int main() { unsigned int errors = 0; vbx_test_init(); vbx_timestamp_start(); // Requires > 64KB scratch: // printf(VBX_EXPAND_AND_QUOTE(VBX_CPU_DCACHE_LINE_SIZE)); errors += VBX_T(vbw_vec_reverse_test)(); errors += VBX_T(vbw_vec_reverse_test_mm)(); VBX_TEST_END(errors); return 0; }
int deep_vector_copy_test() { int retval; int num_test; int total_errors = 0; const int NUM_TESTS = TEST_DEEP_SP_NUM_TESTS; const int NB = vbx_sp_getfree(); int NT = NB / sizeof(vbx_sp_t); vbx_sp_push(); vbx_sp_t *v = vbx_sp_malloc( NB ); srand( 0x1a84c92a ); for( num_test=0; num_test < NUM_TESTS ; num_test++ ) { // initialize entire available scratchpad vbx_set_vl( NT ); vbx( SE(T), VAND, v, MSK, 0 ); // choose random src/dest/length: // -- randomly pick the dest // -- set a window size of 2*K around the dest // -- randomly pick the src within the window // -- randomly pick the length, subject to end-of-scratchpad // -- this 'window' rule increases probability of overlaps // -- rough distribution: 30% short (pipeline) overlaps, 20% long overlaps, 50% no overlap int K, N1, N2, NN; N1 = rand() % NT; K = 1 + rand() % ((N1 > 0)? min(min(N1, NT-N1), 1024): min(NT, 1024)); N2 = N1 - K + rand() % (2*K); NN = rand() % (NT - max(N1,N2)); vbx_sp_t *dst = v + N1; vbx_sp_t *src = v + N2; printf("test:%d src:0x%08x dst:0x%08x len:%08d", num_test, N1, N2, NN ); // do the copy retval = VBX_T(vbw_vec_copy)( dst, src, NN ); vbx_sync(); printf(" retval:0x%04x\n",retval); // ensure the copy was done properly int errors = verify_copy((vbx_mm_t *)v, 0, N1, 0, "head") + verify_copy((vbx_mm_t *)v, N1, NN+N1, (N2-N1), "copy") + verify_copy((vbx_mm_t *)v, NN+N1, NT, 0, "tail"); total_errors += errors; if( errors ) { //break; } } vbx_sp_pop(); return total_errors; }
int deep_vector_copy_ext_test() { vbx_mxp_t *this_mxp = VBX_GET_THIS_MXP(); int retval; int num_test; int total_errors = 0; const int NUM_TESTS = TEST_DEEP_MM_NUM_TESTS; int NB = this_mxp->scratchpad_size * 10; int NT = NB / sizeof(vbx_mm_t); vbx_mm_t *v = vbx_shared_malloc( NB ); srand( 0x1a84c92a ); int i; for( num_test=0; num_test < NUM_TESTS ; num_test++ ) { // initialize the whole working space for( i=0; i<NT; i++ ) { v[i] = i & MSK; } // choose random src/dest/length: // -- randomly pick the dest // -- set a window size of 2*K around the dest // -- randomly pick the src within the window // -- randomly pick the length, subject to end-of-scratchpad // -- this 'window' rule increases probability of overlaps // -- rough distribution: 30% short (pipeline) overlaps, 20% long overlaps, 50% no overlap int K, N1, N2, NN; N1 = rand() % NT; K = 1 + rand() % ((N1 > 0)? min(min(N1, NT-N1), 1024): min(NT, 1024)); N2 = N1 - K + rand() % (2*K); NN = rand() % (NT - max(N1,N2)); vbx_mm_t *dst = v + N1; vbx_mm_t *src = v + N2; printf("test:%d src:0x%08x dst:0x%08x len:%08d", num_test, N1, N2, NN ); // do the copy retval = VBX_T(vbw_vec_copy_ext)( dst, src, NN ); vbx_sync(); printf(" retval:0x%04x\n",retval); // ensure the copy was done properly int errors = verify_copy(v, 0, N1, 0, "head") + verify_copy(v, N1, NN+N1, (N2-N1), "copy") + verify_copy(v, NN+N1, NT, 0, "tail"); total_errors += errors; if( errors ) { //break; } } return total_errors; }
double test_vector( vbx_mm_t *out, vbx_mm_t *in, int32_t *coeffs, int test_row, int test_col, int ntaps_row, int ntaps_col, double scalar_time ) { vbx_timestamp_t time_start, time_stop; printf( "\nExecuting MXP matrix FIR...\n" ); vbx_timestamp_start(); time_start = vbx_timestamp(); VBX_T(vbw_mtx_2Dfir)( out, in, coeffs, test_row, test_col, ntaps_row, ntaps_col ); time_stop = vbx_timestamp(); printf( "...done\n" ); return vbx_print_vector_time( time_start, time_stop, scalar_time ); }
double test_vector_2d( vbx_mm_t *vector_out, vbx_mm_t *sample, vbx_mm_t *coeffs, double scalar_time ) { vbx_timestamp_t time_start, time_stop; printf("\nExecuting MXP vector FIR with Accum 2D....\n"); vbx_timestamp_start(); time_start = vbx_timestamp(); VBX_T(vbw_vec_fir_2d)( vector_out, sample, coeffs, SAMP_SIZE, NTAPS ); time_stop = vbx_timestamp(); printf("...done\n"); return vbx_print_vector_time( time_start, time_stop, scalar_time ); }
double test_scalar( vbx_mm_t *scalar_out, vbx_mm_t *scalar_sample, vbx_mm_t *scalar_coeffs) { vbx_timestamp_t time_start, time_stop; printf("\nExecuting scalar vector FIR...\n"); vbx_timestamp_start(); time_start = vbx_timestamp(); VBX_T(scalar_vec_fir)( scalar_out, scalar_sample, scalar_coeffs, SAMP_SIZE, NTAPS ); time_stop = vbx_timestamp(); printf("...done\n"); return vbx_print_scalar_time( time_start, time_stop ); }
double test_scalar( vbx_mm_t *scalar_out, vbx_mm_t *scalar_in, int32_t *coeffs, int test_row, int test_col, int ntaps_row, int ntaps_col) { vbx_timestamp_t time_start, time_stop; printf("\nExecuting scalar matrix FIR...\n"); vbx_timestamp_start(); time_start = vbx_timestamp(); VBX_T(scalar_mtx_2Dfir)( scalar_out, scalar_in, coeffs, test_row, test_col, ntaps_row, ntaps_col ); time_stop = vbx_timestamp(); printf( "...done\n" ); return vbx_print_scalar_time( time_start, time_stop ); }
double test_scalar( vbx_mm_t *scalar_out, vbx_mm_t *scalar_in1, vbx_mm_t *scalar_in2, int N ) { vbx_timestamp_t time_start, time_stop; printf( "\nExecuting scalar add...\n" ); vbx_timestamp_start(); time_start = vbx_timestamp(); VBX_T(scalar_vec_add)( scalar_out, scalar_in1, scalar_in2, N ); time_stop = vbx_timestamp(); printf( "...done\n" ); return vbx_print_scalar_time( time_start, time_stop ); }
double test_vector_transpose( vbx_mm_t *vector_out, vbx_mm_t *sample, vbx_mm_t *coeffs, double scalar_time ) { int retval; vbx_timestamp_t time_start, time_stop; printf("\nExecuting MXP vector transpose FIR.... \n"); vbx_timestamp_start(); time_start = vbx_timestamp(); retval = VBX_T(vbw_vec_fir_transpose_ext)( vector_out, sample, coeffs, SAMP_SIZE, NTAPS ); time_stop = vbx_timestamp(); printf("...done retval:%X\n", retval); return vbx_print_vector_time( time_start, time_stop, scalar_time ); }
double test_vector_ext( vbx_mm_t *out, vbx_mm_t *in, int N, double scalar_time ) { int retval; vbx_timestamp_t time_start, time_stop; printf( "\nExecuting vector copy (ext)...\n" ); vbx_timestamp_start(); time_start = vbx_timestamp(); retval = VBX_T(vbw_vec_copy_ext)( out, in, N ); vbx_sync(); time_stop = vbx_timestamp(); printf( "...done. retval: %X\n", retval ); return vbx_print_vector_time(time_start, time_stop, scalar_time); }
double test_vector( vbx_sp_t *v_out, vbx_sp_t *v_in1, vbx_sp_t *v_in2, int N, double scalar_time ) { int retval; vbx_timestamp_t time_start, time_stop; printf( "\nExecuting MXP vector add...\n" ); vbx_timestamp_start(); time_start = vbx_timestamp(); retval = VBX_T(vbw_vec_add)( v_out, v_in1, v_in2, N ); vbx_sync(); time_stop = vbx_timestamp(); printf( "...done. retval: %X\n", retval ); return vbx_print_vector_time(time_start, time_stop, scalar_time ); }
int VBX_T(vbw_vec_reverse_test)() { unsigned int aN[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 20, 25, 31, 32, 33, 35, 40, 48, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 70, 80, 90, 99, 100, 101, 110, 128, 128, 144, 144, 160, 160, 176, 176, 192, 192, 224, 224, 256, 256, 288, 288, 320, 320, 352, 352, 384, 384, 400, 450, 512, 550, 600, 650, 700, 768, 768, 900, 900, 1023, 1024, 1200, 1400, 1600, 1800, 2048, 2048, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4096, 4096, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 6000, 7000, 8000, 8192, 8192, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 16384, 16384, 20000, 25000, 30000, 32767, 32768, 32768, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 65535, 65536, 65536 }; int retval; unsigned int N; unsigned int NBYTES; unsigned int NREPS = 100; unsigned int i,k; vbx_timestamp_t start=0,finish=0; vbx_mxp_t *this_mxp = VBX_GET_THIS_MXP(); const unsigned int VBX_SCRATCHPAD_SIZE = this_mxp->scratchpad_size; for( i=0; i<sizeof(aN)/4; i++ ) { N = aN[i]; //printf( "testing with vector size %d\n", N ); NBYTES = sizeof(vbx_sp_t)*N; if( 2*NBYTES > VBX_SCRATCHPAD_SIZE ) continue; vbx_sp_t *vsrc = vbx_sp_malloc( NBYTES ); vbx_sp_t *vdst = vbx_sp_malloc( NBYTES ); //printf("bytes alloc: %d\n", NBYTES ); if( !vsrc ) VBX_EXIT(-1); if( !vdst ) VBX_EXIT(-1); #if ( VBX_TEMPLATE_T == BYTESIZE_DEF | VBX_TEMPLATE_T == UBYTESIZE_DEF ) unsigned int mask = 0x007F; #elif ( VBX_TEMPLATE_T == HALFSIZE_DEF | VBX_TEMPLATE_T == UHALFSIZE_DEF ) unsigned int mask = 0x7FFF; #else unsigned int mask = 0xFFFF; #endif vbx_set_vl( N ); vbx( SV(T), VMOV, vdst, -1, 0 ); // Fill the destination vector with -1 vbx( SE(T), VAND, vsrc, mask, 0 ); // Fill the source vector with enumerated values //VBX_T(print_vector)( "vsrcInit", vsrc, N ); //VBX_T(print_vector)( "vdstInit", vdst, N ); /** measure performance of function call **/ vbx_sync(); start = vbx_timestamp(); for(k=0; k<NREPS; k++ ) { retval = VBX_T(vbw_vec_reverse)( vdst, vsrc, N ); vbx_sync(); } finish = vbx_timestamp(); printf( "length %d (%s):\tvbware sp f():\t%llu", N, VBX_EXPAND_AND_QUOTE(BYTEHALFWORD), (unsigned long long) vbx_mxp_cycles((finish-start)/NREPS) ); //VBX_T(print_vector)( "vsrcPost", vsrc, N ); //VBX_T(print_vector)( "vdstPost", vdst, N ); #if VERIFY_VBWARE_ALGORITHM VBX_T(verify_vector)( vsrc, vdst, N ); #else printf(" [VERIFY OFF]"); #endif printf("\treturn value: %X", retval); vbx_set_vl( N ); vbx( SE(T), VAND, vsrc, mask, 0 ); // Reset the source vector /** measure performance of simple algorithm **/ vbx_sync(); vbx_set_vl( 1 ); vbx_set_2D( N, -sizeof(vbx_sp_t), sizeof(vbx_sp_t), 0 ); start = vbx_timestamp(); for(k=0; k<NREPS; k++ ) { vbx_2D( VV(T), VMOV, vdst+N-1, vsrc, 0 ); vbx_sync(); } finish = vbx_timestamp(); printf( "\tsimple (vl=1):\t%llu", (unsigned long long) vbx_mxp_cycles((finish-start)/NREPS) ); #if VERIFY_SIMPLE_ALGORITHM VBX_T(verify_vector)( vsrc, vdst, N ); #else printf(" [VERIFY OFF]"); #endif printf("\tcycles\n"); vbx_sp_free(); } vbx_sp_free(); printf("All tests passed successfully.\n"); return 0; }
int VBX_T(vbw_vec_reverse_test_mm)() { unsigned int aN[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 20, 25, 31, 32, 33, 35, 40, 48, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 70, 80, 90, 99, 100, 101, 110, 128, 128, 144, 144, 160, 160, 176, 176, 192, 192, 224, 224, 256, 256, 288, 288, 320, 320, 352, 352, 384, 384, 400, 450, 512, 550, 600, 650, 700, 768, 768, 900, 900, 1023, 1024, 1200, 1400, 1600, 1800, 2048, 2048, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4096, 4096, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 6000, 7000, 8000, 8192, 8192, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 16384, 16384, 20000, 25000, 30000, 32767, 32768, 32768, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 65535, 65536, 65536, 65537, 100000, 128000, 256000, 333333, 528374, 528374 }; int retval; unsigned int N; unsigned int NBYTES; unsigned int NREPS = 100; unsigned int NREPSFORLARGE = 10; unsigned int i,j,k; vbx_timestamp_t start=0,finish=0; for( i=0; i<sizeof(aN)/4; i++ ) { N = aN[i]; //printf( "testing with vector size %d\n", N ); if(N > 10000) NREPS = NREPSFORLARGE; NBYTES = N*sizeof(vbx_mm_t); vbx_mm_t *src = (vbx_mm_t *) vbx_shared_malloc( NBYTES ); vbx_mm_t *dst = (vbx_mm_t *) vbx_shared_malloc( NBYTES ); //printf("bytes alloc: %d\n", NBYTES ); if( !src ) VBX_EXIT(-1); if( !dst ) VBX_EXIT(-1); for ( j=0; j<N; j++ ) { dst[j] = -1; // Fill the destination with -1 src[j] = j; // Fill the source with enumerated values } // VBX_T(vbw_vec_reverse_ext)( dst, src, N ); /** measure performance of function call **/ start = vbx_timestamp(); for(k=0; __builtin_expect(k<NREPS,1); k++ ) { retval = VBX_T(vbw_vec_reverse_ext)( dst, src, N ); } finish = vbx_timestamp(); printf( "length %d (%s):\tvbware mm f():\t%llu", N, VBX_EXPAND_AND_QUOTE(BYTEHALFWORD), (unsigned long long) vbx_mxp_cycles((finish-start)/NREPS) ); #if VERIFY_VBWARE_ALGORITHM VBX_T(verify_vector)( src, dst, N ); #else printf(" [VERIFY OFF]"); #endif printf("\treturn value: %X", retval); /** measure performance of scalar **/ vbx_mm_t *A = vbx_remap_cached( src, N*sizeof(vbx_mm_t) ); // Use cached pointers for better performance vbx_mm_t *B = vbx_remap_cached( dst, N*sizeof(vbx_mm_t) ); start = vbx_timestamp(); for(k=0; k<NREPS; k++ ) { unsigned int m; for(m=0; m<N; m++) { B[N-1-m]=A[m]; } vbx_dcache_flush( A, N*sizeof(vbx_mm_t) ); // Make sure to read from main memory vbx_dcache_flush( B, N*sizeof(vbx_mm_t) ); // Make sure writes are committed to memory } finish = vbx_timestamp(); printf( "\tscalar (cache friendly):\t%llu", (unsigned long long) vbx_mxp_cycles((finish-start)/NREPS) ); #if VERIFY_SIMPLE_ALGORITHM VBX_T(verify_vector)( src, dst, N ); #else printf(" [VERIFY OFF]"); #endif printf("\tcycles\n"); vbx_shared_free(src); vbx_shared_free(dst); } printf("All tests passed successfully.\n"); return 0; }
int main(void) { double scalar_time, vector_time; int errors=0; vbx_test_init(); vbx_mxp_print_params(); printf("\nVector FIR test...\n"); vbx_mm_t *scalar_sample = malloc( (SAMP_SIZE+NTAPS)*sizeof(vbx_mm_t) ); vbx_mm_t *scalar_coeffs = malloc( NTAPS*sizeof(vbx_mm_t) ); vbx_mm_t *scalar_out = malloc( SAMP_SIZE*sizeof(vbx_mm_t) ); vbx_mm_t *sample = vbx_shared_malloc( (SAMP_SIZE+NTAPS)*sizeof(vbx_mm_t) ); vbx_mm_t *coeffs = vbx_shared_malloc( NTAPS*sizeof(vbx_mm_t) ); vbx_mm_t *vector_out = vbx_shared_malloc( SAMP_SIZE*sizeof(vbx_mm_t) ); VBX_T(test_zero_array)( scalar_out, SAMP_SIZE ); VBX_T(test_zero_array)( vector_out, SAMP_SIZE ); VBX_T(test_init_array)( scalar_sample, SAMP_SIZE, 0xff ); VBX_T(test_copy_array)( sample, scalar_sample, SAMP_SIZE ); VBX_T(test_init_array)( scalar_coeffs, NTAPS, 1 ); VBX_T(test_copy_array)( coeffs, scalar_coeffs, NTAPS ); VBX_T(test_zero_array)( scalar_sample+SAMP_SIZE, NTAPS ); VBX_T(test_zero_array)( sample+SAMP_SIZE, NTAPS ); printf("\nSamples:\n"); VBX_T(test_print_array)( scalar_sample, min(SAMP_SIZE,MAX_PRINT_LENGTH) ); printf("\nCoefficients:\n"); VBX_T(test_print_array)( scalar_coeffs, min(NTAPS,MAX_PRINT_LENGTH) ); scalar_time = test_scalar( scalar_out, scalar_sample, scalar_coeffs); VBX_T(test_print_array)( scalar_out, min(SAMP_SIZE,MAX_PRINT_LENGTH) ); #ifdef USE_TRANSPOSE vector_time = test_vector_transpose( vector_out, sample, coeffs, scalar_time ); VBX_T(test_print_array)( vector_out, min(SAMP_SIZE,MAX_PRINT_LENGTH) ); errors += VBX_T(test_verify_array)( scalar_out, vector_out, SAMP_SIZE-NTAPS ); #endif //USE_TRANSPOSE #ifdef USE_1D vector_time = test_vector_1d( vector_out, sample, coeffs, scalar_time ); VBX_T(test_print_array)( vector_out, min(SAMP_SIZE,MAX_PRINT_LENGTH) ); errors += VBX_T(test_verify_array)( scalar_out, vector_out, SAMP_SIZE-NTAPS ); #endif //USE_1D #ifdef USE_2D vector_time = test_vector_2d( vector_out, sample, coeffs, scalar_time ); VBX_T(test_print_array)( vector_out, min(SAMP_SIZE,MAX_PRINT_LENGTH) ); errors += VBX_T(test_verify_array)( scalar_out, vector_out, SAMP_SIZE-NTAPS ); #endif //USE_2D VBX_TEST_END(errors); return 0; }
int main(void) { vbx_test_init(); #if 0 vbx_mxp_t *this_mxp = VBX_GET_THIS_MXP(); const int VBX_SCRATCHPAD_SIZE = this_mxp->scratchpad_size; int N = VBX_SCRATCHPAD_SIZE/sizeof(vbx_mm_t)/8; #endif int TEST_LENGTH = TEST_ROWS*TEST_COLS; int NTAP_LENGTH = NTAP_ROWS*NTAP_COLS; int PRINT_COLS = min( TEST_COLS, MAX_PRINT_LENGTH ); int PRINT_ROWS = min( TEST_ROWS, MAX_PRINT_LENGTH ); double scalar_time, vector_time; int errors=0; vbx_mxp_print_params(); printf( "\nMatrix FIR test...\n" ); printf( "Matrix dimensions: %d,%d\n", TEST_ROWS, TEST_COLS ); vbx_mm_t *scalar_in = malloc( TEST_LENGTH*sizeof(vbx_mm_t) ); vbx_mm_t *vector_in = vbx_shared_malloc( TEST_LENGTH*sizeof(vbx_mm_t) ); int32_t *scalar_filt = malloc( NTAP_LENGTH*sizeof(int32_t) ); int32_t *vector_filt = vbx_shared_malloc( NTAP_LENGTH*sizeof(int32_t) ); vbx_mm_t *scalar_out = malloc( TEST_LENGTH*sizeof(vbx_mm_t) ); vbx_mm_t *vector_out = vbx_shared_malloc( TEST_LENGTH*sizeof(vbx_mm_t) ); VBX_T(test_zero_array)( scalar_out, TEST_LENGTH ); VBX_T(test_zero_array)( vector_out, TEST_LENGTH ); VBX_T(test_init_array)( scalar_in, TEST_LENGTH, 1 ); VBX_T(test_copy_array)( vector_in, scalar_in, TEST_LENGTH ); test_init_array_word( scalar_filt, NTAP_LENGTH, 1 ); test_copy_array_word( vector_filt, scalar_filt, NTAP_LENGTH ); VBX_T(test_print_matrix)( scalar_in, PRINT_ROWS, PRINT_COLS, TEST_COLS ); test_print_matrix_word( scalar_filt, NTAP_ROWS, NTAP_COLS, NTAP_COLS ); scalar_time = test_scalar( scalar_out, scalar_in, scalar_filt, TEST_ROWS, TEST_COLS, NTAP_ROWS, NTAP_COLS); VBX_T(test_print_matrix)( scalar_out, PRINT_COLS, PRINT_ROWS, TEST_COLS ); vector_time = test_vector( vector_out, vector_in, vector_filt, TEST_ROWS, TEST_COLS, NTAP_ROWS, NTAP_COLS, scalar_time ); VBX_T(test_print_matrix)( vector_out, PRINT_COLS, PRINT_ROWS, TEST_COLS ); int i; for(i=0; i<TEST_ROWS-NTAP_ROWS; i++){ errors += VBX_T(test_verify_array)( scalar_out+i*TEST_COLS, vector_out+i*TEST_COLS, TEST_COLS-NTAP_COLS ); } VBX_TEST_END(errors); return 0; }
int main(void) { vbx_test_init(); vbx_mxp_t *this_mxp = VBX_GET_THIS_MXP(); const int VBX_SCRATCHPAD_SIZE = this_mxp->scratchpad_size; const int required_vectors = 4; int N = VBX_SCRATCHPAD_SIZE / sizeof(vbx_mm_t) / required_vectors; int PRINT_LENGTH = min( N, MAX_PRINT_LENGTH ); double scalar_time, vector_time; int errors=0; vbx_mxp_print_params(); printf( "\nAdd test...\n" ); printf( "Vector length: %d\n", N ); vbx_mm_t *scalar_in1 = malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *scalar_in2 = malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *scalar_out = malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *vector_in1 = vbx_shared_malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *vector_in2 = vbx_shared_malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *vector_out = vbx_shared_malloc( N*sizeof(vbx_mm_t) ); // vbx_mm_t *vector_out = vector_in2 - 5; vbx_sp_t *v_in1 = vbx_sp_malloc( N*sizeof(vbx_sp_t) ); vbx_sp_t *v_in2 = vbx_sp_malloc( N*sizeof(vbx_sp_t) ); vbx_sp_t *v_out = vbx_sp_malloc( N*sizeof(vbx_sp_t) ); // vbx_sp_t *v_out = v_in2-5; VBX_T(test_zero_array)( scalar_out, N ); VBX_T(test_zero_array)( vector_out, N ); VBX_T(test_init_array)( scalar_in1, N, 1 ); VBX_T(test_copy_array)( vector_in1, scalar_in1, N ); VBX_T(test_init_array)( scalar_in2, N, 1 ); VBX_T(test_copy_array)( vector_in2, scalar_in2, N ); VBX_T(test_print_array)( scalar_in1, PRINT_LENGTH ); VBX_T(test_print_array)( scalar_in2, PRINT_LENGTH ); scalar_time = test_scalar( scalar_out, scalar_in1, scalar_in2, N ); VBX_T(test_print_array)( scalar_out, PRINT_LENGTH); vbx_dma_to_vector( v_in1, (void *)vector_in1, N*sizeof(vbx_sp_t) ); vbx_dma_to_vector( v_in2, (void *)vector_in1, N*sizeof(vbx_sp_t) ); vector_time = test_vector( v_out, v_in1, v_in2, N, scalar_time ); vbx_dma_to_host( (void *)vector_out, v_out, N*sizeof(vbx_sp_t) ); vbx_sync(); VBX_T(test_print_array)( vector_out, PRINT_LENGTH ); errors += VBX_T(test_verify_array)( scalar_out, vector_out, N ); VBX_TEST_END(errors); return 0; }
int main(void) { vbx_test_init(); vbx_mxp_t *this_mxp = VBX_GET_THIS_MXP(); const int VBX_SCRATCHPAD_SIZE = this_mxp->scratchpad_size; const int required_vectors = 4; int N = VBX_PAD_DN(VBX_SCRATCHPAD_SIZE / sizeof(vbx_mm_t) / required_vectors, this_mxp->scratchpad_alignment_bytes); int PRINT_LENGTH = min( N, MAX_PRINT_LENGTH ); double scalar_time, vector_time; int errors=0; vbx_mxp_print_params(); printf( "\nVector copy test...\n" ); printf( "Vector length: %d\n", N ); vbx_mm_t *scalar_in = malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *scalar_out = malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *vector_in = vbx_shared_malloc( N*sizeof(vbx_mm_t) ); vbx_mm_t *vector_out = vbx_shared_malloc( N*sizeof(vbx_mm_t) ); vbx_sp_t *v_out = vbx_sp_malloc( N*sizeof(vbx_sp_t) ); vbx_sp_t *v_in = vbx_sp_malloc( N*sizeof(vbx_sp_t) ); VBX_T(test_zero_array)( scalar_in, N ); VBX_T(test_zero_array)( vector_in, N ); VBX_T(test_init_array)( scalar_in, N, 1 ); VBX_T(test_copy_array)( vector_in, scalar_in, N ); scalar_time = test_scalar( scalar_out, scalar_in, N ); VBX_T(test_print_array)( scalar_out, PRINT_LENGTH ); vbx_dma_to_vector( v_in, vector_in, N*sizeof(vbx_sp_t) ); vector_time = test_vector( v_out, v_in, N, scalar_time ); vbx_dma_to_host(vector_out, v_out, N*sizeof(vbx_sp_t) ); vbx_sync(); VBX_T(test_print_array)( vector_out, PRINT_LENGTH ); errors += VBX_T(test_verify_array)( scalar_out, vector_out, N ); vbx_sp_free(); #if TEST_DEEP_SP errors += deep_vector_copy_test(); #endif #if DEBUG_MAKE_SP_FULL vbx_sp_malloc(vbx_sp_getfree()); #endif #if TEST_DEEP_MM errors += deep_vector_copy_ext_test(); #endif VBX_TEST_END(errors); return 0; }