в очередь на обработку if (mVideoCapture->isOpened()) { if (mVideoCapture->read(orig)) mDataHandler_out->Write(orig); } else { this->exit(-1); } TimerElapsed(); } // освобождение ресурсов камеры mVideoCapture->release(); this->exit(0); }
/*********************** ** DoEmFloatIteration ** ************************ ** Perform an iteration of the emulated floating-point ** benchmark. Note that "an iteration" can involve multiple ** loops through the benchmark. */ ulong DoEmFloatIteration(InternalFPF *abase, InternalFPF *bbase, InternalFPF *cbase, ulong arraysize, ulong loops, double *wat_time) { ulong elapsed; /* For the stopwatch */ static uchar jtable[16] = {0,0,0,0,1,1,1,1,2,2,2,2,2,3,3,3}; ulong i; /* ** Begin timing */ elapsed=StartStopwatch(); TimerOn(); /* ** Each pass through the array performs operations in ** the followingratios: ** 4 adds, 4 subtracts, 5 multiplies, 3 divides ** (adds and subtracts being nearly the same operation) */ while(loops--) { for(i=0;i<arraysize;i++) switch(jtable[i % 16]) { case 0: /* Add */ AddSubInternalFPF(0,abase+i, bbase+i, cbase+i); break; case 1: /* Subtract */ AddSubInternalFPF(1,abase+i, bbase+i, cbase+i); break; case 2: /* Multiply */ MultiplyInternalFPF(abase+i, bbase+i, cbase+i); break; case 3: /* Divide */ DivideInternalFPF(abase+i, bbase+i, cbase+i); break; } } TimerOff(); elapsed = StopStopwatch(elapsed); if( wat_time ) { *wat_time = TimerElapsed(); } return(elapsed); }
void ProcessingThread::run() { Mat orig, previmg, output, mask; vector<Point2f> prev_pts, orig_pts; vector<uchar> m_status; Mat m_error; TimerCreate(); while (isRunning()) { while (dh_in->ReadFrame(orig)) { TimerUpdate(); OpticalFlowHandle(previmg, orig, prev_pts, orig_pts); TimerElapsed(); } yieldCurrentThread(); } }
void main() { #ifdef ROPT register double s,u,v,w,x; #else double s,u,v,w,x; #endif long loops, NLimit; register long i, m, n; printf("\n"); printf(" FLOPS C Program (Double Precision), V2.0 18 Dec 1992\n\n"); /****************************/ loops = 15625; /* Initial number of loops. */ /* DO NOT CHANGE! */ /****************************/ /****************************************************/ /* Set Variable Values. */ /* T[1] references all timing results relative to */ /* one million loops. */ /* */ /* The program will execute from 31250 to 128000000 */ /* loops based on a runtime of Module 1 of at least */ /* TLimit = 3.0 seconds. That is, a runtime of 3 */ /* seconds for Module 1 is used to determine the */ /* number of loops to execute. */ /* */ /* No more than NLimit = 128000000 loops are allowed*/ /****************************************************/ T[1] = 1.0E+06/(double)loops; TLimit = 3.0; NLimit = 128000000; piref = 3.14159265358979324; one = 1.0; two = 2.0; three = 3.0; four = 4.0; five = 5.0; scale = one; printf(" Module Error RunTime MFLOPS\n"); printf(" (usec)\n"); /*************************/ /* Initialize the timer. */ /*************************/ /*******************************************************/ /* Module 1. Calculate integral of df(x)/f(x) defined */ /* below. Result is ln(f(1)). There are 14 */ /* double precision operations per loop */ /* ( 7 +, 0 -, 6 *, 1 / ) that are included */ /* in the timing. */ /* 50.0% +, 00.0% -, 42.9% *, and 07.1% / */ /*******************************************************/ n = loops; sa = 0.0; while ( sa < TLimit ) { n = 2 * n; x = one / (double)n; /*********************/ s = 0.0; /* Loop 1. */ v = 0.0; /*********************/ w = one; TimerOn(); for( i = 1 ; i <= n-1 ; i++ ) { v = v + w; u = v * x; s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3))); } TimerOff(); sa = TimerElapsed(); if ( n == NLimit ) break; /* printf(" %10ld %12.5lf\n",n,sa); */ } scale = 1.0E+06 / (double)n; T[1] = scale; /****************************************/ /* Estimate nulltime ('for' loop time). */ /****************************************/ TimerOn(); for( i = 1 ; i <= n-1 ; i++ ) { } TimerOff(); nulltime = T[1] * TimerElapsed(); if ( nulltime < 0.0 ) nulltime = 0.0; T[2] = T[1] * sa - nulltime; sa = (D1+D2+D3)/(one+D1+E2+E3); sb = D1; T[3] = T[2] / 14.0; /*********************/ sa = x * ( sa + sb + two * s ) / two; /* Module 1 Results. */ sb = one / sa; /*********************/ n = (long)( (double)( 40000 * (long)sb ) / scale ); sc = sb - 25.2; T[4] = one / T[3]; /********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /********************/ printf(" 1 %13.4le %10.4lf %10.4lf\n",sc,T[2],T[4]); m = n; /*******************************************************/ /* Module 2. Calculate value of PI from Taylor Series */ /* expansion of atan(1.0). There are 7 */ /* double precision operations per loop */ /* ( 3 +, 2 -, 1 *, 1 / ) that are included */ /* in the timing. */ /* 42.9% +, 28.6% -, 14.3% *, and 14.3% / */ /*******************************************************/ s = -five; /********************/ sa = -one; /* Loop 2. */ /********************/ TimerOn(); for ( i = 1 ; i <= m ; i++ ) { s = -s; sa = sa + s; } TimerOff(); T[5] = T[1] * TimerElapsed(); Report( "flops(1)", TimerElapsed() ); if ( T[5] < 0.0 ) T[5] = 0.0; sc = (double)m; u = sa; /*********************/ v = 0.0; /* Loop 3. */ w = 0.0; /*********************/ x = 0.0; TimerOn(); for ( i = 1 ; i <= m ; i++) { s = -s; sa = sa + s; u = u + two; x = x +(s - u); v = v - s * u; w = w + s / u; } TimerOff(); T[6] = T[1] * TimerElapsed(); Report( "flops(2)", TimerElapsed() ); T[7] = ( T[6] - T[5] ) / 7.0; /*********************/ m = (long)( sa * x / sc ); /* PI Results */ sa = four * w / five; /*********************/ sb = sa + five / v; sc = 31.25; piprg = sb - sc / (v * v * v); pierr = piprg - piref; T[8] = one / T[7]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 2 %13.4le %10.4lf %10.4lf\n",pierr,T[6]-T[5],T[8]); /*******************************************************/ /* Module 3. Calculate integral of sin(x) from 0.0 to */ /* PI/3.0 using Trapazoidal Method. Result */ /* is 0.5. There are 17 double precision */ /* operations per loop (6 +, 2 -, 9 *, 0 /) */ /* included in the timing. */ /* 35.3% +, 11.8% -, 52.9% *, and 00.0% / */ /*******************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 4. */ v = 0.0; /*********************/ TimerOn(); for( i = 1 ; i <= m-1 ; i++ ) { v = v + one; u = v * x; w = u * u; s = s + u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one); } TimerOff(); T[9] = T[1] * TimerElapsed() - nulltime; Report( "flops(3)", TimerElapsed() ); u = piref / three; w = u * u; sa = u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one); T[10] = T[9] / 17.0; /*********************/ sa = x * ( sa + two * s ) / two; /* sin(x) Results. */ sb = 0.5; /*********************/ sc = sa - sb; T[11] = one / T[10]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 3 %13.4le %10.4lf %10.4lf\n",sc,T[9],T[11]); /************************************************************/ /* Module 4. Calculate Integral of cos(x) from 0.0 to PI/3 */ /* using the Trapazoidal Method. Result is */ /* sin(PI/3). There are 15 double precision */ /* operations per loop (7 +, 0 -, 8 *, and 0 / ) */ /* included in the timing. */ /* 50.0% +, 00.0% -, 50.0% *, 00.0% / */ /************************************************************/ A3 = -A3; A5 = -A5; x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 5. */ v = 0.0; /*********************/ TimerOn(); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; } TimerOff(); T[12] = T[1] * TimerElapsed() - nulltime; Report( "flops(4)", TimerElapsed() ); u = piref / three; w = u * u; sa = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; T[13] = T[12] / 15.0; /*******************/ sa = x * ( sa + one + two * s ) / two; /* Module 4 Result */ u = piref / three; /*******************/ w = u * u; sb = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+A0); sc = sa - sb; T[14] = one / T[13]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 4 %13.4le %10.4lf %10.4lf\n",sc,T[12],T[14]); /************************************************************/ /* Module 5. Calculate Integral of tan(x) from 0.0 to PI/3 */ /* using the Trapazoidal Method. Result is */ /* ln(cos(PI/3)). There are 29 double precision */ /* operations per loop (13 +, 0 -, 15 *, and 1 /)*/ /* included in the timing. */ /* 46.7% +, 00.0% -, 50.0% *, and 03.3% / */ /************************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 6. */ v = 0.0; /*********************/ TimerOn(); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); s = s + v / (w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one); } TimerOff(); T[15] = T[1] * TimerElapsed() - nulltime; Report( "flops(5)", TimerElapsed() ); u = piref / three; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa / sb; T[16] = T[15] / 29.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 5 Result */ sb = 0.6931471805599453; /*******************/ sc = sa - sb; T[17] = one / T[16]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 5 %13.4le %10.4lf %10.4lf\n",sc,T[15],T[17]); /************************************************************/ /* Module 6. Calculate Integral of sin(x)*cos(x) from 0.0 */ /* to PI/4 using the Trapazoidal Method. Result */ /* is sin(PI/4)^2. There are 29 double precision */ /* operations per loop (13 +, 0 -, 16 *, and 0 /)*/ /* included in the timing. */ /* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */ /************************************************************/ x = piref / ( four * (double)m ); /*********************/ s = 0.0; /* Loop 7. */ v = 0.0; /*********************/ TimerOn(); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); s = s + v*(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one); } TimerOff(); T[18] = T[1] * TimerElapsed() - nulltime; Report( "flops(6)", TimerElapsed() ); u = piref / four; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa * sb; T[19] = T[18] / 29.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 6 Result */ sb = 0.25; /*******************/ sc = sa - sb; T[20] = one / T[19]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 6 %13.4le %10.4lf %10.4lf\n",sc,T[18],T[20]); /*******************************************************/ /* Module 7. Calculate value of the definite integral */ /* from 0 to sa of 1/(x+1), x/(x*x+1), and */ /* x*x/(x*x*x+1) using the Trapizoidal Rule.*/ /* There are 12 double precision operations */ /* per loop ( 3 +, 3 -, 3 *, and 3 / ) that */ /* are included in the timing. */ /* 25.0% +, 25.0% -, 25.0% *, and 25.0% / */ /*******************************************************/ /*********************/ s = 0.0; /* Loop 8. */ w = one; /*********************/ sa = 102.3321513995275; v = sa / (double)m; TimerOn(); for ( i = 1 ; i <= m-1 ; i++) { x = (double)i * v; u = x * x; s = s - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w ); } TimerOff(); T[21] = T[1] * TimerElapsed() - nulltime; Report( "flops(7)", TimerElapsed() ); /*********************/ /* Module 7 Results */ /*********************/ T[22] = T[21] / 12.0; x = sa; u = x * x; sa = -w - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w ); sa = 18.0 * v * (sa + two * s ); m = -2000 * (long)sa; m = (long)( (double)m / scale ); sc = sa + 500.2; T[23] = one / T[22]; /********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /********************/ printf(" 7 %13.4le %10.4lf %10.4lf\n",sc,T[21],T[23]); /************************************************************/ /* Module 8. Calculate Integral of sin(x)*cos(x)*cos(x) */ /* from 0 to PI/3 using the Trapazoidal Method. */ /* Result is (1-cos(PI/3)^3)/3. There are 30 */ /* double precision operations per loop included */ /* in the timing: */ /* 13 +, 0 -, 17 * 0 / */ /* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */ /************************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 9. */ v = 0.0; /*********************/ TimerOn(); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; s = s + v*v*u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); } TimerOff(); T[24] = T[1] * TimerElapsed() - nulltime; Report( "flops(8)", TimerElapsed() ); u = piref / three; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa * sb * sb; T[25] = T[24] / 30.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 8 Result */ sb = 0.29166666666666667; /*******************/ sc = sa - sb; T[26] = one / T[25]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 8 %13.4le %10.4lf %10.4lf\n",sc,T[24],T[26]); /**************************************************/ /* MFLOPS(1) output. This is the same weighting */ /* used for all previous versions of the flops.c */ /* program. Includes Modules 2 and 3 only. */ /**************************************************/ T[27] = ( five * (T[6] - T[5]) + T[9] ) / 52.0; T[28] = one / T[27]; /**************************************************/ /* MFLOPS(2) output. This output does not include */ /* Module 2, but it still does 9.2% FDIV's. */ /**************************************************/ T[29] = T[2] + T[9] + T[12] + T[15] + T[18]; T[29] = (T[29] + four * T[21]) / 152.0; T[30] = one / T[29]; /**************************************************/ /* MFLOPS(3) output. This output does not include */ /* Module 2, but it still does 3.4% FDIV's. */ /**************************************************/ T[31] = T[2] + T[9] + T[12] + T[15] + T[18]; T[31] = (T[31] + T[21] + T[24]) / 146.0; T[32] = one / T[31]; /**************************************************/ /* MFLOPS(4) output. This output does not include */ /* Module 2, and it does NO FDIV's. */ /**************************************************/ T[33] = (T[9] + T[12] + T[18] + T[24]) / 91.0; T[34] = one / T[33]; printf("\n"); printf(" Iterations = %10ld\n",m); printf(" NullTime (usec) = %10.4lf\n",nulltime); printf(" MFLOPS(1) = %10.4lf\n",T[28]); printf(" MFLOPS(2) = %10.4lf\n",T[30]); printf(" MFLOPS(3) = %10.4lf\n",T[32]); printf(" MFLOPS(4) = %10.4lf\n\n",T[34]); exit( EXIT_SUCCESS ); }
void main () { static REAL aa[200][200],a[200][201],b[200],x[200]; REAL cray,ops,total,norma,normx; REAL resid,residn,eps; REAL epslon(),kf; #if 0 double t1; double tm; #endif double tm2; double dtime(); static int ipvt[200],n,i,ntimes,info,lda,ldaa,kflops; static user_timer second_timer; lda = 201; ldaa = 200; cray = .056; n = 100; printf(ROLLING); printf(PREC); printf("Precision Linpack\n\n"); ops = (2.0e0*(n*n*n))/3.0 + 2.0*(n*n); matgen(a,lda,n,b,&norma); TimerOn(); dgefa(a,lda,n,ipvt,&info); TimerOff(); st[0][0] = TimerElapsed(); Report( "clinpack(dgefa#1)", st[0][0] ); TimerOn(); dgesl(a,lda,n,ipvt,b,0); TimerOff(); st[1][0] = TimerElapsed(); Report( "clinpack(dgesl#1)", st[1][0] ); total = st[0][0] + st[1][0]; /* compute a residual to verify results. */ for (i = 0; i < n; i++) { x[i] = b[i]; } matgen(a,lda,n,b,&norma); for (i = 0; i < n; i++) { b[i] = -b[i]; } dmxpy(n,b,n,lda,x,a); resid = 0.0; normx = 0.0; for (i = 0; i < n; i++) { resid = (resid > fabs((double)b[i])) ? resid : fabs((double)b[i]); normx = (normx > fabs((double)x[i])) ? normx : fabs((double)x[i]); } eps = epslon((REAL)ONE); residn = resid/( n*norma*normx*eps ); printf(" norm. resid resid machep"); printf(" x[0]-1 x[n-1]-1\n"); printf("%8.1f %16.8e%16.8e%16.8e%16.8e\n", (double)residn, (double)resid, (double)eps, (double)x[0]-1, (double)x[n-1]-1); printf(" times are reported for matrices of order %5d\n",n); printf(" dgefa dgesl total kflops unit"); printf(" ratio\n"); st[2][0] = total; st[3][0] = ops/(1.0e3*total); st[4][0] = 2.0e3/st[3][0]; st[5][0] = total/cray; printf(" times for array with leading dimension of%5d\n",lda); print_time(0); matgen(a,lda,n,b,&norma); TimerOn(); dgefa(a,lda,n,ipvt,&info); TimerOff(); st[0][1] = TimerElapsed(); Report( "clinpack(dgefa#2)", st[0][1] ); TimerOn(); dgesl(a,lda,n,ipvt,b,0); TimerOff(); st[1][1] = TimerElapsed(); Report( "clinpack(dgesl#2)", st[1][1] ); total = st[0][1] + st[1][1]; st[2][1] = total; st[3][1] = ops/(1.0e3*total); st[4][1] = 2.0e3/st[3][1]; st[5][1] = total/cray; matgen(a,lda,n,b,&norma); TimerOn(); dgefa(a,lda,n,ipvt,&info); TimerOff(); st[0][2] = TimerElapsed(); Report( "clinpack(dgefa#3)", st[0][2] ); TimerOn(); dgesl(a,lda,n,ipvt,b,0); TimerOff(); st[1][2] = TimerElapsed(); Report( "clinpack(dgesl#3)", st[1][2] ); total = st[0][2] + st[1][2]; st[2][2] = total; st[3][2] = ops/(1.0e3*total); st[4][2] = 2.0e3/st[3][2]; st[5][2] = total/cray; ntimes = NTIMES; tm2 = 0.0; UserTimerOn( &second_timer ); for (i = 0; i < ntimes; i++) { TimerOn(); matgen(a,lda,n,b,&norma); TimerOff(); tm2 = tm2 + TimerElapsed(); dgefa(a,lda,n,ipvt,&info); } UserTimerOff( &second_timer ); st[0][3] = ( UserTimerElapsed( &second_timer ) - tm2)/ntimes; Report( "clinpack(dgefa#4)", st[0][3] ); TimerOn(); for (i = 0; i < ntimes; i++) { dgesl(a,lda,n,ipvt,b,0); } TimerOff(); st[1][3] = TimerElapsed()/ntimes; Report( "clinpack(dgesl#4)", st[1][3] ); total = st[0][3] + st[1][3]; st[2][3] = total; st[3][3] = ops/(1.0e3*total); st[4][3] = 2.0e3/st[3][3]; st[5][3] = total/cray; print_time(1); print_time(2); print_time(3); matgen(aa,ldaa,n,b,&norma); TimerOn(); dgefa(aa,ldaa,n,ipvt,&info); TimerOff(); st[0][4] = TimerElapsed(); Report( "clinpack(dgefa#5)", st[0][4] ); TimerOn(); dgesl(aa,ldaa,n,ipvt,b,0); TimerOff(); st[1][4] = TimerElapsed(); Report( "clinpack(dgesl#5)", st[1][4] ); total = st[0][4] + st[1][4]; st[2][4] = total; st[3][4] = ops/(1.0e3*total); st[4][4] = 2.0e3/st[3][4]; st[5][4] = total/cray; matgen(aa,ldaa,n,b,&norma); TimerOn(); dgefa(aa,ldaa,n,ipvt,&info); TimerOff(); st[0][5] = TimerElapsed(); Report( "clinpack(dgefa#6)", st[0][5] ); TimerOn(); dgesl(aa,ldaa,n,ipvt,b,0); TimerOff(); st[1][5] = TimerElapsed(); Report( "clinpack(dgesl#6)", st[1][5] ); total = st[0][5] + st[1][5]; st[2][5] = total; st[3][5] = ops/(1.0e3*total); st[4][5] = 2.0e3/st[3][5]; st[5][5] = total/cray; matgen(aa,ldaa,n,b,&norma); TimerOn(); dgefa(aa,ldaa,n,ipvt,&info); TimerOff(); st[0][6] = TimerElapsed(); Report( "clinpack(dgefa#7)", st[0][6] ); TimerOn(); dgesl(aa,ldaa,n,ipvt,b,0); TimerOff(); st[1][6] = TimerElapsed(); Report( "clinpack(dgesl#7)", st[1][6] ); total = st[0][6] + st[1][6]; st[2][6] = total; st[3][6] = ops/(1.0e3*total); st[4][6] = 2.0e3/st[3][6]; st[5][6] = total/cray; ntimes = NTIMES; tm2 = 0; UserTimerOn( &second_timer ); for (i = 0; i < ntimes; i++) { TimerOn(); matgen(aa,ldaa,n,b,&norma); TimerOff(); tm2 = tm2 + TimerElapsed(); dgefa(aa,ldaa,n,ipvt,&info); } UserTimerOff( &second_timer ); st[0][7] = ( UserTimerElapsed( &second_timer ) - tm2 ) / ntimes; Report( "clinpack(dgefa#8)", st[0][7] ); TimerOn(); for (i = 0; i < ntimes; i++) { dgesl(aa,ldaa,n,ipvt,b,0); } TimerOff(); st[1][7] = TimerElapsed()/ntimes; Report( "clinpack(dgesl#8)", st[1][7] ); total = st[0][7] + st[1][7]; st[2][7] = total; st[3][7] = ops/(1.0e3*total); st[4][7] = 2.0e3/st[3][7]; st[5][7] = total/cray; /* the following code sequence implements the semantics of the Fortran intrinsics "nint(min(st[3][3],st[3][7]))" */ /* kf = (st[3][3] < st[3][7]) ? st[3][3] : st[3][7]; kf = (kf > ZERO) ? (kf + .5) : (kf - .5); if (fabs((double)kf) < ONE) kflops = 0; else { kflops = floor(fabs((double)kf)); if (kf < ZERO) kflops = -kflops; } */ if ( st[3][3] < ZERO ) st[3][3] = ZERO; if ( st[3][7] < ZERO ) st[3][7] = ZERO; kf = st[3][3]; if ( st[3][7] < st[3][3] ) kf = st[3][7]; kflops = (int)(kf + 0.5); printf(" times for array with leading dimension of%4d\n",ldaa); print_time(4); print_time(5); print_time(6); print_time(7); printf(ROLLING); printf(PREC); printf(" Precision %5d Kflops ; %d Reps \n",kflops,NTIMES); exit( EXIT_SUCCESS ); }