Пример #1
0
/**
* @brief  串口解析任务;
* @param  None
* @retval None
* @note   优先级最高。创建串口接收断帧信号量;回调函数信号量。首先等待串口接收完一帧(串口收到相邻两字符间隔3ms以上算一帧)所释放的信号量。
解析收到的数据,看是否是模块任务中发送给串口的指令回复:若是回复,则解析后利用回调函数转回模块任务;若为模块接收到的(如短信,gps),那么
解析数据看是什么数据,那么释放sche信号量,并且为flag赋值。转到模块任务去执行。
*/
void WifiParseTask(void * pvParameters)
{
  char auch_buf[MAX_REV_LEN];
  
  Usart4RevBufInit();

  InitQueue();

  Usart4Init();

  vSemaphoreCreateBinary(UsartTimeoutSem);

  for( ;; )
  {
    if(xSemaphoreTake(UsartTimeoutSem, portMAX_DELAY) == pdTRUE)
    {
      memset(auch_buf, 0, MAX_REV_LEN);
      
      memcpy(auch_buf, g_rev_usart1.p_parse, g_rev_usart1.uch_parse_len);

      g_rev_usart1.b_parse_busy = false;
      
      if(mystrstr(auch_buf,"StationMac") != NULL)
      {
           printf("%s\r\n",auch_buf);
      }
      else if(mystrstr(auch_buf,"TCP close") != NULL)
      {
           printf("TCP close\r\n");
      }
      else if(mystrstr(auch_buf,"TCP success") != NULL)
      {
           printf("TCP success\r\n");
      }
      else if(mystrstr(auch_buf,"WIFI success") != NULL)
      {
           printf("WIFI success\r\n");
      }
      else if(mystrstr(auch_buf,"WIFI close") != NULL)
      {
           printf("WIFI close\r\n");
      }
      
      Esp8266PromptProtocol(auch_buf,g_rev_usart1.uch_parse_len);
    }
  }
}
Пример #2
0
int main(void)
{
    Delay_ms(100);
    Periph_clock_enable();
    GPIO_Config();
    Usart4Init();
    I2C_Config();
    ADC_Config();
    MPU6050_Init();
    Timer1_Config();
    Timer8_Config();
    Timer2_Config();
    Timer5_Config();
    Timer4_Config();
    Timer3_Config();//RC control timer
    NVIC_Configuration();
    EXTI_Config();

    TIM_Cmd(TIM5, ENABLE);
    TIM_CtrlPWMOutputs(TIM5, ENABLE);

    for (i = 1 ; i < 1 ; i++) ; //small delay before starting Timer4

    TIM_Cmd(TIM4, ENABLE);
    TIM_CtrlPWMOutputs(TIM4, ENABLE);



    Delay_ms(100);

    for (i = 0; i < configDataSize; i++) //reads configuration from eeprom
    {
        ReadFromEEPROM(i);
        configData[i] = EepromData;
        Delay_ms(5);
    }

    I2C_AcknowledgeConfig(I2C2, ENABLE);

    Delay_ms(100);



    while (1)
    {
        LEDon;
        DEBUG_LEDon;

        while (ConfigMode == 1)
        {
            TimerOff();   //Configuration loop
        }

        MPU6050_ACC_get();//Getting Accelerometer data

        acc_roll_angle = -(atan2(accADC_x, accADC_z)) + (configData[11] - 50.00) * 0.0035; //Calculating pitch ACC angle+callibration
        acc_pitch_angle  = +(atan2(accADC_y, accADC_z));   //Calculating roll ACC angle

        MPU6050_Gyro_get();//Getting Gyroscope data

        acc_roll_angle_vid = ((acc_roll_angle_vid * 99.00) + acc_roll_angle) / 100.00; //Averaging pitch ACC values
        acc_pitch_angle_vid = ((acc_pitch_angle_vid * 99.00) + acc_pitch_angle) / 100.00; //Averaging roll  ACC values

        sinus   = sinusas[(int)(rc4)];      //Calculating sinus
        cosinus = sinusas[90 - (int)(rc4)]; //Calculating cosinus

        ROLL = -gyroADC_z * sinus + gyroADC_y * cosinus;
        roll_angle = (roll_angle + ROLL * dt)    + 0.0002 * (acc_roll_angle_vid - roll_angle); //Roll Horizon

        //ROLL=-gyroADC_z*sinus+gyroADC_y*cosinus;
        yaw_angle = (yaw_angle + gyroADC_z * dt); //Yaw

        pitch_angle_true = ((pitch_angle_true  + gyroADC_x * dt) + 0.0002 * (acc_pitch_angle_vid - pitch_angle_true)); //Pitch Horizon

        ADC1Ch1_vid = ((ADC1Ch1_vid * 99.00) + (readADC1(1) / 4000.00)) / 100.00; //Averaging ADC values
        ADC1Ch1_vid = 0.00;

        rc4_avg = ((rc4_avg * 499.00) + (rc4)) / 500.00; //Averaging RC4 values
        pitch_angle = pitch_angle_true - rc4_avg / 57.3; //Adding angle

        pitch_angle_correction = pitch_angle * 150.0;

        if (pitch_angle_correction > 2.0)
        {
            pitch_angle_correction = 2.0;
        }

        if (pitch_angle_correction < -2.0)
        {
            pitch_angle_correction = -2.0;
        }

        pitch_setpoint = pitch_setpoint + pitch_angle_correction; //Pitch return to zero after collision

        roll_angle_correction = roll_angle * 200.0;

        if (roll_angle_correction > 2.0)
        {
            roll_angle_correction = 2.0;
        }

        if (roll_angle_correction < -2.0)
        {
            roll_angle_correction = -2.0;
        }

        roll_setpoint = roll_setpoint + roll_angle_correction; //Roll return to zero after collision



        ADC1Ch13_vid = ((ADC1Ch13_vid * 99.00) + ((readADC1(13) - 2000) / 4000.00)) / 100.00; //Averaging ADC values

        if (configData[10] == '0')
        {
            yaw_angle = (yaw_angle + gyroADC_z * dt) + 0.01 * (ADC1Ch13_vid - yaw_angle);   //Yaw AutoPan
        }

        if (configData[10] == '1')
        {
            yaw_angle = (yaw_angle + gyroADC_z * dt);   //Yaw RCPan
        }

        yaw_angle_correction = yaw_angle * 50.0;

        if (yaw_angle_correction > 1.0)
        {
            yaw_angle_correction = 1.0;
        }

        if (yaw_angle_correction < -1.0)
        {
            yaw_angle_correction = -1.0;
        }

        yaw_setpoint = yaw_setpoint + yaw_angle_correction; //Yaw return to zero after collision

        pitch_PID();//Pitch axis pid
        roll_PID(); //Roll axis pid
        yaw_PID(); //Yaw axis pid


        printcounter++; //Print data to UART

        if (printcounter >= 100)
        {
            //sprintf (buff, " %d %d %c Labas\n\r", ACCread[0], ACCread[1], ACCread[2]);
            //sprintf (buff, " %x %x %x %x %x %x Labas\n\r", ACCread[0], ACCread[1], ACCread[2], ACCread[3], ACCread[4], ACCread[5]);
            //sprintf (buff, "Labas %d %d\n\r", ACCread[0], ACCread[1]);
            //sprintf (buff, "%3.1f %f\n\r", ADC1Ch1_vid*57.3, sinus);
            //sprintf (buff, "Labas %f %f %f \n\r", accADC_x, accADC_y, accADC_z);
            //sprintf (buff, "%3.1f %3.1f \n\r", acc_roll_angle_vid*57.3,  acc_pitch_angle_vid *57.3);
            //sprintf (buff, "%3.1f %3.1f \n\r", pitch_angle*57.3,  roll_angle*57.3);
            //sprintf (buff, "%d\n\r", rc4);
            //USART_PutString(buff);
            printcounter = 0;
        }

        stop = 0;
        LEDoff;
        watchcounter = 0;

        while (stop == 0) {} //Closed loop waits for interrupt


    }
}