/* * Rewrite an existing directory entry to point at the inode * supplied. The parameters describing the directory entry are * set up by a call to namei. */ int ufs_dirrewrite(struct inode *dp, struct inode *oip, ufsino_t newinum, int newtype, int isrmdir) { struct buf *bp; struct direct *ep; struct vnode *vdp = ITOV(dp); int error; error = UFS_BUFATOFF(dp, (off_t)dp->i_offset, (char **)&ep, &bp); if (error) return (error); ep->d_ino = newinum; if (vdp->v_mount->mnt_maxsymlinklen > 0) ep->d_type = newtype; oip->i_effnlink--; if (DOINGSOFTDEP(vdp)) { softdep_change_linkcnt(oip, 0); softdep_setup_directory_change(bp, dp, oip, newinum, isrmdir); bdwrite(bp); } else { DIP_ADD(oip, nlink, -1); oip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(oip, MNT_WAIT); if (DOINGASYNC(vdp)) { bdwrite(bp); error = 0; } else { error = VOP_BWRITE(bp); } } dp->i_flag |= IN_CHANGE | IN_UPDATE; UFS_WAPBL_UPDATE(dp, MNT_WAIT); return (error); }
/* * Remove a directory entry after a call to namei, using * the parameters which it left in nameidata. The entry * dp->i_offset contains the offset into the directory of the * entry to be eliminated. The dp->i_count field contains the * size of the previous record in the directory. If this * is 0, the first entry is being deleted, so we need only * zero the inode number to mark the entry as free. If the * entry is not the first in the directory, we must reclaim * the space of the now empty record by adding the record size * to the size of the previous entry. */ int ufs_dirremove(struct vnode *dvp, struct inode *ip, int flags, int isrmdir) { struct inode *dp; struct direct *ep; struct buf *bp; int error; UFS_WAPBL_JLOCK_ASSERT(dvp->v_mount); dp = VTOI(dvp); if ((error = UFS_BUFATOFF(dp, (off_t)(dp->i_offset - dp->i_count), (char **)&ep, &bp)) != 0) return (error); #ifdef UFS_DIRHASH /* * Remove the dirhash entry. This is complicated by the fact * that `ep' is the previous entry when dp->i_count != 0. */ if (dp->i_dirhash != NULL) ufsdirhash_remove(dp, (dp->i_count == 0) ? ep : (struct direct *)((char *)ep + ep->d_reclen), dp->i_offset); #endif if (dp->i_count == 0) { /* * First entry in block: set d_ino to zero. */ ep->d_ino = 0; } else { /* * Collapse new free space into previous entry. */ ep->d_reclen += dp->i_reclen; } #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL) ufsdirhash_checkblock(dp, (char *)ep - ((dp->i_offset - dp->i_count) & (DIRBLKSIZ - 1)), dp->i_offset & ~(DIRBLKSIZ - 1)); #endif if (DOINGSOFTDEP(dvp)) { if (ip) { ip->i_effnlink--; softdep_change_linkcnt(ip, 0); softdep_setup_remove(bp, dp, ip, isrmdir); } if (softdep_slowdown(dvp)) { error = bwrite(bp); } else { bdwrite(bp); error = 0; } } else { if (ip) { ip->i_effnlink--; DIP_ADD(ip, nlink, -1); ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(ip, 0); } if (DOINGASYNC(dvp) && dp->i_count != 0) { bdwrite(bp); error = 0; } else error = bwrite(bp); } dp->i_flag |= IN_CHANGE | IN_UPDATE; UFS_WAPBL_UPDATE(dp, 0); return (error); }
/* * Write a directory entry after a call to namei, using the parameters * that it left in nameidata. The argument dirp is the new directory * entry contents. Dvp is a pointer to the directory to be written, * which was left locked by namei. Remaining parameters (dp->i_offset, * dp->i_count) indicate how the space for the new entry is to be obtained. * Non-null bp indicates that a directory is being created (for the * soft dependency code). */ int ufs_direnter(struct vnode *dvp, struct vnode *tvp, struct direct *dirp, struct componentname *cnp, struct buf *newdirbp) { struct ucred *cr; struct proc *p; int newentrysize; struct inode *dp; struct buf *bp; u_int dsize; struct direct *ep, *nep; int error, ret, blkoff, loc, spacefree, flags; char *dirbuf; UFS_WAPBL_JLOCK_ASSERT(dvp->v_mount); error = 0; cr = cnp->cn_cred; p = cnp->cn_proc; dp = VTOI(dvp); newentrysize = DIRSIZ(FSFMT(dvp), dirp); if (dp->i_count == 0) { /* * If dp->i_count is 0, then namei could find no * space in the directory. Here, dp->i_offset will * be on a directory block boundary and we will write the * new entry into a fresh block. */ if (dp->i_offset & (DIRBLKSIZ - 1)) panic("ufs_direnter: newblk"); flags = B_CLRBUF; if (!DOINGSOFTDEP(dvp)) flags |= B_SYNC; if ((error = UFS_BUF_ALLOC(dp, (off_t)dp->i_offset, DIRBLKSIZ, cr, flags, &bp)) != 0) { if (DOINGSOFTDEP(dvp) && newdirbp != NULL) bdwrite(newdirbp); return (error); } DIP_ASSIGN(dp, size, dp->i_offset + DIRBLKSIZ); dp->i_flag |= IN_CHANGE | IN_UPDATE; uvm_vnp_setsize(dvp, DIP(dp, size)); dirp->d_reclen = DIRBLKSIZ; blkoff = dp->i_offset & (VFSTOUFS(dvp->v_mount)->um_mountp->mnt_stat.f_iosize - 1); memcpy(bp->b_data + blkoff, dirp, newentrysize); #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL) { ufsdirhash_newblk(dp, dp->i_offset); ufsdirhash_add(dp, dirp, dp->i_offset); ufsdirhash_checkblock(dp, (char *)bp->b_data + blkoff, dp->i_offset); } #endif if (DOINGSOFTDEP(dvp)) { /* * Ensure that the entire newly allocated block is a * valid directory so that future growth within the * block does not have to ensure that the block is * written before the inode. */ blkoff += DIRBLKSIZ; while (blkoff < bp->b_bcount) { ((struct direct *) (bp->b_data + blkoff))->d_reclen = DIRBLKSIZ; blkoff += DIRBLKSIZ; } if (softdep_setup_directory_add(bp, dp, dp->i_offset, dirp->d_ino, newdirbp, 1) == 0) { bdwrite(bp); return (UFS_UPDATE(dp, 0)); } /* We have just allocated a directory block in an * indirect block. Rather than tracking when it gets * claimed by the inode, we simply do a VOP_FSYNC * now to ensure that it is there (in case the user * does a future fsync). Note that we have to unlock * the inode for the entry that we just entered, as * the VOP_FSYNC may need to lock other inodes which * can lead to deadlock if we also hold a lock on * the newly entered node. */ if ((error = VOP_BWRITE(bp))) return (error); if (tvp != NULL) VOP_UNLOCK(tvp, 0); error = VOP_FSYNC(dvp, p->p_ucred, MNT_WAIT); if (tvp != NULL) vn_lock(tvp, LK_EXCLUSIVE | LK_RETRY, p); return (error); } error = VOP_BWRITE(bp); ret = UFS_UPDATE(dp, !DOINGSOFTDEP(dvp)); if (error == 0) return (ret); return (error); } /* * If dp->i_count is non-zero, then namei found space for the new * entry in the range dp->i_offset to dp->i_offset + dp->i_count * in the directory. To use this space, we may have to compact * the entries located there, by copying them together towards the * beginning of the block, leaving the free space in one usable * chunk at the end. */ /* * Increase size of directory if entry eats into new space. * This should never push the size past a new multiple of * DIRBLKSIZE. * * N.B. - THIS IS AN ARTIFACT OF 4.2 AND SHOULD NEVER HAPPEN. */ if (dp->i_offset + dp->i_count > DIP(dp, size)) { DIP_ASSIGN(dp, size, dp->i_offset + dp->i_count); dp->i_flag |= IN_CHANGE | IN_UPDATE; UFS_WAPBL_UPDATE(dp, MNT_WAIT); } /* * Get the block containing the space for the new directory entry. */ if ((error = UFS_BUFATOFF(dp, (off_t)dp->i_offset, &dirbuf, &bp)) != 0) { if (DOINGSOFTDEP(dvp) && newdirbp != NULL) bdwrite(newdirbp); return (error); } /* * Find space for the new entry. In the simple case, the entry at * offset base will have the space. If it does not, then namei * arranged that compacting the region dp->i_offset to * dp->i_offset + dp->i_count would yield the space. */ ep = (struct direct *)dirbuf; dsize = ep->d_ino ? DIRSIZ(FSFMT(dvp), ep) : 0; spacefree = ep->d_reclen - dsize; for (loc = ep->d_reclen; loc < dp->i_count; ) { nep = (struct direct *)(dirbuf + loc); /* Trim the existing slot (NB: dsize may be zero). */ ep->d_reclen = dsize; ep = (struct direct *)((char *)ep + dsize); /* Read nep->d_reclen now as the memmove() may clobber it. */ loc += nep->d_reclen; if (nep->d_ino == 0) { /* * A mid-block unused entry. Such entries are * never created by the kernel, but fsck_ffs * can create them (and it doesn't fix them). * * Add up the free space, and initialise the * relocated entry since we don't memmove it. */ spacefree += nep->d_reclen; ep->d_ino = 0; dsize = 0; continue; } dsize = DIRSIZ(FSFMT(dvp), nep); spacefree += nep->d_reclen - dsize; #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL) ufsdirhash_move(dp, nep, dp->i_offset + ((char *)nep - dirbuf), dp->i_offset + ((char *)ep - dirbuf)); #endif if (DOINGSOFTDEP(dvp)) softdep_change_directoryentry_offset(dp, dirbuf, (caddr_t)nep, (caddr_t)ep, dsize); else memmove(ep, nep, dsize); } /* * Here, `ep' points to a directory entry containing `dsize' in-use * bytes followed by `spacefree' unused bytes. If ep->d_ino == 0, * then the entry is completely unused (dsize == 0). The value * of ep->d_reclen is always indeterminate. * * Update the pointer fields in the previous entry (if any), * copy in the new entry, and write out the block. */ if (ep->d_ino == 0) { if (spacefree + dsize < newentrysize) panic("ufs_direnter: compact1"); dirp->d_reclen = spacefree + dsize; } else { if (spacefree < newentrysize) panic("ufs_direnter: compact2"); dirp->d_reclen = spacefree; ep->d_reclen = dsize; ep = (struct direct *)((char *)ep + dsize); } #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL && (ep->d_ino == 0 || dirp->d_reclen == spacefree)) ufsdirhash_add(dp, dirp, dp->i_offset + ((char *)ep - dirbuf)); #endif memcpy(ep, dirp, newentrysize); #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL) ufsdirhash_checkblock(dp, dirbuf - (dp->i_offset & (DIRBLKSIZ - 1)), dp->i_offset & ~(DIRBLKSIZ - 1)); #endif if (DOINGSOFTDEP(dvp)) { (void)softdep_setup_directory_add(bp, dp, dp->i_offset + (caddr_t)ep - dirbuf, dirp->d_ino, newdirbp, 0); bdwrite(bp); } else { error = VOP_BWRITE(bp); } dp->i_flag |= IN_CHANGE | IN_UPDATE; /* * If all went well, and the directory can be shortened, proceed * with the truncation. Note that we have to unlock the inode for * the entry that we just entered, as the truncation may need to * lock other inodes which can lead to deadlock if we also hold a * lock on the newly entered node. */ if (error == 0 && dp->i_endoff && dp->i_endoff < DIP(dp, size)) { if (tvp != NULL) VOP_UNLOCK(tvp, 0); #ifdef UFS_DIRHASH if (dp->i_dirhash != NULL) ufsdirhash_dirtrunc(dp, dp->i_endoff); #endif error = UFS_TRUNCATE(dp, (off_t)dp->i_endoff, IO_SYNC, cr); if (tvp != NULL) vn_lock(tvp, LK_EXCLUSIVE | LK_RETRY, p); } UFS_WAPBL_UPDATE(dp, MNT_WAIT); return (error); }
/* * Convert a component of a pathname into a pointer to a locked inode. * This is a very central and rather complicated routine. * If the file system is not maintained in a strict tree hierarchy, * this can result in a deadlock situation (see comments in code below). * * The cnp->cn_nameiop argument is LOOKUP, CREATE, RENAME, or DELETE depending * on whether the name is to be looked up, created, renamed, or deleted. * When CREATE, RENAME, or DELETE is specified, information usable in * creating, renaming, or deleting a directory entry may be calculated. * If flag has LOCKPARENT or'ed into it and the target of the pathname * exists, lookup returns both the target and its parent directory locked. * When creating or renaming and LOCKPARENT is specified, the target may * not be ".". When deleting and LOCKPARENT is specified, the target may * be "."., but the caller must check to ensure it does an vrele and vput * instead of two vputs. * * Overall outline of ufs_lookup: * * check accessibility of directory * look for name in cache, if found, then if at end of path * and deleting or creating, drop it, else return name * search for name in directory, to found or notfound * notfound: * if creating, return locked directory, leaving info on available slots * else return error * found: * if at end of path and deleting, return information to allow delete * if at end of path and rewriting (RENAME and LOCKPARENT), lock target * inode and return info to allow rewrite * if not at end, add name to cache; if at end and neither creating * nor deleting, add name to cache */ int ufs_lookup(void *v) { struct vop_lookup_args *ap = v; struct vnode *vdp; /* vnode for directory being searched */ struct inode *dp; /* inode for directory being searched */ struct buf *bp; /* a buffer of directory entries */ struct direct *ep; /* the current directory entry */ int entryoffsetinblock; /* offset of ep in bp's buffer */ enum {NONE, COMPACT, FOUND} slotstatus; doff_t slotoffset; /* offset of area with free space */ int slotsize; /* size of area at slotoffset */ int slotfreespace; /* amount of space free in slot */ int slotneeded; /* size of the entry we're seeking */ int numdirpasses; /* strategy for directory search */ doff_t endsearch; /* offset to end directory search */ doff_t prevoff; /* prev entry dp->i_offset */ struct vnode *pdp; /* saved dp during symlink work */ struct vnode *tdp; /* returned by VFS_VGET */ doff_t enduseful; /* pointer past last used dir slot */ u_long bmask; /* block offset mask */ int lockparent; /* 1 => lockparent flag is set */ int wantparent; /* 1 => wantparent or lockparent flag */ int namlen, error; struct vnode **vpp = ap->a_vpp; struct componentname *cnp = ap->a_cnp; struct ucred *cred = cnp->cn_cred; int flags; int nameiop = cnp->cn_nameiop; struct proc *p = cnp->cn_proc; cnp->cn_flags &= ~PDIRUNLOCK; flags = cnp->cn_flags; bp = NULL; slotoffset = -1; *vpp = NULL; vdp = ap->a_dvp; dp = VTOI(vdp); lockparent = flags & LOCKPARENT; wantparent = flags & (LOCKPARENT|WANTPARENT); /* * Check accessiblity of directory. */ if ((DIP(dp, mode) & IFMT) != IFDIR) return (ENOTDIR); if ((error = VOP_ACCESS(vdp, VEXEC, cred)) != 0) return (error); if ((flags & ISLASTCN) && (vdp->v_mount->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); /* * We now have a segment name to search for, and a directory to search. * * Before tediously performing a linear scan of the directory, * check the name cache to see if the directory/name pair * we are looking for is known already. */ if ((error = cache_lookup(vdp, vpp, cnp)) >= 0) return (error); /* * Suppress search for slots unless creating * file and at end of pathname, in which case * we watch for a place to put the new file in * case it doesn't already exist. */ slotstatus = FOUND; slotfreespace = slotsize = slotneeded = 0; if ((nameiop == CREATE || nameiop == RENAME) && (flags & ISLASTCN)) { slotstatus = NONE; slotneeded = (sizeof(struct direct) - MAXNAMLEN + cnp->cn_namelen + 3) &~ 3; } /* * If there is cached information on a previous search of * this directory, pick up where we last left off. * We cache only lookups as these are the most common * and have the greatest payoff. Caching CREATE has little * benefit as it usually must search the entire directory * to determine that the entry does not exist. Caching the * location of the last DELETE or RENAME has not reduced * profiling time and hence has been removed in the interest * of simplicity. */ bmask = VFSTOUFS(vdp->v_mount)->um_mountp->mnt_stat.f_iosize - 1; #ifdef UFS_DIRHASH /* * Use dirhash for fast operations on large directories. The logic * to determine whether to hash the directory is contained within * ufsdirhash_build(); a zero return means that it decided to hash * this directory and it successfully built up the hash table. */ if (ufsdirhash_build(dp) == 0) { /* Look for a free slot if needed. */ enduseful = DIP(dp, size); if (slotstatus != FOUND) { slotoffset = ufsdirhash_findfree(dp, slotneeded, &slotsize); if (slotoffset >= 0) { slotstatus = COMPACT; enduseful = ufsdirhash_enduseful(dp); if (enduseful < 0) enduseful = DIP(dp, size); } } /* Look up the component. */ numdirpasses = 1; entryoffsetinblock = 0; /* silence compiler warning */ switch (ufsdirhash_lookup(dp, cnp->cn_nameptr, cnp->cn_namelen, &dp->i_offset, &bp, nameiop == DELETE ? &prevoff : NULL)) { case 0: ep = (struct direct *)((char *)bp->b_data + (dp->i_offset & bmask)); goto foundentry; case ENOENT: #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ dp->i_offset = roundup2(DIP(dp, size), DIRBLKSIZ); goto notfound; default: /* Something failed; just do a linear search. */ break; } } #endif /* UFS_DIRHASH */ if (nameiop != LOOKUP || dp->i_diroff == 0 || dp->i_diroff >= DIP(dp, size)) { entryoffsetinblock = 0; dp->i_offset = 0; numdirpasses = 1; } else { dp->i_offset = dp->i_diroff; if ((entryoffsetinblock = dp->i_offset & bmask) && (error = UFS_BUFATOFF(dp, (off_t)dp->i_offset, NULL, &bp))) return (error); numdirpasses = 2; nchstats.ncs_2passes++; } prevoff = dp->i_offset; endsearch = roundup(DIP(dp, size), DIRBLKSIZ); enduseful = 0; searchloop: while (dp->i_offset < endsearch) { /* * If necessary, get the next directory block. */ if ((dp->i_offset & bmask) == 0) { if (bp != NULL) brelse(bp); error = UFS_BUFATOFF(dp, (off_t)dp->i_offset, NULL, &bp); if (error) return (error); entryoffsetinblock = 0; } /* * If still looking for a slot, and at a DIRBLKSIZE * boundary, have to start looking for free space again. */ if (slotstatus == NONE && (entryoffsetinblock & (DIRBLKSIZ - 1)) == 0) { slotoffset = -1; slotfreespace = 0; } /* * Get pointer to next entry. * Full validation checks are slow, so we only check * enough to insure forward progress through the * directory. Complete checks can be run by patching * "dirchk" to be true. */ ep = (struct direct *)((char *)bp->b_data + entryoffsetinblock); if (ep->d_reclen == 0 || (dirchk && ufs_dirbadentry(vdp, ep, entryoffsetinblock))) { int i; ufs_dirbad(dp, dp->i_offset, "mangled entry"); i = DIRBLKSIZ - (entryoffsetinblock & (DIRBLKSIZ - 1)); dp->i_offset += i; entryoffsetinblock += i; continue; } /* * If an appropriate sized slot has not yet been found, * check to see if one is available. Also accumulate space * in the current block so that we can determine if * compaction is viable. */ if (slotstatus != FOUND) { int size = ep->d_reclen; if (ep->d_ino != 0) size -= DIRSIZ(FSFMT(vdp), ep); if (size > 0) { if (size >= slotneeded) { slotstatus = FOUND; slotoffset = dp->i_offset; slotsize = ep->d_reclen; } else if (slotstatus == NONE) { slotfreespace += size; if (slotoffset == -1) slotoffset = dp->i_offset; if (slotfreespace >= slotneeded) { slotstatus = COMPACT; slotsize = dp->i_offset + ep->d_reclen - slotoffset; } } } } /* * Check for a name match. */ if (ep->d_ino) { # if (BYTE_ORDER == LITTLE_ENDIAN) if (vdp->v_mount->mnt_maxsymlinklen > 0) namlen = ep->d_namlen; else namlen = ep->d_type; # else namlen = ep->d_namlen; # endif if (namlen == cnp->cn_namelen && !memcmp(cnp->cn_nameptr, ep->d_name, namlen)) { #ifdef UFS_DIRHASH foundentry: #endif /* * Save directory entry's inode number and * reclen in ndp->ni_ufs area, and release * directory buffer. */ dp->i_ino = ep->d_ino; dp->i_reclen = ep->d_reclen; goto found; } } prevoff = dp->i_offset; dp->i_offset += ep->d_reclen; entryoffsetinblock += ep->d_reclen; if (ep->d_ino) enduseful = dp->i_offset; } #ifdef UFS_DIRHASH notfound: #endif /* * If we started in the middle of the directory and failed * to find our target, we must check the beginning as well. */ if (numdirpasses == 2) { numdirpasses--; dp->i_offset = 0; endsearch = dp->i_diroff; goto searchloop; } if (bp != NULL) brelse(bp); /* * If creating, and at end of pathname and current * directory has not been removed, then can consider * allowing file to be created. */ if ((nameiop == CREATE || nameiop == RENAME) && (flags & ISLASTCN) && dp->i_effnlink != 0) { /* * Access for write is interpreted as allowing * creation of files in the directory. */ error = VOP_ACCESS(vdp, VWRITE, cred); if (error) return (error); /* * Return an indication of where the new directory * entry should be put. If we didn't find a slot, * then set dp->i_count to 0 indicating * that the new slot belongs at the end of the * directory. If we found a slot, then the new entry * can be put in the range from dp->i_offset to * dp->i_offset + dp->i_count. */ if (slotstatus == NONE) { dp->i_offset = roundup(DIP(dp, size), DIRBLKSIZ); dp->i_count = 0; enduseful = dp->i_offset; } else if (nameiop == DELETE) { dp->i_offset = slotoffset; if ((dp->i_offset & (DIRBLKSIZ - 1)) == 0) dp->i_count = 0; else dp->i_count = dp->i_offset - prevoff; } else { dp->i_offset = slotoffset; dp->i_count = slotsize; if (enduseful < slotoffset + slotsize) enduseful = slotoffset + slotsize; } dp->i_endoff = roundup(enduseful, DIRBLKSIZ); /* * We return with the directory locked, so that * the parameters we set up above will still be * valid if we actually decide to do a direnter(). * We return ni_vp == NULL to indicate that the entry * does not currently exist; we leave a pointer to * the (locked) directory inode in ndp->ni_dvp. * The pathname buffer is saved so that the name * can be obtained later. * * NB - if the directory is unlocked, then this * information cannot be used. */ cnp->cn_flags |= SAVENAME; if (!lockparent) { VOP_UNLOCK(vdp, 0); cnp->cn_flags |= PDIRUNLOCK; } return (EJUSTRETURN); } /* * Insert name into cache (as non-existent) if appropriate. */ if ((cnp->cn_flags & MAKEENTRY) && nameiop != CREATE) cache_enter(vdp, *vpp, cnp); return (ENOENT); found: if (numdirpasses == 2) nchstats.ncs_pass2++; /* * Check that directory length properly reflects presence * of this entry. */ if (dp->i_offset + DIRSIZ(FSFMT(vdp), ep) > DIP(dp, size)) { ufs_dirbad(dp, dp->i_offset, "i_ffs_size too small"); DIP_ASSIGN(dp, size, dp->i_offset + DIRSIZ(FSFMT(vdp), ep)); dp->i_flag |= IN_CHANGE | IN_UPDATE; UFS_WAPBL_UPDATE(dp, MNT_WAIT); } brelse(bp); /* * Found component in pathname. * If the final component of path name, save information * in the cache as to where the entry was found. */ if ((flags & ISLASTCN) && nameiop == LOOKUP) dp->i_diroff = dp->i_offset &~ (DIRBLKSIZ - 1); /* * If deleting, and at end of pathname, return * parameters which can be used to remove file. * If the wantparent flag isn't set, we return only * the directory (in ndp->ni_dvp), otherwise we go * on and lock the inode, being careful with ".". */ if (nameiop == DELETE && (flags & ISLASTCN)) { /* * Write access to directory required to delete files. */ error = VOP_ACCESS(vdp, VWRITE, cred); if (error) return (error); /* * Return pointer to current entry in dp->i_offset, * and distance past previous entry (if there * is a previous entry in this block) in dp->i_count. * Save directory inode pointer in ndp->ni_dvp for dirremove(). */ if ((dp->i_offset & (DIRBLKSIZ - 1)) == 0) dp->i_count = 0; else dp->i_count = dp->i_offset - prevoff; if (dp->i_number == dp->i_ino) { vref(vdp); *vpp = vdp; return (0); } error = VFS_VGET(vdp->v_mount, dp->i_ino, &tdp); if (error) return (error); /* * If directory is "sticky", then user must own * the directory, or the file in it, else she * may not delete it (unless she's root). This * implements append-only directories. */ if ((DIP(dp, mode) & ISVTX) && cred->cr_uid != 0 && cred->cr_uid != DIP(dp, uid) && DIP(VTOI(tdp), uid) != cred->cr_uid) { vput(tdp); return (EPERM); } *vpp = tdp; if (!lockparent) { VOP_UNLOCK(vdp, 0); cnp->cn_flags |= PDIRUNLOCK; } return (0); } /* * If rewriting (RENAME), return the inode and the * information required to rewrite the present directory * Must get inode of directory entry to verify it's a * regular file, or empty directory. */ if (nameiop == RENAME && wantparent && (flags & ISLASTCN)) { error = VOP_ACCESS(vdp, VWRITE, cred); if (error) return (error); /* * Careful about locking second inode. * This can only occur if the target is ".". */ if (dp->i_number == dp->i_ino) return (EISDIR); error = VFS_VGET(vdp->v_mount, dp->i_ino, &tdp); if (error) return (error); *vpp = tdp; cnp->cn_flags |= SAVENAME; if (!lockparent) { VOP_UNLOCK(vdp, 0); cnp->cn_flags |= PDIRUNLOCK; } return (0); } /* * Step through the translation in the name. We do not `vput' the * directory because we may need it again if a symbolic link * is relative to the current directory. Instead we save it * unlocked as "pdp". We must get the target inode before unlocking * the directory to insure that the inode will not be removed * before we get it. We prevent deadlock by always fetching * inodes from the root, moving down the directory tree. Thus * when following backward pointers ".." we must unlock the * parent directory before getting the requested directory. * There is a potential race condition here if both the current * and parent directories are removed before the VFS_VGET for the * inode associated with ".." returns. We hope that this occurs * infrequently since we cannot avoid this race condition without * implementing a sophisticated deadlock detection algorithm. * Note also that this simple deadlock detection scheme will not * work if the file system has any hard links other than ".." * that point backwards in the directory structure. */ pdp = vdp; if (flags & ISDOTDOT) { VOP_UNLOCK(pdp, 0); /* race to get the inode */ cnp->cn_flags |= PDIRUNLOCK; error = VFS_VGET(vdp->v_mount, dp->i_ino, &tdp); if (error) { if (vn_lock(pdp, LK_EXCLUSIVE | LK_RETRY, p) == 0) cnp->cn_flags &= ~PDIRUNLOCK; return (error); } if (lockparent && (flags & ISLASTCN)) { if ((error = vn_lock(pdp, LK_EXCLUSIVE, p))) { vput(tdp); return (error); } cnp->cn_flags &= ~PDIRUNLOCK; } *vpp = tdp; } else if (dp->i_number == dp->i_ino) { vref(vdp); /* we want ourself, ie "." */ *vpp = vdp; } else { error = VFS_VGET(vdp->v_mount, dp->i_ino, &tdp); if (error) return (error); if (!lockparent || !(flags & ISLASTCN)) { VOP_UNLOCK(pdp, 0); cnp->cn_flags |= PDIRUNLOCK; } *vpp = tdp; } /* * Insert name into cache if appropriate. */ if (cnp->cn_flags & MAKEENTRY) cache_enter(vdp, *vpp, cnp); return (0); }
/* * Find a directory block with room for 'slotneeded' bytes. Returns * the offset of the directory entry that begins the free space. * This will either be the offset of an existing entry that has free * space at the end, or the offset of an entry with d_ino == 0 at * the start of a DIRBLKSIZ block. * * To use the space, the caller may need to compact existing entries in * the directory. The total number of bytes in all of the entries involved * in the compaction is stored in *slotsize. In other words, all of * the entries that must be compacted are exactly contained in the * region beginning at the returned offset and spanning *slotsize bytes. * * Returns -1 if no space was found, indicating that the directory * must be extended. */ doff_t ufsdirhash_findfree(struct inode *ip, int slotneeded, int *slotsize) { struct direct *dp; struct dirhash *dh; struct buf *bp; doff_t pos, slotstart; int dirblock, error, freebytes, i; if ((dh = ip->i_dirhash) == NULL) return (-1); DIRHASH_LOCK(dh); if (dh->dh_hash == NULL) { DIRHASH_UNLOCK(dh); ufsdirhash_free(ip); return (-1); } /* Find a directory block with the desired free space. */ dirblock = -1; for (i = howmany(slotneeded, DIRALIGN); i <= DH_NFSTATS; i++) if ((dirblock = dh->dh_firstfree[i]) != -1) break; if (dirblock == -1) { DIRHASH_UNLOCK(dh); return (-1); } DIRHASH_ASSERT(dirblock < dh->dh_nblk && dh->dh_blkfree[dirblock] >= howmany(slotneeded, DIRALIGN), ("ufsdirhash_findfree: bad stats")); DIRHASH_UNLOCK(dh); pos = dirblock * DIRBLKSIZ; error = UFS_BUFATOFF(ip, (off_t)pos, (char **)&dp, &bp); if (error) return (-1); /* Find the first entry with free space. */ for (i = 0; i < DIRBLKSIZ; ) { if (dp->d_reclen == 0) { brelse(bp); return (-1); } if (dp->d_ino == 0 || dp->d_reclen > DIRSIZ(0, dp)) break; i += dp->d_reclen; dp = (struct direct *)((char *)dp + dp->d_reclen); } if (i > DIRBLKSIZ) { brelse(bp); return (-1); } slotstart = pos + i; /* Find the range of entries needed to get enough space */ freebytes = 0; while (i < DIRBLKSIZ && freebytes < slotneeded) { freebytes += dp->d_reclen; if (dp->d_ino != 0) freebytes -= DIRSIZ(0, dp); if (dp->d_reclen == 0) { brelse(bp); return (-1); } i += dp->d_reclen; dp = (struct direct *)((char *)dp + dp->d_reclen); } if (i > DIRBLKSIZ) { brelse(bp); return (-1); } if (freebytes < slotneeded) panic("ufsdirhash_findfree: free mismatch"); brelse(bp); *slotsize = pos + i - slotstart; return (slotstart); }
/* * Find the offset of the specified name within the given inode. * Returns 0 on success, ENOENT if the entry does not exist, or * EJUSTRETURN if the caller should revert to a linear search. * * If successful, the directory offset is stored in *offp, and a * pointer to a struct buf containing the entry is stored in *bpp. If * prevoffp is non-NULL, the offset of the previous entry within * the DIRBLKSIZ-sized block is stored in *prevoffp (if the entry * is the first in a block, the start of the block is used). */ int ufsdirhash_lookup(struct inode *ip, char *name, int namelen, doff_t *offp, struct buf **bpp, doff_t *prevoffp) { struct dirhash *dh, *dh_next; struct direct *dp; struct vnode *vp; struct buf *bp; doff_t blkoff, bmask, offset, prevoff; int i, slot; if ((dh = ip->i_dirhash) == NULL) return (EJUSTRETURN); /* * Move this dirhash towards the end of the list if it has a * score higher than the next entry, and acquire the dh_mtx. * Optimise the case where it's already the last by performing * an unlocked read of the TAILQ_NEXT pointer. * * In both cases, end up holding just dh_mtx. */ if (TAILQ_NEXT(dh, dh_list) != NULL) { DIRHASHLIST_LOCK(); DIRHASH_LOCK(dh); /* * If the new score will be greater than that of the next * entry, then move this entry past it. With both mutexes * held, dh_next won't go away, but its dh_score could * change; that's not important since it is just a hint. */ if (dh->dh_hash != NULL && (dh_next = TAILQ_NEXT(dh, dh_list)) != NULL && dh->dh_score >= dh_next->dh_score) { DIRHASH_ASSERT(dh->dh_onlist, ("dirhash: not on list")); TAILQ_REMOVE(&ufsdirhash_list, dh, dh_list); TAILQ_INSERT_AFTER(&ufsdirhash_list, dh_next, dh, dh_list); } DIRHASHLIST_UNLOCK(); } else { /* Already the last, though that could change as we wait. */ DIRHASH_LOCK(dh); } if (dh->dh_hash == NULL) { DIRHASH_UNLOCK(dh); ufsdirhash_free(ip); return (EJUSTRETURN); } /* Update the score. */ if (dh->dh_score < DH_SCOREMAX) dh->dh_score++; vp = ip->i_vnode; bmask = VFSTOUFS(vp->v_mount)->um_mountp->mnt_stat.f_iosize - 1; blkoff = -1; bp = NULL; restart: slot = ufsdirhash_hash(dh, name, namelen); if (dh->dh_seqopt) { /* * Sequential access optimisation. dh_seqoff contains the * offset of the directory entry immediately following * the last entry that was looked up. Check if this offset * appears in the hash chain for the name we are looking for. */ for (i = slot; (offset = DH_ENTRY(dh, i)) != DIRHASH_EMPTY; i = WRAPINCR(i, dh->dh_hlen)) if (offset == dh->dh_seqoff) break; if (offset == dh->dh_seqoff) { /* * We found an entry with the expected offset. This * is probably the entry we want, but if not, the * code below will turn off seqopt and retry. */ slot = i; } else dh->dh_seqopt = 0; } for (; (offset = DH_ENTRY(dh, slot)) != DIRHASH_EMPTY; slot = WRAPINCR(slot, dh->dh_hlen)) { if (offset == DIRHASH_DEL) continue; DIRHASH_UNLOCK(dh); if (offset < 0 || offset >= DIP(ip, size)) panic("ufsdirhash_lookup: bad offset in hash array"); if ((offset & ~bmask) != blkoff) { if (bp != NULL) brelse(bp); blkoff = offset & ~bmask; if (UFS_BUFATOFF(ip, (off_t)blkoff, NULL, &bp) != 0) return (EJUSTRETURN); } dp = (struct direct *)(bp->b_data + (offset & bmask)); if (dp->d_reclen == 0 || dp->d_reclen > DIRBLKSIZ - (offset & (DIRBLKSIZ - 1))) { /* Corrupted directory. */ brelse(bp); return (EJUSTRETURN); } if (dp->d_namlen == namelen && memcmp(dp->d_name, name, namelen) == 0) { /* Found. Get the prev offset if needed. */ if (prevoffp != NULL) { if (offset & (DIRBLKSIZ - 1)) { prevoff = ufsdirhash_getprev(dp, offset); if (prevoff == -1) { brelse(bp); return (EJUSTRETURN); } } else prevoff = offset; *prevoffp = prevoff; } /* Check for sequential access, and update offset. */ if (dh->dh_seqopt == 0 && dh->dh_seqoff == offset) dh->dh_seqopt = 1; dh->dh_seqoff = offset + DIRSIZ(0, dp); *bpp = bp; *offp = offset; return (0); } DIRHASH_LOCK(dh); if (dh->dh_hash == NULL) { DIRHASH_UNLOCK(dh); if (bp != NULL) brelse(bp); ufsdirhash_free(ip); return (EJUSTRETURN); } /* * When the name doesn't match in the seqopt case, go back * and search normally. */ if (dh->dh_seqopt) { dh->dh_seqopt = 0; goto restart; } } DIRHASH_UNLOCK(dh); if (bp != NULL) brelse(bp); return (ENOENT); }
/* * Attempt to build up a hash table for the directory contents in * inode 'ip'. Returns 0 on success, or -1 of the operation failed. */ int ufsdirhash_build(struct inode *ip) { struct dirhash *dh; struct buf *bp = NULL; struct direct *ep; struct vnode *vp; doff_t bmask, pos; int dirblocks, i, j, memreqd, nblocks, narrays, nslots, slot; /* Check if we can/should use dirhash. */ if (ip->i_dirhash == NULL) { if (DIP(ip, size) < ufs_mindirhashsize || OFSFMT(ip)) return (-1); } else { /* Hash exists, but sysctls could have changed. */ if (DIP(ip, size) < ufs_mindirhashsize || ufs_dirhashmem > ufs_dirhashmaxmem) { ufsdirhash_free(ip); return (-1); } /* Check if hash exists and is intact (note: unlocked read). */ if (ip->i_dirhash->dh_hash != NULL) return (0); /* Free the old, recycled hash and build a new one. */ ufsdirhash_free(ip); } /* Don't hash removed directories. */ if (ip->i_effnlink == 0) return (-1); vp = ip->i_vnode; /* Allocate 50% more entries than this dir size could ever need. */ DIRHASH_ASSERT(DIP(ip, size) >= DIRBLKSIZ, ("ufsdirhash_build size")); nslots = DIP(ip, size) / DIRECTSIZ(1); nslots = (nslots * 3 + 1) / 2; narrays = howmany(nslots, DH_NBLKOFF); nslots = narrays * DH_NBLKOFF; dirblocks = howmany(DIP(ip, size), DIRBLKSIZ); nblocks = (dirblocks * 3 + 1) / 2; memreqd = sizeof(*dh) + narrays * sizeof(*dh->dh_hash) + narrays * DH_NBLKOFF * sizeof(**dh->dh_hash) + nblocks * sizeof(*dh->dh_blkfree); DIRHASHLIST_LOCK(); if (memreqd + ufs_dirhashmem > ufs_dirhashmaxmem) { DIRHASHLIST_UNLOCK(); if (memreqd > ufs_dirhashmaxmem / 2) return (-1); /* Try to free some space. */ if (ufsdirhash_recycle(memreqd) != 0) return (-1); /* Enough was freed, and list has been locked. */ } ufs_dirhashmem += memreqd; DIRHASHLIST_UNLOCK(); /* * Use non-blocking mallocs so that we will revert to a linear * lookup on failure rather than potentially blocking forever. */ dh = malloc(sizeof(*dh), M_DIRHASH, M_NOWAIT|M_ZERO); if (dh == NULL) { DIRHASHLIST_LOCK(); ufs_dirhashmem -= memreqd; DIRHASHLIST_UNLOCK(); return (-1); } dh->dh_hash = mallocarray(narrays, sizeof(dh->dh_hash[0]), M_DIRHASH, M_NOWAIT|M_ZERO); dh->dh_blkfree = mallocarray(nblocks, sizeof(dh->dh_blkfree[0]), M_DIRHASH, M_NOWAIT | M_ZERO); if (dh->dh_hash == NULL || dh->dh_blkfree == NULL) goto fail; for (i = 0; i < narrays; i++) { if ((dh->dh_hash[i] = DIRHASH_BLKALLOC()) == NULL) goto fail; for (j = 0; j < DH_NBLKOFF; j++) dh->dh_hash[i][j] = DIRHASH_EMPTY; } /* Initialise the hash table and block statistics. */ mtx_init(&dh->dh_mtx, IPL_NONE); dh->dh_narrays = narrays; dh->dh_hlen = nslots; dh->dh_nblk = nblocks; dh->dh_dirblks = dirblocks; for (i = 0; i < dirblocks; i++) dh->dh_blkfree[i] = DIRBLKSIZ / DIRALIGN; for (i = 0; i < DH_NFSTATS; i++) dh->dh_firstfree[i] = -1; dh->dh_firstfree[DH_NFSTATS] = 0; dh->dh_seqopt = 0; dh->dh_seqoff = 0; dh->dh_score = DH_SCOREINIT; ip->i_dirhash = dh; bmask = VFSTOUFS(vp->v_mount)->um_mountp->mnt_stat.f_iosize - 1; pos = 0; while (pos < DIP(ip, size)) { /* If necessary, get the next directory block. */ if ((pos & bmask) == 0) { if (bp != NULL) brelse(bp); if (UFS_BUFATOFF(ip, (off_t)pos, NULL, &bp) != 0) goto fail; } /* Add this entry to the hash. */ ep = (struct direct *)((char *)bp->b_data + (pos & bmask)); if (ep->d_reclen == 0 || ep->d_reclen > DIRBLKSIZ - (pos & (DIRBLKSIZ - 1))) { /* Corrupted directory. */ brelse(bp); goto fail; } if (ep->d_ino != 0) { /* Add the entry (simplified ufsdirhash_add). */ slot = ufsdirhash_hash(dh, ep->d_name, ep->d_namlen); while (DH_ENTRY(dh, slot) != DIRHASH_EMPTY) slot = WRAPINCR(slot, dh->dh_hlen); dh->dh_hused++; DH_ENTRY(dh, slot) = pos; ufsdirhash_adjfree(dh, pos, -DIRSIZ(0, ep)); } pos += ep->d_reclen; } if (bp != NULL) brelse(bp); DIRHASHLIST_LOCK(); TAILQ_INSERT_TAIL(&ufsdirhash_list, dh, dh_list); dh->dh_onlist = 1; DIRHASHLIST_UNLOCK(); return (0); fail: if (dh->dh_hash != NULL) { for (i = 0; i < narrays; i++) if (dh->dh_hash[i] != NULL) DIRHASH_BLKFREE(dh->dh_hash[i]); free(dh->dh_hash, M_DIRHASH, 0); } if (dh->dh_blkfree != NULL) free(dh->dh_blkfree, M_DIRHASH, 0); free(dh, M_DIRHASH, 0); ip->i_dirhash = NULL; DIRHASHLIST_LOCK(); ufs_dirhashmem -= memreqd; DIRHASHLIST_UNLOCK(); return (-1); }