Пример #1
0
int main(int argc, char *argv[]){

  UserInput_t XLAL_INIT_DECL(uvar);
  static ConfigVariables config;

  /* sft related variables */
  MultiSFTVector *inputSFTs = NULL;
  MultiPSDVector *multiPSDs = NULL;
  MultiNoiseWeights *multiWeights = NULL;
  MultiLIGOTimeGPSVector *multiTimes = NULL;
  MultiLALDetector multiDetectors;
  MultiDetectorStateSeries *multiStates = NULL;
  MultiAMCoeffs *multiCoeffs = NULL;
  SFTIndexList *sftIndices = NULL;
  SFTPairIndexList *sftPairs = NULL;
  REAL8Vector *shiftedFreqs = NULL;
  UINT4Vector *lowestBins = NULL;
  COMPLEX8Vector *expSignalPhases = NULL;
  REAL8VectorSequence *sincList = NULL;
  PulsarDopplerParams XLAL_INIT_DECL(dopplerpos);
  PulsarDopplerParams thisBinaryTemplate, binaryTemplateSpacings;
  PulsarDopplerParams minBinaryTemplate, maxBinaryTemplate;
  SkyPosition XLAL_INIT_DECL(skyPos);
  MultiSSBtimes *multiBinaryTimes = NULL;

  INT4  k;
  UINT4 j;
  REAL8 fMin, fMax; /* min and max frequencies read from SFTs */
  REAL8 deltaF; /* frequency resolution associated with time baseline of SFTs */

  REAL8 diagff = 0; /*diagonal metric components*/
  REAL8 diagaa = 0;
  REAL8 diagTT = 0;
  REAL8 diagpp = 1;
  REAL8 ccStat = 0;
  REAL8 evSquared=0;
  REAL8 estSens=0; /*estimated sensitivity(4.13)*/
  BOOLEAN dopplerShiftFlag = TRUE;
  toplist_t *ccToplist=NULL;
  CrossCorrBinaryOutputEntry thisCandidate;
  UINT4 checksum;

  LogPrintf (LOG_CRITICAL, "Starting time\n"); /*for debug convenience to record calculating time*/
  /* initialize and register user variables */
  LIGOTimeGPS computingStartGPSTime, computingEndGPSTime;
  XLALGPSTimeNow (&computingStartGPSTime); /* record the rough starting GPS time*/

  if ( XLALInitUserVars( &uvar ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read user input from the command line or config file */
  if ( XLALUserVarReadAllInput ( argc, argv ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALUserVarReadAllInput() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  if (uvar.help)	/* if help was requested, then exit */
    return 0;

  CHAR *VCSInfoString = XLALGetVersionString(0);     /**<LAL + LALapps Vsersion string*/
  /*If the version information was requested, output it and exit*/
  if ( uvar.version ){
    XLAL_CHECK ( VCSInfoString != NULL, XLAL_EFUNC, "XLALGetVersionString(0) failed.\n" );
    printf ("%s\n", VCSInfoString );
    exit (0);
  }

  /* configure useful variables based on user input */
  if ( XLALInitializeConfigVars ( &config, &uvar) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  deltaF = config.catalog->data[0].header.deltaF;
  REAL8 Tsft = 1.0 / deltaF;

  if (XLALUserVarWasSet(&uvar.spacingF) && XLALUserVarWasSet(&uvar.mismatchF))
    LogPrintf (LOG_CRITICAL, "spacingF and mismatchF are both set, use spacingF %.9g by default\n\n", uvar.spacingF);
  if (XLALUserVarWasSet(&uvar.spacingA) && XLALUserVarWasSet(&uvar.mismatchA))
    LogPrintf (LOG_CRITICAL, "spacingA and mismatchA are both set, use spacingA %.9g by default\n\n", uvar.spacingA);
  if (XLALUserVarWasSet(&uvar.spacingT) && XLALUserVarWasSet(&uvar.mismatchT))
    LogPrintf (LOG_CRITICAL, "spacingT and mismatchT are both set, use spacingT %.9g by default\n\n", uvar.spacingT);
  if (XLALUserVarWasSet(&uvar.spacingP) && XLALUserVarWasSet(&uvar.mismatchP))
    LogPrintf (LOG_CRITICAL, "spacingP and mismatchP are both set, use spacingP %.9g by default\n\n", uvar.spacingP);

  /* create the toplist */
  create_crossCorrBinary_toplist( &ccToplist, uvar.numCand);
  /* now read the data */

  /* /\* get SFT parameters so that we can initialise search frequency resolutions *\/ */
  /* /\* calculate deltaF_SFT *\/ */
  /* deltaF_SFT = catalog->data[0].header.deltaF;  /\* frequency resolution *\/ */
  /* timeBase= 1.0/deltaF_SFT; /\* sft baseline *\/ */

  /* /\* catalog is ordered in time so we can get start, end time and tObs *\/ */
  /* firstTimeStamp = catalog->data[0].header.epoch; */
  /* lastTimeStamp = catalog->data[catalog->length - 1].header.epoch; */
  /* tObs = XLALGPSDiff( &lastTimeStamp, &firstTimeStamp ) + timeBase; */

  /* /\*set pulsar reference time *\/ */
  /* if (LALUserVarWasSet ( &uvar_refTime )) { */
  /*   XLALGPSSetREAL8(&refTime, uvar_refTime); */
  /* }  */
  /* else {	/\*if refTime is not set, set it to midpoint of sfts*\/ */
  /*   XLALGPSSetREAL8(&refTime, (0.5*tObs) + XLALGPSGetREAL8(&firstTimeStamp));  */
  /* } */

  /* /\* set frequency resolution defaults if not set by user *\/ */
  /* if (!(LALUserVarWasSet (&uvar_fResolution))) { */
  /*   uvar_fResolution = 1/tObs; */
  /* } */

  /* { */
  /*   /\* block for calculating frequency range to read from SFTs *\/ */
  /*   /\* user specifies freq and fdot range at reftime */
  /*      we translate this range of fdots to start and endtime and find */
  /*      the largest frequency band required to cover the  */
  /*      frequency evolution  *\/ */
  /*   PulsarSpinRange spinRange_startTime; /\**< freq and fdot range at start-time of observation *\/ */
  /*   PulsarSpinRange spinRange_endTime;   /\**< freq and fdot range at end-time of observation *\/ */
  /*   PulsarSpinRange spinRange_refTime;   /\**< freq and fdot range at the reference time *\/ */

  /*   REAL8 startTime_freqLo, startTime_freqHi, endTime_freqLo, endTime_freqHi, freqLo, freqHi; */

  /*   REAL8Vector *fdotsMin=NULL; */
  /*   REAL8Vector *fdotsMax=NULL; */

  /*   UINT4 k; */

  /*   fdotsMin = (REAL8Vector *)LALCalloc(1, sizeof(REAL8Vector)); */
  /*   fdotsMin->length = N_SPINDOWN_DERIVS; */
  /*   fdotsMin->data = (REAL8 *)LALCalloc(fdotsMin->length, sizeof(REAL8)); */

  /*   fdotsMax = (REAL8Vector *)LALCalloc(1, sizeof(REAL8Vector)); */
  /*   fdotsMax->length = N_SPINDOWN_DERIVS; */
  /*   fdotsMax->data = (REAL8 *)LALCalloc(fdotsMax->length, sizeof(REAL8)); */

  /*   XLAL_INIT_MEM(spinRange_startTime); */
  /*   XLAL_INIT_MEM(spinRange_endTime); */
  /*   XLAL_INIT_MEM(spinRange_refTime); */

  /*   spinRange_refTime.refTime = refTime; */
  /*   spinRange_refTime.fkdot[0] = uvar_f0; */
  /*   spinRange_refTime.fkdotBand[0] = uvar_fBand; */
  /* } */

  /* FIXME: need to correct fMin and fMax for Doppler shift, rngmedian bins and spindown range */
  /* this is essentially just a place holder for now */
  /* FIXME: this running median buffer is overkill, since the running median block need not be centered on the search frequency */
  REAL8 vMax = LAL_TWOPI * (uvar.orbitAsiniSec + uvar.orbitAsiniSecBand) / uvar.orbitPSec + LAL_TWOPI * LAL_REARTH_SI / (LAL_DAYSID_SI * LAL_C_SI) + LAL_TWOPI * LAL_AU_SI/(LAL_YRSID_SI * LAL_C_SI); /*calculate the maximum relative velocity in speed of light*/
  fMin = uvar.fStart * (1 - vMax) - 0.5 * uvar.rngMedBlock * deltaF;
  fMax = (uvar.fStart + uvar.fBand) * (1 + vMax) + 0.5 * uvar.rngMedBlock * deltaF;

  /* read the SFTs*/
  if ((inputSFTs = XLALLoadMultiSFTs ( config.catalog, fMin, fMax)) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALLoadMultiSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* calculate the psd and normalize the SFTs */
  if (( multiPSDs =  XLALNormalizeMultiSFTVect ( inputSFTs, uvar.rngMedBlock, NULL )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALNormalizeMultiSFTVect() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* compute the noise weights for the AM coefficients */
  if (( multiWeights = XLALComputeMultiNoiseWeights ( multiPSDs, uvar.rngMedBlock, 0 )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALComputeMultiNoiseWeights() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read the timestamps from the SFTs */
  if ((multiTimes = XLALExtractMultiTimestampsFromSFTs ( inputSFTs )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALExtractMultiTimestampsFromSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* read the detector information from the SFTs */
  if ( XLALMultiLALDetectorFromMultiSFTs ( &multiDetectors, inputSFTs ) != XLAL_SUCCESS){
    LogPrintf ( LOG_CRITICAL, "%s: XLALMultiLALDetectorFromMultiSFTs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Find the detector state for each SFT */
  /* Offset by Tsft/2 to get midpoint as timestamp */
  if ((multiStates = XLALGetMultiDetectorStates ( multiTimes, &multiDetectors, config.edat, 0.5 * Tsft )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALGetMultiDetectorStates() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Note this is specialized to a single sky position */
  /* This might need to be moved into the config variables */
  skyPos.system = COORDINATESYSTEM_EQUATORIAL;
  skyPos.longitude = uvar.alphaRad;
  skyPos.latitude  = uvar.deltaRad;

  /* Calculate the AM coefficients (a,b) for each SFT */
  if ((multiCoeffs = XLALComputeMultiAMCoeffs ( multiStates, multiWeights, skyPos )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALComputeMultiAMCoeffs() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Construct the flat list of SFTs (this sort of replicates the
     catalog, but there's not an obvious way to get the information
     back) */

  if ( ( XLALCreateSFTIndexListFromMultiSFTVect( &sftIndices, inputSFTs ) != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateSFTIndexListFromMultiSFTVect() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* Construct the list of SFT pairs */
#define PCC_SFTPAIR_HEADER "# The length of SFT-pair list is %u #\n"
#define PCC_SFTPAIR_BODY "%u %u\n"
#define PCC_SFT_HEADER "# The length of SFT list is %u #\n"
#define PCC_SFT_BODY "%s %d %d\n"
  FILE *fp = NULL;

  if (XLALUserVarWasSet(&uvar.pairListInputFilename)) { /* If the user provided a list for reading, use it */
    if((sftPairs = XLALCalloc(1, sizeof(sftPairs))) == NULL){
      XLAL_ERROR(XLAL_ENOMEM);
    }
    if((fp = fopen(uvar.pairListInputFilename, "r")) == NULL){
      LogPrintf ( LOG_CRITICAL, "didn't find SFT-pair list file with given input name\n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    if(fscanf(fp,PCC_SFTPAIR_HEADER,&sftPairs->length)==EOF){
      LogPrintf ( LOG_CRITICAL, "can't read the length of SFT-pair list from the header\n");
      XLAL_ERROR( XLAL_EFUNC );
    }

    if((sftPairs->data = XLALCalloc(sftPairs->length, sizeof(*sftPairs->data)))==NULL){
      XLALFree(sftPairs);
      XLAL_ERROR(XLAL_ENOMEM);
    }

    for(j = 0; j < sftPairs->length; j++){ /*read in  the SFT-pair list */
      if(fscanf(fp,PCC_SFTPAIR_BODY, &sftPairs->data[j].sftNum[0], &sftPairs->data[j].sftNum[1])==EOF){
	LogPrintf ( LOG_CRITICAL, "The length of SFT-pair list doesn't match!");
	XLAL_ERROR( XLAL_EFUNC );
      }
    }
    fclose(fp);

  }

  else { /* if not, construct the list of pairs */
    if ( ( XLALCreateSFTPairIndexList( &sftPairs, sftIndices, inputSFTs, uvar.maxLag, uvar.inclAutoCorr ) != XLAL_SUCCESS ) ) {
      LogPrintf ( LOG_CRITICAL, "%s: XLALCreateSFTPairIndexList() failed with errno=%d\n", __func__, xlalErrno );
      XLAL_ERROR( XLAL_EFUNC );
    }
  }

  if (XLALUserVarWasSet(&uvar.pairListOutputFilename)) { /* Write the list of pairs to a file, if a name was provided */
    if((fp = fopen(uvar.pairListOutputFilename, "w")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't write in SFT-pair list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_SFTPAIR_HEADER, sftPairs->length ); /*output the length of SFT-pair list to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_SFTPAIR_BODY, sftPairs->data[j].sftNum[0], sftPairs->data[j].sftNum[1]);
    }
    fclose(fp);
  }

  if (XLALUserVarWasSet(&uvar.sftListOutputFilename)) { /* Write the list of SFTs to a file for sanity-checking purposes */
    if((fp = fopen(uvar.sftListOutputFilename, "w")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't write in flat SFT list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_SFT_HEADER, sftIndices->length ); /*output the length of SFT list to the header*/
    for(j = 0; j < sftIndices->length; j++){ /*output the SFT list */
      fprintf(fp,PCC_SFT_BODY, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].name, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsSeconds, inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsNanoSeconds);
    }
    fclose(fp);
  }

  else if(XLALUserVarWasSet(&uvar.sftListInputFilename)){ /*do a sanity check of the order of SFTs list if the name of input SFT list is given*/
    UINT4 numofsft=0;
    if((fp = fopen(uvar.sftListInputFilename, "r")) == NULL){
      LogPrintf ( LOG_CRITICAL, "Can't read in flat SFT list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    if (fscanf(fp, PCC_SFT_HEADER, &numofsft)==EOF){
      LogPrintf ( LOG_CRITICAL, "can't read in the length of SFT list from header\n");
      XLAL_ERROR( XLAL_EFUNC );
    }

    CHARVectorSequence *checkDet=NULL;
    if ((checkDet = XLALCreateCHARVectorSequence (numofsft, LALNameLength) ) == NULL){
      LogPrintf ( LOG_CRITICAL, "%s: XLALCreateCHARVector() failed with errno=%d\n", __func__, xlalErrno );
      XLAL_ERROR( XLAL_EFUNC );
    }
    INT4 checkGPS[numofsft], checkGPSns[numofsft];
    if(numofsft == sftIndices->length){
      for (j=0; j<numofsft; j++){
	if( fscanf(fp,PCC_SFT_BODY,&checkDet->data[j * LALNameLength], &checkGPS[j], &checkGPSns[j])==EOF){
	  LogPrintf ( LOG_CRITICAL, "The length of SFT list doesn't match\n");
	  XLAL_ERROR( XLAL_EFUNC );
	}
	if(strcmp( inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].name, &checkDet->data[j * LALNameLength] ) != 0
	   ||inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsSeconds != checkGPS[j]
	   ||inputSFTs->data[sftIndices->data[j].detInd]->data[sftIndices->data[j].sftInd].epoch.gpsNanoSeconds != checkGPSns[j] ){
	  LogPrintf ( LOG_CRITICAL, "The order of SFTs has been changed, it's the end of civilization\n");
	  XLAL_ERROR( XLAL_EFUNC );
	}
      }
      fclose(fp);
      XLALDestroyCHARVectorSequence(checkDet);
    }
    else{
      LogPrintf ( LOG_CRITICAL, "Run for your life, the length of SFT list doesn't match");
      XLAL_ERROR( XLAL_EFUNC );
    }
  }
  else
    {

    }

  /* Get weighting factors for calculation of metric */
  /* note that the sigma-squared is now absorbed into the curly G
     because the AM coefficients are noise-weighted. */
  REAL8Vector *GammaAve = NULL;
  REAL8Vector *GammaCirc = NULL;
  if ( ( XLALCalculateCrossCorrGammas( &GammaAve, &GammaCirc, sftPairs, sftIndices, multiCoeffs)  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrGammas() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

#define PCC_GAMMA_HEADER "# The normalization Sinv_Tsft is %g #\n"
#define PCC_GAMMA_BODY "%.10g\n"
  if (XLALUserVarWasSet(&uvar.gammaAveOutputFilename)) { /* Write the aa+bb weight for each pair to a file, if a name was provided */
    if((fp = fopen(uvar.gammaAveOutputFilename, "w")) == NULL) {
      LogPrintf ( LOG_CRITICAL, "Can't write in Gamma_ave list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_GAMMA_HEADER, multiWeights->Sinv_Tsft); /*output the normalization factor to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_GAMMA_BODY, GammaAve->data[j]);
    }
    fclose(fp);
  }
  if (XLALUserVarWasSet(&uvar.gammaCircOutputFilename)) { /* Write the ab-ba weight for each pair to a file, if a name was provided */
    if((fp = fopen(uvar.gammaCircOutputFilename, "w")) == NULL) {
      LogPrintf ( LOG_CRITICAL, "Can't write in Gamma_circ list \n");
      XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp,PCC_GAMMA_HEADER, multiWeights->Sinv_Tsft); /*output the normalization factor to the header*/
    for(j = 0; j < sftPairs->length; j++){
      fprintf(fp,PCC_GAMMA_BODY, GammaCirc->data[j]);
    }
    fclose(fp);
  }

  /*initialize binary parameters structure*/
  XLAL_INIT_MEM(minBinaryTemplate);
  XLAL_INIT_MEM(maxBinaryTemplate);
  XLAL_INIT_MEM(thisBinaryTemplate);
  XLAL_INIT_MEM(binaryTemplateSpacings);
  /*fill in minbinaryOrbitParams*/
  XLALGPSSetREAL8( &minBinaryTemplate.tp, uvar.orbitTimeAsc);
  minBinaryTemplate.argp = 0.0;
  minBinaryTemplate.asini = uvar.orbitAsiniSec;
  minBinaryTemplate.ecc = 0.0;
  minBinaryTemplate.period = uvar.orbitPSec;
  minBinaryTemplate.fkdot[0] = uvar.fStart;
  /*fill in maxBinaryParams*/
  XLALGPSSetREAL8( &maxBinaryTemplate.tp, uvar.orbitTimeAsc + uvar.orbitTimeAscBand);
  maxBinaryTemplate.argp = 0.0;
  maxBinaryTemplate.asini = uvar.orbitAsiniSec + uvar.orbitAsiniSecBand;
  maxBinaryTemplate.ecc = 0.0;
  maxBinaryTemplate.period = uvar.orbitPSec;
  maxBinaryTemplate.fkdot[0] = uvar.fStart + uvar.fBand;
  /*fill in thisBinaryTemplate*/
  XLALGPSSetREAL8( &thisBinaryTemplate.tp, uvar.orbitTimeAsc + 0.5 * uvar.orbitTimeAscBand);
  thisBinaryTemplate.argp = 0.0;
  thisBinaryTemplate.asini = 0.5*(minBinaryTemplate.asini + maxBinaryTemplate.asini);
  thisBinaryTemplate.ecc = 0.0;
  thisBinaryTemplate.period =0.5*(minBinaryTemplate.period + maxBinaryTemplate.period);
  thisBinaryTemplate.fkdot[0]=0.5*(minBinaryTemplate.fkdot[0] + maxBinaryTemplate.fkdot[0]);

  /*Get metric diagonal components, also estimate sensitivity i.e. E[rho]/(h0)^2 (4.13)*/
  if ( (XLALCalculateLMXBCrossCorrDiagMetric(&estSens, &diagff, &diagaa, &diagTT, thisBinaryTemplate, GammaAve, sftPairs, sftIndices, inputSFTs, multiWeights /*, kappaValues*/)  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateLMXBCrossCorrDiagMetric() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* spacing in frequency from diagff */ /* set spacings in new dopplerparams struct */
  if (XLALUserVarWasSet(&uvar.spacingF)) /* If spacing was given by CMD line, use it, else calculate spacing by mismatch*/
    binaryTemplateSpacings.fkdot[0] = uvar.spacingF;
  else
    binaryTemplateSpacings.fkdot[0] = sqrt(uvar.mismatchF / diagff);

  if (XLALUserVarWasSet(&uvar.spacingA))
    binaryTemplateSpacings.asini = uvar.spacingA;
  else
    binaryTemplateSpacings.asini = sqrt(uvar.mismatchA / diagaa);
  /* this is annoying: tp is a GPS time while we want a difference
     in time which should be just REAL8 */
  if (XLALUserVarWasSet(&uvar.spacingT))
    XLALGPSSetREAL8( &binaryTemplateSpacings.tp, uvar.spacingT);
  else
    XLALGPSSetREAL8( &binaryTemplateSpacings.tp, sqrt(uvar.mismatchT / diagTT));

  if (XLALUserVarWasSet(&uvar.spacingP))
    binaryTemplateSpacings.period = uvar.spacingP;
  else
    binaryTemplateSpacings.period = sqrt(uvar.mismatchP / diagpp);

  /* metric elements for eccentric case not considered? */

  UINT8 fCount = 0, aCount = 0, tCount = 0 , pCount = 0;
  const UINT8 fSpacingNum = floor( uvar.fBand / binaryTemplateSpacings.fkdot[0]);
  const UINT8 aSpacingNum = floor( uvar.orbitAsiniSecBand / binaryTemplateSpacings.asini);
  const UINT8 tSpacingNum = floor( uvar.orbitTimeAscBand / XLALGPSGetREAL8(&binaryTemplateSpacings.tp));
  const UINT8 pSpacingNum = floor( uvar.orbitPSecBand / binaryTemplateSpacings.period);

  /*reset minbinaryOrbitParams to shift the first point a factor so as to make the center of all seaching points centers at the center of searching band*/
  minBinaryTemplate.fkdot[0] = uvar.fStart + 0.5 * (uvar.fBand - fSpacingNum * binaryTemplateSpacings.fkdot[0]);
  minBinaryTemplate.asini = uvar.orbitAsiniSec + 0.5 * (uvar.orbitAsiniSecBand - aSpacingNum * binaryTemplateSpacings.asini);
  XLALGPSSetREAL8( &minBinaryTemplate.tp, uvar.orbitTimeAsc + 0.5 * (uvar.orbitTimeAscBand - tSpacingNum * XLALGPSGetREAL8(&binaryTemplateSpacings.tp)));
  minBinaryTemplate.period = uvar.orbitPSec + 0.5 * (uvar.orbitPSecBand - pSpacingNum * binaryTemplateSpacings.period);

  /* initialize the doppler scan struct which stores the current template information */
  XLALGPSSetREAL8(&dopplerpos.refTime, config.refTime);
  dopplerpos.Alpha = uvar.alphaRad;
  dopplerpos.Delta = uvar.deltaRad;
  dopplerpos.fkdot[0] = minBinaryTemplate.fkdot[0];
  /* set all spindowns to zero */
  for (k=1; k < PULSAR_MAX_SPINS; k++)
    dopplerpos.fkdot[k] = 0.0;
  dopplerpos.asini = minBinaryTemplate.asini;
  dopplerpos.period = minBinaryTemplate.period;
  dopplerpos.tp = minBinaryTemplate.tp;
  dopplerpos.ecc = minBinaryTemplate.ecc;
  dopplerpos.argp = minBinaryTemplate.argp;

  /* now set the initial values of binary parameters */
  /*  thisBinaryTemplate.asini = uvar.orbitAsiniSec;
  thisBinaryTemplate.period = uvar.orbitPSec;
  XLALGPSSetREAL8( &thisBinaryTemplate.tp, uvar.orbitTimeAsc);
  thisBinaryTemplate.ecc = 0.0;
  thisBinaryTemplate.argp = 0.0;*/
  /* copy to dopplerpos */

  /* Calculate SSB times (can do this once since search is currently only for one sky position, and binary doppler shift is added later) */
  MultiSSBtimes *multiSSBTimes = NULL;
  if ((multiSSBTimes = XLALGetMultiSSBtimes ( multiStates, skyPos, dopplerpos.refTime, SSBPREC_RELATIVISTICOPT )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALGetMultiSSBtimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* "New" general metric computation */
  /* For now hard-code circular parameter space */

  const DopplerCoordinateSystem coordSys = {
    .dim = 4,
    .coordIDs = { DOPPLERCOORD_FREQ,
		  DOPPLERCOORD_ASINI,
		  DOPPLERCOORD_TASC,
		  DOPPLERCOORD_PORB, },
  };

  REAL8VectorSequence *phaseDerivs = NULL;
  if ( ( XLALCalculateCrossCorrPhaseDerivatives ( &phaseDerivs, &thisBinaryTemplate, config.edat, sftIndices, multiSSBTimes, &coordSys )  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrPhaseDerivatives() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* fill in metric and parameter offsets */
  gsl_matrix *g_ij = NULL;
  gsl_vector *eps_i = NULL;
  REAL8 sumGammaSq = 0;
  if ( ( XLALCalculateCrossCorrPhaseMetric ( &g_ij, &eps_i, &sumGammaSq, phaseDerivs, sftPairs, GammaAve, GammaCirc, &coordSys ) != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALCalculateCrossCorrPhaseMetric() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  XLALDestroyREAL8VectorSequence ( phaseDerivs );
  XLALDestroyREAL8Vector ( GammaCirc );

  if ((fp = fopen("gsldata.dat","w"))==NULL){
    LogPrintf ( LOG_CRITICAL, "Can't write in gsl matrix file");
    XLAL_ERROR( XLAL_EFUNC );
  }

  XLALfprintfGSLvector(fp, "%g", eps_i);
  XLALfprintfGSLmatrix(fp, "%g", g_ij);

  /* Allocate structure for binary doppler-shifting information */
  if ((multiBinaryTimes = XLALDuplicateMultiSSBtimes ( multiSSBTimes )) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALDuplicateMultiSSBtimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  UINT8 numSFTs = sftIndices->length;
  if ((shiftedFreqs = XLALCreateREAL8Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  if ((lowestBins = XLALCreateUINT4Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateUINT4Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  if ((expSignalPhases = XLALCreateCOMPLEX8Vector ( numSFTs ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8Vector() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }
  if ((sincList = XLALCreateREAL8VectorSequence ( numSFTs, uvar.numBins ) ) == NULL){
    LogPrintf ( LOG_CRITICAL, "%s: XLALCreateREAL8VectorSequence() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  }

  /* args should be : spacings, min and max doppler params */
  BOOLEAN firstPoint = TRUE; /* a boolean to help to search at the beginning point in parameter space, after the search it is set to be FALSE to end the loop*/
  if ( (XLALAddMultiBinaryTimes( &multiBinaryTimes, multiSSBTimes, &dopplerpos )  != XLAL_SUCCESS ) ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALAddMultiBinaryTimes() failed with errno=%d\n", __func__, xlalErrno );
    XLAL_ERROR( XLAL_EFUNC );
  } /*Need to apply additional doppler shifting before the loop, or the first point in parameter space will be lost and return a wrong SNR when fBand!=0*/

  while ( GetNextCrossCorrTemplate(&dopplerShiftFlag, &firstPoint, &dopplerpos, &binaryTemplateSpacings, &minBinaryTemplate, &maxBinaryTemplate, &fCount, &aCount, &tCount, &pCount, fSpacingNum, aSpacingNum, tSpacingNum, pSpacingNum) == 0)
    {
      /* do useful stuff here*/

      /* Apply additional Doppler shifting using current binary orbital parameters */
      /* Might want to be clever about checking whether we've changed the orbital parameters or only the frequency */
      if (dopplerShiftFlag == TRUE)
	{
	  if ( (XLALAddMultiBinaryTimes( &multiBinaryTimes, multiSSBTimes, &dopplerpos )  != XLAL_SUCCESS ) ) {
	    LogPrintf ( LOG_CRITICAL, "%s: XLALAddMultiBinaryTimes() failed with errno=%d\n", __func__, xlalErrno );
	    XLAL_ERROR( XLAL_EFUNC );
	  }
	}

      if ( (XLALGetDopplerShiftedFrequencyInfo( shiftedFreqs, lowestBins, expSignalPhases, sincList, uvar.numBins, &dopplerpos, sftIndices, inputSFTs, multiBinaryTimes, Tsft )  != XLAL_SUCCESS ) ) {
	LogPrintf ( LOG_CRITICAL, "%s: XLALGetDopplerShiftedFrequencyInfo() failed with errno=%d\n", __func__, xlalErrno );
	XLAL_ERROR( XLAL_EFUNC );
      }

      if ( (XLALCalculatePulsarCrossCorrStatistic( &ccStat, &evSquared, GammaAve, expSignalPhases, lowestBins, sincList, sftPairs, sftIndices, inputSFTs, multiWeights, uvar.numBins)  != XLAL_SUCCESS ) ) {
	LogPrintf ( LOG_CRITICAL, "%s: XLALCalculatePulsarCrossCorrStatistic() failed with errno=%d\n", __func__, xlalErrno );
	XLAL_ERROR( XLAL_EFUNC );
      }

      /* fill candidate struct and insert into toplist if necessary */
      thisCandidate.freq = dopplerpos.fkdot[0];
      thisCandidate.tp = XLALGPSGetREAL8( &dopplerpos.tp );
      thisCandidate.argp = dopplerpos.argp;
      thisCandidate.asini = dopplerpos.asini;
      thisCandidate.ecc = dopplerpos.ecc;
      thisCandidate.period = dopplerpos.period;
      thisCandidate.rho = ccStat;
      thisCandidate.evSquared = evSquared;
      thisCandidate.estSens = estSens;

      insert_into_crossCorrBinary_toplist(ccToplist, thisCandidate);

    } /* end while loop over templates */

  /* write candidates to file */
  sort_crossCorrBinary_toplist( ccToplist );
  /* add error checking */

  final_write_crossCorrBinary_toplist_to_file( ccToplist, uvar.toplistFilename, &checksum);

  REAL8 h0Sens = sqrt((10 / sqrt(estSens))); /*for a SNR=10 signal, the h0 we can detect*/

  XLALGPSTimeNow (&computingEndGPSTime); /*record the rough end time*/
  UINT4 computingTime = computingEndGPSTime.gpsSeconds - computingStartGPSTime.gpsSeconds;
  /* make a meta-data file*/
  if(XLALUserVarWasSet(&uvar.logFilename)){
    CHAR *CMDInputStr = XLALUserVarGetLog ( UVAR_LOGFMT_CFGFILE );
    if ((fp = fopen(uvar.logFilename,"w"))==NULL){
    LogPrintf ( LOG_CRITICAL, "Can't write in logfile");
    XLAL_ERROR( XLAL_EFUNC );
    }
    fprintf(fp, "[UserInput]\n\n");
    fprintf(fp, "%s\n", CMDInputStr);
    fprintf(fp, "[CalculatedValues]\n\n");
    fprintf(fp, "g_ff = %.9f\n", diagff );
    fprintf(fp, "g_aa = %.9f\n", diagaa );
    fprintf(fp, "g_TT = %.9f\n", diagTT );
    fprintf(fp, "FSpacing = %.9g\n", binaryTemplateSpacings.fkdot[0]);
    fprintf(fp, "ASpacing = %.9g\n", binaryTemplateSpacings.asini);
    fprintf(fp, "TSpacing = %.9g\n", XLALGPSGetREAL8(&binaryTemplateSpacings.tp));
    /* fprintf(fp, "PSpacing = %.9g\n", binaryTemplateSpacings.period );*/
    fprintf(fp, "TemplatenumF = %" LAL_UINT8_FORMAT "\n", (fSpacingNum + 1));
    fprintf(fp, "TemplatenumA = %" LAL_UINT8_FORMAT "\n", (aSpacingNum + 1));
    fprintf(fp, "TemplatenumT = %" LAL_UINT8_FORMAT "\n", (tSpacingNum + 1));
    fprintf(fp, "TemplatenumP = %" LAL_UINT8_FORMAT "\n", (pSpacingNum + 1));
    fprintf(fp, "TemplatenumTotal = %" LAL_UINT8_FORMAT "\n",(fSpacingNum + 1) * (aSpacingNum + 1) * (tSpacingNum + 1) * (pSpacingNum + 1));
    fprintf(fp, "Sens = %.9g\n", estSens);/*(E[rho]/h0^2)^2*/
    fprintf(fp, "h0_min_SNR10 = %.9g\n", h0Sens);/*for rho = 10 in our pipeline*/
    fprintf(fp, "startTime = %" LAL_INT4_FORMAT "\n", computingStartGPSTime.gpsSeconds );/*start time in GPS-time*/
    fprintf(fp, "endTime = %" LAL_INT4_FORMAT "\n", computingEndGPSTime.gpsSeconds );/*end time in GPS-time*/
    fprintf(fp, "computingTime = %" LAL_UINT4_FORMAT "\n", computingTime );/*total time in sec*/
    fprintf(fp, "SFTnum = %" LAL_UINT4_FORMAT "\n", sftIndices->length);/*total number of SFT*/
    fprintf(fp, "pairnum = %" LAL_UINT4_FORMAT "\n", sftPairs->length);/*total number of pair of SFT*/
    fprintf(fp, "Tsft = %.6g\n", Tsft);/*SFT duration*/
    fprintf(fp, "\n[Version]\n\n");
    fprintf(fp, "%s",  VCSInfoString);
    fclose(fp);
    XLALFree(CMDInputStr);
  }

  XLALFree(VCSInfoString);
  XLALDestroyCOMPLEX8Vector ( expSignalPhases );
  XLALDestroyUINT4Vector ( lowestBins );
  XLALDestroyREAL8Vector ( shiftedFreqs );
  XLALDestroyREAL8VectorSequence ( sincList );
  XLALDestroyMultiSSBtimes ( multiBinaryTimes );
  XLALDestroyMultiSSBtimes ( multiSSBTimes );
  XLALDestroyREAL8Vector ( GammaAve );
  XLALDestroySFTPairIndexList( sftPairs );
  XLALDestroySFTIndexList( sftIndices );
  XLALDestroyMultiAMCoeffs ( multiCoeffs );
  XLALDestroyMultiDetectorStateSeries ( multiStates );
  XLALDestroyMultiTimestamps ( multiTimes );
  XLALDestroyMultiNoiseWeights ( multiWeights );
  XLALDestroyMultiPSDVector ( multiPSDs );
  XLALDestroyMultiSFTVector ( inputSFTs );

  /* de-allocate memory for configuration variables */
  XLALDestroyConfigVars ( &config );

  /* de-allocate memory for user input variables */
  XLALDestroyUserVars();

  /* free toplist memory */
  free_crossCorr_toplist(&ccToplist);

  /* check memory leaks if we forgot to de-allocate anything */
  LALCheckMemoryLeaks();

  LogPrintf (LOG_CRITICAL, "End time\n");/*for debug convenience to record calculating time*/

  return 0;


} /* main */


/* initialize and register user variables */
int XLALInitUserVars (UserInput_t *uvar)
{

  /* initialize with some defaults */
  uvar->help = FALSE;
  uvar->maxLag = 0.0;
  uvar->inclAutoCorr = FALSE;
  uvar->fStart = 100.0;
  uvar->fBand = 0.1;
  /* uvar->fdotStart = 0.0; */
  /* uvar->fdotBand = 0.0; */
  uvar->alphaRad = 0.0;
  uvar->deltaRad = 0.0;
  uvar->refTime = 0.0;
  uvar->rngMedBlock = 50;
  uvar->numBins = 1;

  /* zero binary orbital parameters means not a binary */
  uvar->orbitAsiniSec = 0.0;
  uvar->orbitAsiniSecBand = 0.0;
  uvar->orbitPSec = 0.0;
  uvar->orbitPSecBand = 0.0;
  uvar->orbitTimeAsc = 0;
  uvar->orbitTimeAscBand = 0;

  /*default mismatch values */
  /* set to 0.1 by default -- for no real reason */
  /* make 0.1 a macro? */
  uvar->mismatchF = 0.1;
  uvar->mismatchA = 0.1;
  uvar->mismatchT = 0.1;
  uvar->mismatchP = 0.1;

  uvar->ephemEarth = XLALStringDuplicate("earth00-19-DE405.dat.gz");
  uvar->ephemSun = XLALStringDuplicate("sun00-19-DE405.dat.gz");

  uvar->sftLocation = XLALCalloc(1, MAXFILENAMELENGTH+1);

  /* initialize number of candidates in toplist -- default is just to return the single best candidate */
  uvar->numCand = 1;
  uvar->toplistFilename = XLALStringDuplicate("toplist_crosscorr.dat");
  uvar->version = FALSE;

  /* register  user-variables */
  XLALregBOOLUserStruct  ( help, 	   'h',  UVAR_HELP, "Print this message");
  XLALregINTUserStruct   ( startTime,       0,  UVAR_REQUIRED, "Desired start time of analysis in GPS seconds");
  XLALregINTUserStruct   ( endTime,         0,  UVAR_REQUIRED, "Desired end time of analysis in GPS seconds");
  XLALregREALUserStruct  ( maxLag,          0,  UVAR_OPTIONAL, "Maximum lag time in seconds between SFTs in correlation");
  XLALregBOOLUserStruct  ( inclAutoCorr,    0,  UVAR_OPTIONAL, "Include auto-correlation terms (an SFT with itself)");
  XLALregREALUserStruct  ( fStart,          0,  UVAR_OPTIONAL, "Start frequency in Hz");
  XLALregREALUserStruct  ( fBand,           0,  UVAR_OPTIONAL, "Frequency band to search over in Hz ");
  /* XLALregREALUserStruct  ( fdotStart,     0,  UVAR_OPTIONAL, "Start value of spindown in Hz/s"); */
  /* XLALregREALUserStruct  ( fdotBand,      0,  UVAR_OPTIONAL, "Band for spindown values in Hz/s"); */
  XLALregREALUserStruct  ( alphaRad,        0,  UVAR_OPTIONAL, "Right ascension for directed search (radians)");
  XLALregREALUserStruct  ( deltaRad,        0,  UVAR_OPTIONAL, "Declination for directed search (radians)");
  XLALregREALUserStruct  ( refTime,         0,  UVAR_OPTIONAL, "SSB reference time for pulsar-parameters [Default: midPoint]");
  XLALregREALUserStruct  ( orbitAsiniSec,   0,  UVAR_OPTIONAL, "Start of search band for projected semimajor axis (seconds) [0 means not a binary]");
  XLALregREALUserStruct  ( orbitAsiniSecBand, 0,  UVAR_OPTIONAL, "Width of search band for projected semimajor axis (seconds)");
  XLALregREALUserStruct  ( orbitPSec,       0,  UVAR_OPTIONAL, "Binary orbital period (seconds) [0 means not a binary]");
  XLALregREALUserStruct  ( orbitPSecBand,       0,  UVAR_OPTIONAL, "Band for binary orbital period (seconds) ");
  XLALregREALUserStruct  ( orbitTimeAsc,    0,  UVAR_OPTIONAL, "Start of orbital time-of-ascension band in GPS seconds");
  XLALregREALUserStruct  ( orbitTimeAscBand, 0,  UVAR_OPTIONAL, "Width of orbital time-of-ascension band (seconds)");
  XLALregSTRINGUserStruct( ephemEarth,      0,  UVAR_OPTIONAL, "Earth ephemeris file to use");
  XLALregSTRINGUserStruct( ephemSun,        0,  UVAR_OPTIONAL, "Sun ephemeris file to use");
  XLALregSTRINGUserStruct( sftLocation,     0,  UVAR_REQUIRED, "Filename pattern for locating SFT data");
  XLALregINTUserStruct   ( rngMedBlock,     0,  UVAR_OPTIONAL, "Running median block size for PSD estimation");
  XLALregINTUserStruct   ( numBins,         0,  UVAR_OPTIONAL, "Number of frequency bins to include in calculation");
  XLALregREALUserStruct  ( mismatchF,       0,  UVAR_OPTIONAL, "Desired mismatch for frequency spacing");
  XLALregREALUserStruct  ( mismatchA,       0,  UVAR_OPTIONAL, "Desired mismatch for asini spacing");
  XLALregREALUserStruct  ( mismatchT,       0,  UVAR_OPTIONAL, "Desired mismatch for periapse passage time spacing");
  XLALregREALUserStruct  ( mismatchP,       0,  UVAR_OPTIONAL, "Desired mismatch for period spacing");
  XLALregREALUserStruct  ( spacingF,       0,  UVAR_OPTIONAL, "Desired frequency spacing");
  XLALregREALUserStruct  ( spacingA,       0,  UVAR_OPTIONAL, "Desired asini spacing");
  XLALregREALUserStruct  ( spacingT,       0,  UVAR_OPTIONAL, "Desired periapse passage time spacing");
  XLALregREALUserStruct  ( spacingP,       0,  UVAR_OPTIONAL, "Desired period spacing");
  XLALregINTUserStruct   ( numCand,         0,  UVAR_OPTIONAL, "Number of candidates to keep in toplist");
  XLALregSTRINGUserStruct( pairListInputFilename, 0,  UVAR_OPTIONAL, "Name of file from which to read list of SFT pairs");
  XLALregSTRINGUserStruct( pairListOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write list of SFT pairs");
  XLALregSTRINGUserStruct( sftListOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write list of SFTs (for sanity checks)");
  XLALregSTRINGUserStruct( sftListInputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to read in list of SFTs (for sanity checks)");
  XLALregSTRINGUserStruct( gammaAveOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write aa+bb weights (for e.g., false alarm estimation)");
  XLALregSTRINGUserStruct( gammaCircOutputFilename, 0,  UVAR_OPTIONAL, "Name of file to which to write ab-ba weights (for e.g., systematic error)");
  XLALregSTRINGUserStruct( toplistFilename, 0,  UVAR_OPTIONAL, "Output filename containing candidates in toplist");
  XLALregSTRINGUserStruct( logFilename, 0,  UVAR_OPTIONAL, "Output a meta-data file for the search");
  XLALregBOOLUserStruct  ( version, 	   'V',  UVAR_SPECIAL, "Output version(VCS) information");
  if ( xlalErrno ) {
    XLALPrintError ("%s: user variable initialization failed with errno = %d.\n", __func__, xlalErrno );
    XLAL_ERROR ( XLAL_EFUNC );
  }

  return XLAL_SUCCESS;
}
Пример #2
0
/**
 * MAIN function
 * Generates samples of B-stat and F-stat according to their pdfs for given signal-params.
 */
int main(int argc,char *argv[])
{
  UserInput_t XLAL_INIT_DECL(uvar);
  ConfigVariables XLAL_INIT_DECL(cfg);

  vrbflg = 1;	/* verbose error-messages */

  /* turn off default GSL error handler */
  gsl_set_error_handler_off ();

  /* ----- register and read all user-variables ----- */
  if ( XLALInitUserVars( &uvar ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    return 1;
  }

  /* do ALL cmdline and cfgfile handling */
  BOOLEAN should_exit = 0;
  if ( XLALUserVarReadAllInput ( &should_exit, argc, argv ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALUserVarReadAllInput() failed with errno=%d\n", __func__, xlalErrno );
    return 1;
  }
  if ( should_exit )
    return EXIT_FAILURE;

  if ( uvar.version ) {
    /* output verbose VCS version string if requested */
    CHAR *vcs;
    if ( (vcs = XLALGetVersionString (lalDebugLevel)) == NULL ) {
      LogPrintf ( LOG_CRITICAL, "%s:XLALGetVersionString(%d) failed with errno=%d.\n", __func__, lalDebugLevel, xlalErrno );
      return 1;
    }
    printf ( "%s\n", vcs );
    XLALFree ( vcs );
    return 0;
  }

  /* ---------- Initialize code-setup ---------- */
  if ( XLALInitCode( &cfg, &uvar ) != XLAL_SUCCESS ) {
    LogPrintf (LOG_CRITICAL, "%s: XLALInitCode() failed with error = %d\n", __func__, xlalErrno );
    XLAL_ERROR ( XLAL_EFUNC );
  }

  /* compare IFO name for line injection with IFO list, find the corresponding index, or throw an error if not found */
  UINT4 numDetectors = cfg.multiDetStates->length;
  INT4 lineX = -1;
  if ( uvar.lineIFO ) {
    for ( UINT4 X=0; X < numDetectors; X++ ) {
      if ( strcmp( uvar.lineIFO, uvar.IFOs->data[X] ) == 0 )
        lineX = X;
    }
    if ( lineX == -1 ) {
      XLALPrintError ("\nError in function %s, line %d : Could not match detector ID \"%s\" for line injection to any detector.\n\n", __func__, __LINE__, uvar.lineIFO);
      XLAL_ERROR ( XLAL_EFAILED );
    }
  }

  /* ----- prepare stats output ----- */
  FILE *fpStats = NULL;
  if ( uvar.outputStats )
    {
      if ( (fpStats = fopen (uvar.outputStats, "wb")) == NULL)
	{
	  LogPrintf (LOG_CRITICAL, "Error opening file '%s' for writing..\n\n", uvar.outputStats );
	  XLAL_ERROR ( XLAL_EIO );
	}
      fprintf (fpStats, "%s", cfg.logString );		/* write search log comment */
      if ( write_BSGL_candidate_to_fp ( fpStats, NULL, uvar.IFOs, NULL, uvar.computeBSGL ) != XLAL_SUCCESS ) { /* write header-line comment */
        XLAL_ERROR ( XLAL_EFUNC );
      }
    } /* if outputStats */

  /* ----- prepare injection params output ----- */
  FILE *fpInjParams = NULL;
  if ( uvar.outputInjParams )
    {
      if ( (fpInjParams = fopen (uvar.outputInjParams, "wb")) == NULL)
	{
	  LogPrintf (LOG_CRITICAL, "Error opening file '%s' for writing..\n\n", uvar.outputInjParams );
	  XLAL_ERROR ( XLAL_EIO );
	}
      fprintf (fpInjParams, "%s", cfg.logString );		/* write search log comment */
      if ( write_InjParams_to_fp ( fpInjParams, NULL, 0, uvar.outputMmunuX, numDetectors ) != XLAL_SUCCESS ) { /* write header-line comment */
        XLAL_ERROR ( XLAL_EFUNC );
      }
    } /* if outputInjParams */

  multiAMBuffer_t XLAL_INIT_DECL(multiAMBuffer);      /* prepare AM-buffer */

  /* ----- prepare BSGL computation */
  BSGLSetup *BSGLsetup = NULL;
  if ( uvar.computeBSGL )
    {
      BOOLEAN useLogCorrection = TRUE;
      REAL4 *oLGX_p = NULL;
      REAL4 oLGX[PULSAR_MAX_DETECTORS];
      if ( uvar.oLGX != NULL )
        {
          XLAL_CHECK ( uvar.oLGX->length == numDetectors, XLAL_EINVAL, "Invalid input: length(oLGX) = %d differs from number of detectors (%d)'\n", uvar.oLGX->length, numDetectors );
          XLAL_CHECK ( XLALParseLinePriors ( &oLGX[0], uvar.oLGX ) == XLAL_SUCCESS, XLAL_EFUNC );
          oLGX_p = &oLGX[0];
        }
      XLAL_CHECK ( ( BSGLsetup = XLALCreateBSGLSetup ( numDetectors, uvar.Fstar0, oLGX_p, useLogCorrection ) ) != NULL, XLAL_EFUNC );
    } // if computeBSGL

  /* ----- main MC loop over numDraws trials ---------- */
  INT4 i;
  for ( i=0; i < uvar.numDraws; i ++ )
    {
      InjParams_t XLAL_INIT_DECL(injParamsDrawn);

      /* ----- generate signal random draws from ranges and generate Fstat atoms */
      MultiFstatAtomVector *multiAtoms;

      multiAtoms = XLALSynthesizeTransientAtoms ( &injParamsDrawn, cfg.skypos, cfg.AmpPrior, cfg.transientInjectRange, cfg.multiDetStates, cfg.SignalOnly, &multiAMBuffer, cfg.rng, lineX, cfg.multiNoiseWeights );
      XLAL_CHECK ( multiAtoms != NULL, XLAL_EFUNC );

      /* ----- if requested, output signal injection parameters into file */
      if ( fpInjParams && (write_InjParams_to_fp ( fpInjParams, &injParamsDrawn, uvar.dataStartGPS, uvar.outputMmunuX, numDetectors ) != XLAL_SUCCESS ) ) {
        XLAL_ERROR ( XLAL_EFUNC );
      } /* if fpInjParams & failure*/

      /* initialise BSGLComponents structure and allocate memory */
      BSGLComponents XLAL_INIT_DECL(synthStats); /* struct containing multi-detector Fstat, single-detector Fstats, line-robust stat */
      synthStats.numDetectors = numDetectors;

      /* compute F- and BSGListics from atoms */
      UINT4 X;
      for ( X=0; X < numDetectors; X++ )    {
        synthStats.TwoFX[X] = XLALComputeFstatFromAtoms ( multiAtoms, X );
        if ( xlalErrno != 0 ) {
          XLALPrintError ("\nError in function %s, line %d : Failed call to XLALComputeFstatFromAtoms().\n\n", __func__, __LINE__);
          XLAL_ERROR ( XLAL_EFUNC );
        }
      }

      synthStats.TwoF = XLALComputeFstatFromAtoms ( multiAtoms, -1 );
      if ( xlalErrno != 0 ) {
        XLALPrintError ("\nError in function %s, line %d : Failed call to XLALComputeFstatFromAtoms().\n\n", __func__, __LINE__);
        XLAL_ERROR ( XLAL_EFUNC );
      }

      if ( uvar.computeBSGL ) {
        synthStats.log10BSGL = XLALComputeBSGL ( synthStats.TwoF, synthStats.TwoFX, BSGLsetup );
        XLAL_CHECK ( xlalErrno == 0, XLAL_EFUNC, "XLALComputeBSGL() failed with xlalErrno = %d\n", xlalErrno );
      }

      /* ----- if requested, output atoms-vector into file */
      if ( uvar.outputAtoms )
        {

          FILE *fpAtoms;
          char *fnameAtoms;
          UINT4 len = strlen ( uvar.outputAtoms ) + 20;
          if ( (fnameAtoms = XLALCalloc ( 1, len )) == NULL ) {
            XLALPrintError ("%s: failed to XLALCalloc ( 1, %d )\n", __func__, len );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          sprintf ( fnameAtoms, "%s_%04d_of_%04d.dat", uvar.outputAtoms, i + 1, uvar.numDraws );

          if ( ( fpAtoms = fopen ( fnameAtoms, "wb" )) == NULL ) {
            XLALPrintError ("%s: failed to open atoms-output file '%s' for writing.\n", __func__, fnameAtoms );
            XLAL_ERROR ( XLAL_EFUNC );
          }
	  fprintf ( fpAtoms, "%s", cfg.logString );	/* output header info */

	  if ( write_MultiFstatAtoms_to_fp ( fpAtoms, multiAtoms ) != XLAL_SUCCESS ) {
            XLALPrintError ("%s: failed to write atoms to output file '%s'. xlalErrno = %d\n", __func__, fnameAtoms, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          XLALFree ( fnameAtoms );
	  fclose (fpAtoms);
        } /* if outputAtoms */


      /* ----- if requested, output transient-cand statistics */
      if ( fpStats && write_BSGL_candidate_to_fp ( fpStats, &synthStats, uvar.IFOs, &injParamsDrawn, uvar.computeBSGL ) != XLAL_SUCCESS ) {
        XLALPrintError ( "%s: write_transientCandidate_to_fp() failed.\n", __func__ );
        XLAL_ERROR ( XLAL_EFUNC );
      }

      /* ----- free Memory */
      XLALDestroyMultiFstatAtomVector ( multiAtoms );

    } /* for i < numDraws */

  /* ----- close files ----- */
  if ( fpStats ) fclose ( fpStats );
  if ( fpInjParams ) fclose ( fpInjParams );

  /* ----- free memory ---------- */
  XLALDestroyMultiDetectorStateSeries ( cfg.multiDetStates );
  XLALDestroyMultiNoiseWeights ( cfg.multiNoiseWeights );
  XLALDestroyExpLUT();
  XLALDestroyMultiAMCoeffs ( multiAMBuffer.multiAM );
  /* ----- free amplitude prior pdfs ----- */
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_h0Nat );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_cosi );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_psi );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_phi0 );

  XLALFree ( BSGLsetup );
  BSGLsetup = NULL;

  if ( cfg.logString ) {
    XLALFree ( cfg.logString );
  }
  gsl_rng_free ( cfg.rng );

  XLALDestroyUserVars();

  /* did we forget anything ? (doesn't cover gsl-memory!) */
  LALCheckMemoryLeaks();

  return 0;

} /* main() */
Пример #3
0
/**
 * MAIN function
 * Generates samples of B-stat and F-stat according to their pdfs for given signal-params.
 */
int main(int argc,char *argv[])
{
  UserInput_t XLAL_INIT_DECL(uvar);
  ConfigVariables XLAL_INIT_DECL(cfg);		/**< various derived configuration settings */

  vrbflg = 1;	/* verbose error-messages */
  LogSetLevel(lalDebugLevel);

  /* turn off default GSL error handler */
  gsl_set_error_handler_off ();

  /* ----- register and read all user-variables ----- */
  LogSetLevel(lalDebugLevel);

  if ( XLALInitUserVars( &uvar ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALInitUserVars() failed with errno=%d\n", __func__, xlalErrno );
    return 1;
  }

  /* do ALL cmdline and cfgfile handling */
  if ( XLALUserVarReadAllInput ( argc, argv ) != XLAL_SUCCESS ) {
    LogPrintf ( LOG_CRITICAL, "%s: XLALUserVarReadAllInput() failed with errno=%d\n", __func__, xlalErrno );
    return 1;
  }

  if (uvar.help)	/* if help was requested, we're done here */
    return 0;

  if ( uvar.version ) {
    /* output verbose VCS version string if requested */
    CHAR *vcs;
    if ( (vcs = XLALGetVersionString (lalDebugLevel)) == NULL ) {
      LogPrintf ( LOG_CRITICAL, "%s:XLALGetVersionString(%d) failed with errno=%d.\n", __func__, lalDebugLevel, xlalErrno );
      return 1;
    }
    printf ( "%s\n", vcs );
    XLALFree ( vcs );
    return 0;
  }

  /* ---------- Initialize code-setup ---------- */
  if ( XLALInitCode( &cfg, &uvar ) != XLAL_SUCCESS ) {
    LogPrintf (LOG_CRITICAL, "%s: XLALInitCode() failed with error = %d\n", __func__, xlalErrno );
    XLAL_ERROR ( XLAL_EFUNC );
  }

  /* ----- prepare stats output ----- */
  FILE *fpTransientStats = NULL;
  if ( uvar.outputStats )
    {
      if ( (fpTransientStats = fopen (uvar.outputStats, "wb")) == NULL)
	{
	  LogPrintf (LOG_CRITICAL, "Error opening file '%s' for writing..\n\n", uvar.outputStats );
	  XLAL_ERROR ( XLAL_EIO );
	}
      fprintf (fpTransientStats, "%s", cfg.logString );		/* write search log comment */
      if ( write_transientCandidate_to_fp ( fpTransientStats, NULL ) != XLAL_SUCCESS ) { /* write header-line comment */
        XLAL_ERROR ( XLAL_EFUNC );
      }
    } /* if outputStats */

  /* ----- prepare injection params output ----- */
  FILE *fpInjParams = NULL;
  if ( uvar.outputInjParams )
    {
      if ( (fpInjParams = fopen (uvar.outputInjParams, "wb")) == NULL)
	{
	  LogPrintf (LOG_CRITICAL, "Error opening file '%s' for writing..\n\n", uvar.outputInjParams );
	  XLAL_ERROR ( XLAL_EIO );
	}
      fprintf (fpInjParams, "%s", cfg.logString );		/* write search log comment */
      if ( write_InjParams_to_fp ( fpInjParams, NULL, 0, 0, 0 ) != XLAL_SUCCESS ) { /* write header-line comment - options outputMmunuX and numDetectors not supported here, so pass defaults to deactivate them */
        XLAL_ERROR ( XLAL_EFUNC );
      }
    } /* if outputInjParams */

  /* ----- main MC loop over numDraws trials ---------- */
  multiAMBuffer_t XLAL_INIT_DECL(multiAMBuffer);	  /* prepare AM-buffer */
  INT4 i;

  for ( i=0; i < uvar.numDraws; i ++ )
    {
      InjParams_t XLAL_INIT_DECL(injParamsDrawn);

      /* ----- generate signal random draws from ranges and generate Fstat atoms */
      MultiFstatAtomVector *multiAtoms;
      multiAtoms = XLALSynthesizeTransientAtoms ( &injParamsDrawn, cfg.skypos, cfg.AmpPrior, cfg.transientInjectRange, cfg.multiDetStates, cfg.SignalOnly, &multiAMBuffer, cfg.rng, -1, NULL ); // options lineX and noise_weights not supported here, so pass defaults to deactivate them
      if ( multiAtoms ==NULL ) {
        LogPrintf ( LOG_CRITICAL, "%s: XLALSynthesizeTransientAtoms() failed with xlalErrno = %d\n", __func__, xlalErrno );
        XLAL_ERROR ( XLAL_EFUNC );
      }

      /* ----- if requested, output signal injection parameters into file */
      if ( fpInjParams && (write_InjParams_to_fp ( fpInjParams, &injParamsDrawn, uvar.dataStartGPS, 0, 0 ) ) != XLAL_SUCCESS ) { // options outputMmunuX and numDetectors not supported here, so pass defaults to deactivate them
        XLAL_ERROR ( XLAL_EFUNC );
      } /* if fpInjParams & failure*/


      /* ----- add meta-info on current transient-CW candidate */
      transientCandidate_t XLAL_INIT_DECL(cand);
      cand.doppler.Alpha = multiAMBuffer.skypos.longitude;
      cand.doppler.Delta = multiAMBuffer.skypos.latitude;
      cand.windowRange   = cfg.transientSearchRange;

      /* ----- if needed: compute transient-Bstat search statistic on these atoms */
      if ( fpTransientStats || uvar.outputFstatMap || uvar.outputPosteriors )
        {
          /* compute Fstat map F_mn over {t0, tau} */
          if ( (cand.FstatMap = XLALComputeTransientFstatMap ( multiAtoms, cand.windowRange, uvar.useFReg)) == NULL ) {
            XLALPrintError ("%s: XLALComputeTransientFstatMap() failed with xlalErrno = %d.\n", __func__, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }
        } /* if we'll need the Fstat-map F_mn */

      /* ----- if requested compute marginalized Bayes factor */
      if ( fpTransientStats )
        {
          cand.logBstat = XLALComputeTransientBstat ( cand.windowRange, cand.FstatMap );
          UINT4 err = xlalErrno;
          if ( err ) {
            XLALPrintError ("%s: XLALComputeTransientBstat() failed with xlalErrno = %d\n", __func__, err );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          if ( uvar.SignalOnly )
            {
              cand.FstatMap->maxF += 2;
              cand.logBstat += 2;
            }

        } /* if Bstat requested */

      /* ----- if requested, compute parameter posteriors for {t0, tau} */
      pdf1D_t *pdf_t0  = NULL;
      pdf1D_t *pdf_tau = NULL;
      if ( fpTransientStats || uvar.outputPosteriors )
        {
          if ( (pdf_t0 = XLALComputeTransientPosterior_t0 ( cand.windowRange, cand.FstatMap )) == NULL ) {
            XLALPrintError ("%s: failed to compute t0-posterior\n", __func__ );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          if ( (pdf_tau = XLALComputeTransientPosterior_tau ( cand.windowRange, cand.FstatMap )) == NULL ) {
            XLALPrintError ("%s: failed to compute tau-posterior\n", __func__ );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          /* get maximum-posterior estimate (MP) from the modes of these pdfs */
          cand.t0_MP = XLALFindModeOfPDF1D ( pdf_t0 );
          if ( xlalErrno ) {
            XLALPrintError ("%s: mode-estimation failed for pdf_t0. xlalErrno = %d\n", __func__, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          cand.tau_MP =  XLALFindModeOfPDF1D ( pdf_tau );
          if ( xlalErrno ) {
            XLALPrintError ("%s: mode-estimation failed for pdf_tau. xlalErrno = %d\n", __func__, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }

        } // if posteriors required

      /* ----- if requested, compute Ftotal over full data-span */
      if ( uvar.computeFtotal )
        {
          transientFstatMap_t *FtotalMap;
          /* prepare special window to cover all the data with one F-stat calculation == Ftotal */
          transientWindowRange_t XLAL_INIT_DECL(winRangeAll);
          winRangeAll.type = TRANSIENT_NONE;

          BOOLEAN useFReg = false;
          if ( (FtotalMap = XLALComputeTransientFstatMap ( multiAtoms, winRangeAll, useFReg)) == NULL ) {
            XLALPrintError ("%s: XLALComputeTransientFstatMap() failed with xlalErrno = %d.\n", __func__, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          /* we only use twoFtotal = 2 * maxF from this single-Fstat calculation */
          REAL8 twoFtotal = 2.0 * FtotalMap->maxF;
          if ( uvar.SignalOnly )
            twoFtotal += 4;

          /* ugly hack: lacking a good container for twoFtotal, we borrow fkdot[3] for this here ;) [only used for paper-MCs] */
          cand.doppler.fkdot[3] = twoFtotal;

          /* good riddance .. */
          XLALDestroyTransientFstatMap ( FtotalMap );

        } /* if computeFtotal */

      /* ----- if requested, output atoms-vector into file */
      if ( uvar.outputAtoms )
        {

          FILE *fpAtoms;
          char *fnameAtoms;
          UINT4 len = strlen ( uvar.outputAtoms ) + 20;
          if ( (fnameAtoms = XLALCalloc ( 1, len )) == NULL ) {
            XLALPrintError ("%s: failed to XLALCalloc ( 1, %d )\n", __func__, len );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          sprintf ( fnameAtoms, "%s_%04d_of_%04d.dat", uvar.outputAtoms, i + 1, uvar.numDraws );

          if ( ( fpAtoms = fopen ( fnameAtoms, "wb" )) == NULL ) {
            XLALPrintError ("%s: failed to open atoms-output file '%s' for writing.\n", __func__, fnameAtoms );
            XLAL_ERROR ( XLAL_EFUNC );
          }
	  fprintf ( fpAtoms, "%s", cfg.logString );	/* output header info */

	  if ( write_MultiFstatAtoms_to_fp ( fpAtoms, multiAtoms ) != XLAL_SUCCESS ) {
            XLALPrintError ("%s: failed to write atoms to output file '%s'. xlalErrno = %d\n", __func__, fnameAtoms, xlalErrno );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          XLALFree ( fnameAtoms );
	  fclose (fpAtoms);
        } /* if outputAtoms */

      /* ----- if requested, output Fstat-map over {t0, tau} */
      if ( uvar.outputFstatMap )
        {
          FILE *fpFstatMap;
          char *fnameFstatMap;
          UINT4 len = strlen ( uvar.outputFstatMap ) + 20;
          if ( (fnameFstatMap = XLALCalloc ( 1, len )) == NULL ) {
            XLALPrintError ("%s: failed to XLALCalloc ( 1, %d )\n", __func__, len );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          sprintf ( fnameFstatMap, "%s_%04d_of_%04d.dat", uvar.outputFstatMap, i + 1, uvar.numDraws );

          if ( ( fpFstatMap = fopen ( fnameFstatMap, "wb" )) == NULL ) {
            XLALPrintError ("%s: failed to open Fstat-map output file '%s' for writing.\n", __func__, fnameFstatMap );
            XLAL_ERROR ( XLAL_EFUNC );
          }
	  fprintf ( fpFstatMap, "%s", cfg.logString );	/* output header info */

          fprintf (fpFstatMap, "\nFstat_mn = \\\n" );
          if ( XLALfprintfGSLmatrix ( fpFstatMap, "%.9g", cand.FstatMap->F_mn ) != XLAL_SUCCESS ) {
            XLALPrintError ("%s: XLALfprintfGSLmatrix() failed.\n", __func__ );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          XLALFree ( fnameFstatMap );
	  fclose (fpFstatMap);

        } /* if outputFstatMap */

      /* ----- if requested, output posterior pdfs on transient params {t0, tau} into a file */
      if ( uvar.outputPosteriors )
        {
          FILE *fpPosteriors;
          char *fnamePosteriors;
          UINT4 len = strlen ( uvar.outputPosteriors ) + 20;
          if ( (fnamePosteriors = XLALCalloc ( 1, len )) == NULL ) {
            XLALPrintError ("%s: failed to XLALCalloc ( 1, %d )\n", __func__, len );
            XLAL_ERROR ( XLAL_EFUNC );
          }
          sprintf ( fnamePosteriors, "%s_%04d_of_%04d.dat", uvar.outputPosteriors, i + 1, uvar.numDraws );

          if ( ( fpPosteriors = fopen ( fnamePosteriors, "wb" )) == NULL ) {
            XLALPrintError ("%s: failed to open posteriors-output file '%s' for writing.\n", __func__, fnamePosteriors );
            XLAL_ERROR ( XLAL_EFUNC );
          }
	  fprintf ( fpPosteriors, "%s", cfg.logString );	/* output header info */

          /* write them to file, using pdf-method */
	  if ( XLALOutputPDF1D_to_fp ( fpPosteriors, pdf_t0, "pdf_t0" ) != XLAL_SUCCESS ) {
            XLALPrintError ("%s: failed to output t0-posterior to file '%s'.\n", __func__, fnamePosteriors );
            XLAL_ERROR ( XLAL_EFUNC );
          }
	  if ( XLALOutputPDF1D_to_fp ( fpPosteriors, pdf_tau, "pdf_tau" ) != XLAL_SUCCESS ) {
            XLALPrintError ("%s: failed to output tau-posterior to file '%s'.\n", __func__, fnamePosteriors );
            XLAL_ERROR ( XLAL_EFUNC );
          }

          /* free mem, close file */
          XLALFree ( fnamePosteriors );
	  fclose (fpPosteriors);

        } /* if outputPosteriors */


      /* ----- if requested, output transient-cand statistics */
      if ( fpTransientStats && write_transientCandidate_to_fp ( fpTransientStats, &cand ) != XLAL_SUCCESS ) {
        XLALPrintError ( "%s: write_transientCandidate_to_fp() failed.\n", __func__ );
        XLAL_ERROR ( XLAL_EFUNC );
      }

      /* ----- free Memory */
      XLALDestroyTransientFstatMap ( cand.FstatMap );
      XLALDestroyMultiFstatAtomVector ( multiAtoms );
      XLALDestroyPDF1D ( pdf_t0 );
      XLALDestroyPDF1D ( pdf_tau );

    } /* for i < numDraws */

  /* ----- close files ----- */
  if ( fpTransientStats) fclose ( fpTransientStats );
  if ( fpInjParams ) fclose ( fpInjParams );

  /* ----- free memory ---------- */
  XLALDestroyMultiDetectorStateSeries ( cfg.multiDetStates );
  XLALDestroyMultiAMCoeffs ( multiAMBuffer.multiAM );
  XLALDestroyExpLUT();
  /* ----- free amplitude prior pdfs ----- */
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_h0Nat );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_cosi );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_psi );
  XLALDestroyPDF1D ( cfg.AmpPrior.pdf_phi0 );

  if ( cfg.logString ) XLALFree ( cfg.logString );
  gsl_rng_free ( cfg.rng );

  XLALDestroyUserVars();

  /* did we forget anything ? (doesn't cover gsl-memory!) */
  LALCheckMemoryLeaks();

  return 0;

} /* main() */
Пример #4
0
/*----------------------------------------------------------------------
 * main function
 *----------------------------------------------------------------------*/
int
main(int argc, char *argv[])
{
  size_t len;
  ConfigVars_t XLAL_INIT_DECL(GV);
  UserVariables_t XLAL_INIT_DECL(uvar);

  /* ------------------------------
   * read user-input and set up shop
   *------------------------------*/
  XLAL_CHECK ( XLALInitUserVars ( &uvar, argc, argv ) == XLAL_SUCCESS, XLAL_EFUNC );

  XLAL_CHECK ( XLALInitMakefakedata ( &GV, &uvar ) == XLAL_SUCCESS, XLAL_EFUNC );

  MultiSFTVector *mSFTs = NULL;
  MultiREAL8TimeSeries *mTseries = NULL;

  PulsarParamsVector *injectionSources = NULL;
  if ( uvar.injectionSources ) {
    XLAL_CHECK ( (injectionSources = XLALPulsarParamsFromUserInput ( uvar.injectionSources, NULL ) ) != NULL, XLAL_EFUNC );
  }

  CWMFDataParams XLAL_INIT_DECL(DataParams);
  DataParams.multiIFO           = GV.multiIFO;
  DataParams.multiNoiseFloor    = GV.multiNoiseFloor;
  DataParams.multiTimestamps 	= (*GV.multiTimestamps);
  DataParams.randSeed           = uvar.randSeed;
  DataParams.SFTWindowType      = uvar.SFTWindowType;
  DataParams.SFTWindowBeta      = uvar.SFTWindowBeta;
  if ( GV.inputMultiTS == NULL )
    {
      DataParams.fMin               = uvar.fmin;
      DataParams.Band               = uvar.Band;
      DataParams.inputMultiTS       = NULL;
    }
  else // current limitation: FIXME
    {
      DataParams.fMin               = 0;
      DataParams.Band               = 0;
      DataParams.inputMultiTS       = GV.inputMultiTS;
    }

  XLAL_CHECK ( XLALCWMakeFakeMultiData ( &mSFTs, &mTseries, injectionSources, &DataParams, GV.edat ) == XLAL_SUCCESS, XLAL_EFUNC );

  XLALDestroyPulsarParamsVector ( injectionSources );
  injectionSources = NULL;

  // if noiseSFTs specified, load them and add them to the resulting SFT-vector
  if ( GV.multiNoiseCatalogView )
    {
      SFTtype *sft0 = &(mSFTs->data[0]->data[0]);
      /* load effective frequency-band from noise-SFTs */
      UINT4 numBins = sft0->data->length;
      REAL8 dFreq   = sft0->deltaF;
      REAL8 fMin    = sft0->f0;
      REAL8 fMax    = fMin + ( numBins - 1 ) * dFreq;
      MultiSFTVector *mNoiseSFTs;
      XLAL_CHECK ( (mNoiseSFTs = XLALLoadMultiSFTsFromView ( GV.multiNoiseCatalogView, fMin, fMax )) != NULL, XLAL_EFUNC );
      XLAL_CHECK ( XLALMultiSFTVectorAdd ( mSFTs, mNoiseSFTs ) == XLAL_SUCCESS, XLAL_EFUNC );
      XLALDestroyMultiSFTVector ( mNoiseSFTs );
    }

  if (uvar.outSFTdir)
    {
      XLAL_CHECK ( is_directory ( uvar.outSFTdir ), XLAL_EINVAL );

      /* generate comment string */
      CHAR *logstr;
      XLAL_CHECK ( (logstr = XLALUserVarGetLog ( UVAR_LOGFMT_CMDLINE )) != NULL, XLAL_EFUNC );
      char *comment = XLALCalloc ( 1, len = strlen ( logstr ) + strlen(GV.VCSInfoString) + 512 );
      XLAL_CHECK ( comment != NULL, XLAL_ENOMEM, "XLALCalloc(1,%zu) failed.\n", len );
      sprintf ( comment, "Generated by:\n%s\n%s\n", logstr, GV.VCSInfoString );

      for ( UINT4 X=0; X < mSFTs->length; X ++ )
        {
          SFTVector *sfts = mSFTs->data[X];
          /* either write whole SFT-vector to single concatenated file */
          if ( uvar.outSingleSFT ) {
            XLAL_CHECK ( XLALWriteSFTVector2File( sfts, uvar.outSFTdir, comment, uvar.outLabel ) == XLAL_SUCCESS, XLAL_EFUNC );
          } else {	// or as individual SFT-files
            XLAL_CHECK ( XLALWriteSFTVector2Dir( sfts, uvar.outSFTdir, comment, uvar.outLabel ) == XLAL_SUCCESS, XLAL_EFUNC );
          }
        } // for X < numIFOs

      XLALFree ( logstr );
      XLALFree ( comment );

    } /* if outSFTdir */


   /* output ASCII time-series if requested */
  if ( uvar.TDDfile )
    {
      CHAR *fname = XLALCalloc (1, len = strlen(uvar.TDDfile) + 10 );
      XLAL_CHECK ( fname != NULL, XLAL_ENOMEM, "XLALCalloc(1,%zu) failed\n", len );

      for ( UINT4 X=0; X < mTseries->length; X ++ )
        {
          const REAL8TimeSeries *TS = mTseries->data[X];
          sprintf (fname, "%c%c-%s", TS->name[0], TS->name[1], uvar.TDDfile );
          XLAL_CHECK ( XLALdumpREAL8TimeSeries ( fname, TS ) == XLAL_SUCCESS, XLAL_EFUNC );

        } // for X < numDet

      XLALFree (fname);
    } /* if outputting ASCII time-series */

  /* output time-series to frames if requested */
#ifdef HAVE_LIBLALFRAME
  if ( GV.outFrameDir != NULL )
    {
      XLAL_CHECK ( XLALCheckValidDescriptionField ( uvar.outLabel ) == XLAL_SUCCESS, XLAL_EFUNC );
      len = strlen(GV.outFrameDir) + strlen(uvar.outLabel) + 100;
      char *fname;

      char *hist = XLALUserVarGetLog (UVAR_LOGFMT_CMDLINE);
      if ( XLALUserVarWasSet ( &uvar.outFrChannels ) ) {
        XLAL_CHECK ( uvar.outFrChannels->length == mTseries->length, XLAL_EINVAL, "--outFrChannels: number of channel names (%d) must agree with number of IFOs (%d)\n",
                     uvar.outFrChannels->length, mTseries->length );
      }

      for ( UINT4 X=0; X < mTseries->length; X ++ )
        {
          REAL8TimeSeries *Tseries = mTseries->data[X];

          /* use standard frame output filename format */
          char IFO[2] = { Tseries->name[0], Tseries->name[1] };
          LIGOTimeGPS startTimeGPS = Tseries->epoch;
          REAL8 duration = Tseries->data->length * Tseries->deltaT;
          XLAL_CHECK ( (fname = LALCalloc (1, len )) != NULL, XLAL_ENOMEM );
          size_t written = snprintf ( fname, len, "%s/%c-%c%c_%s-%d-%d.gwf",
                                      GV.outFrameDir, IFO[0], IFO[0], IFO[1], uvar.outLabel, startTimeGPS.gpsSeconds, (int)duration );
          XLAL_CHECK ( written < len, XLAL_ESIZE, "Frame-filename exceeds expected maximal length (%zu): '%s'\n", len, fname );

          /* define the output frame */
          LALFrameH *outFrame;
          XLAL_CHECK ( (outFrame = XLALFrameNew ( &startTimeGPS, duration, uvar.outLabel, 1, 0, 0 )) != NULL, XLAL_EFUNC );

          /* add timeseries to the frame - make sure to change the timeseries name since this is used as the channel name */
          char buffer[LALNameLength];
          // if output frame channel names given, use those
          if ( XLALUserVarWasSet ( &uvar.outFrChannels ) ) {
            written = snprintf ( buffer, sizeof(buffer), "%s", uvar.outFrChannels->data[X] );
            if ( buffer[2] == ':' ) { // check we got correct IFO association
              XLAL_CHECK ( (buffer[0] == Tseries->name[0]) && (buffer[1] == Tseries->name[1]), XLAL_EINVAL,
                           "Possible IFO mismatch: outFrChannel[%d] = '%s', IFO = '%c%c': be careful about --outFrChannel ordering\n", X, buffer, Tseries->name[0], Tseries->name[1] );
            } // if buffer[2]==':'
          } else if ( XLALUserVarWasSet ( &uvar.inFrChannels ) ) { // otherwise: if input frame channel names given, use them for output, append "-<outLabel>"
            written = snprintf ( buffer, sizeof(buffer), "%s-%s", uvar.inFrChannels->data[X], uvar.outLabel );
          } else { // otherwise: fall back to <IFO>:<outLabel> channel name
            written = snprintf ( buffer, sizeof(buffer), "%c%c:%s", Tseries->name[0], Tseries->name[1], uvar.outLabel );
          }
          XLAL_CHECK ( written < LALNameLength, XLAL_ESIZE, "Output frame name exceeded max length (%d): '%s'\n", LALNameLength, buffer );
          strcpy ( Tseries->name, buffer );

          XLAL_CHECK ( (XLALFrameAddREAL8TimeSeriesProcData ( outFrame, Tseries ) == XLAL_SUCCESS ) , XLAL_EFUNC );

          /* Here's where we add extra information into the frame - first we add the command line args used to generate it */
          XLALFrameAddFrHistory ( outFrame, __FILE__, hist );

          /* then we add the version string */
          XLALFrameAddFrHistory ( outFrame, __FILE__, GV.VCSInfoString );

          /* output the frame to file - compression level 1 (higher values make no difference) */
          XLAL_CHECK ( XLALFrameWrite ( outFrame, fname ) == XLAL_SUCCESS , XLAL_EFUNC );

          /* free the frame, frame file name and history memory */
          XLALFrameFree ( outFrame );
          XLALFree ( fname );

        } // for X < numDetectors

      XLALFree ( hist );

    } /* if GV.outFrameDir: outputting time-series to frames */
#endif // HAVE_LIBLALFRAME

  /* ---------- free memory ---------- */
  XLALDestroyMultiREAL8TimeSeries ( mTseries );
  XLALDestroyMultiSFTVector ( mSFTs );

  XLALFreeMem ( &GV );	/* free the config-struct */

  LALCheckMemoryLeaks();

  return 0;
} /* main */
int
main(int argc, char *argv[])
{
  LALStatus status = blank_status;

  ConfigVariables XLAL_INIT_DECL(config);
  UserVariables_t XLAL_INIT_DECL(uvar);

  /* register user-variables */

  XLAL_CHECK ( XLALInitUserVars ( &uvar ) == XLAL_SUCCESS, XLAL_EFUNC );

  /* read cmdline & cfgfile  */
  BOOLEAN should_exit = 0;
  XLAL_CHECK( XLALUserVarReadAllInput( &should_exit, argc, argv ) == XLAL_SUCCESS, XLAL_EFUNC );
  if ( should_exit ) {
    exit(1);
  }

  if ( uvar.version )
    {
      XLALOutputVersionString ( stdout, lalDebugLevel );
      exit(0);
    }

  /* basic setup and initializations */
  XLAL_CHECK ( XLALInitCode( &config, &uvar, argv[0] ) == XLAL_SUCCESS, XLAL_EFUNC );

  /* ----- allocate memory for AM-coeffs ----- */
  AMCoeffs AMold, AMnew1, AMnew2;	/**< containers holding AM-coefs computed by 3 different AM functions */
  AMold.a = XLALCreateREAL4Vector ( 1 );
  AMold.b = XLALCreateREAL4Vector ( 1 );
  AMnew1.a = XLALCreateREAL4Vector ( 1 );
  AMnew1.b = XLALCreateREAL4Vector ( 1 );
  AMnew2.a = XLALCreateREAL4Vector ( 1 );
  AMnew2.b = XLALCreateREAL4Vector ( 1 );

  XLAL_CHECK ( AMold.a && AMold.b && AMnew1.a && AMnew1.b && AMnew2.a && AMnew2.a, XLAL_ENOMEM, "Failed to XLALCreateREAL4Vector ( 1 )\n" );

  /* ----- get detector-state series ----- */
  DetectorStateSeries *detStates = NULL;
  XLAL_CHECK ( (detStates = XLALGetDetectorStates ( config.timestamps, config.det, config.edat, 0 )) != NULL, XLAL_EFUNC );

  /* ----- compute associated SSB timing info ----- */
  SSBtimes *tSSB = XLALGetSSBtimes ( detStates, config.skypos, config.timeGPS, SSBPREC_RELATIVISTIC );
  XLAL_CHECK ( tSSB != NULL, XLAL_EFUNC, "XLALGetSSBtimes() failed with xlalErrno = %d\n", xlalErrno );

  /* ===== 1) compute AM-coeffs the 'old way': [used in CFSv1] ===== */
  BarycenterInput XLAL_INIT_DECL(baryinput);
  AMCoeffsParams XLAL_INIT_DECL(amParams);
  EarthState earth;

  baryinput.site.location[0] = config.det->location[0]/LAL_C_SI;
  baryinput.site.location[1] = config.det->location[1]/LAL_C_SI;
  baryinput.site.location[2] = config.det->location[2]/LAL_C_SI;
  baryinput.alpha = config.skypos.longitude;
  baryinput.delta = config.skypos.latitude;
  baryinput.dInv = 0.e0;

  /* amParams structure to compute a(t) and b(t) */
  amParams.das = XLALMalloc(sizeof(*amParams.das));
  amParams.das->pSource = XLALMalloc(sizeof(*amParams.das->pSource));
  amParams.baryinput = &baryinput;
  amParams.earth = &earth;
  amParams.edat = config.edat;
  amParams.das->pDetector = config.det;
  amParams.das->pSource->equatorialCoords.longitude = config.skypos.longitude;
  amParams.das->pSource->equatorialCoords.latitude = config.skypos.latitude;
  amParams.das->pSource->orientation = 0.0;
  amParams.das->pSource->equatorialCoords.system = COORDINATESYSTEM_EQUATORIAL;
  amParams.polAngle = 0;

  LAL_CALL ( LALComputeAM ( &status, &AMold, config.timestamps->data, &amParams), &status);

  XLALFree ( amParams.das->pSource );
  XLALFree ( amParams.das );


  /* ===== 2) compute AM-coeffs the 'new way' using LALNewGetAMCoeffs() */
  LALGetAMCoeffs ( &status, &AMnew1, detStates, config.skypos );
  if ( status.statusCode ) {
    XLALPrintError ("%s: call to LALGetAMCoeffs() failed, status = %d\n\n", __func__, status.statusCode );
    XLAL_ERROR (  status.statusCode & XLAL_EFUNC );
  }

  /* ===== 3) compute AM-coeffs the 'newer way' using LALNewGetAMCoeffs() [used in CFSv2] */
  LALNewGetAMCoeffs ( &status, &AMnew2, detStates, config.skypos );
  if ( status.statusCode ) {
    XLALPrintError ("%s: call to LALNewGetAMCoeffs() failed, status = %d\n\n", __func__, status.statusCode );
    XLAL_ERROR (  status.statusCode & XLAL_EFUNC );
  }

  /* ===== 4) use standalone version of the above [used in FstatMetric_v2] */
  REAL8 a0,b0;
  if ( XLALComputeAntennaPatternCoeffs ( &a0, &b0, &config.skypos, &config.timeGPS, config.det, config.edat ) != XLAL_SUCCESS ) {
    XLALPrintError ("%s: XLALComputeAntennaPatternCoeffs() failed.\n", __func__ );
    XLAL_ERROR ( XLAL_EFUNC );
  }


  /* ==================== output the results ==================== */
  printf ("\n");
  printf ("----- Input parameters:\n");
  printf ("tGPS = { %d, %d }\n", config.timeGPS.gpsSeconds, config.timeGPS.gpsNanoSeconds );
  printf ("Detector = %s\n", config.det->frDetector.name );
  printf ("Sky position: longitude = %g rad, latitude = %g rad [equatorial coordinates]\n", config.skypos.longitude, config.skypos.latitude );
  printf ("\n");

  printf ("----- Antenna pattern functions (a,b):\n");
  printf ("LALComputeAM:                    ( %-12.8g, %-12.8g)  [REAL4]\n", AMold.a->data[0], AMold.b->data[0] );
  printf ("LALGetAMCoeffs:                  ( %-12.8g, %-12.8g)  [REAL4]\n", AMnew1.a->data[0], AMnew1.b->data[0] );
  printf ("LALNewGetAMCoeffs:               ( %-12.8g, %-12.8g)  [REAL4]\n", AMnew2.a->data[0]/config.sinzeta, AMnew2.b->data[0]/config.sinzeta );
  printf ("XLALComputeAntennaPatternCoeffs: ( %-12.8g, %-12.8g)  [REAL8]\n", a0/config.sinzeta, b0/config.sinzeta );
  printf ("\n");

  printf ("----- Detector & Earth state:\n");
  REAL8 *pos = detStates->data[0].rDetector;
  printf ("Detector position [ICRS J2000. Units=sec]: rDet = {%g, %g, %g}\n", pos[0], pos[1], pos[2] );
  REAL8 *vel = detStates->data[0].vDetector;
  printf ("Detector velocity [ICRS J2000. Units=c]:   vDet = {%g, %g, %g}\n", vel[0], vel[1], vel[2] );
  printf ("Local mean sideral time: LMST = %g rad\n", detStates->data[0].LMST);
  printf ("\n");
  printf ("----- SSB timing data:\n");
  printf ("TOA difference tSSB - tDet = %g s\n", tSSB->DeltaT->data[0] );
  printf ("TOA rate of change dtSSB/dtDet - 1 = %g\n", tSSB->Tdot->data[0] - 1.0 );
  printf ("\n\n");


  /* ----- done: free all memory */
  XLAL_CHECK ( XLALDestroyConfig( &config ) == XLAL_SUCCESS, XLAL_EFUNC );

  XLALDestroyDetectorStateSeries ( detStates );

  XLALDestroyREAL4Vector ( AMold.a );
  XLALDestroyREAL4Vector ( AMold.b );
  XLALDestroyREAL4Vector ( AMnew1.a );
  XLALDestroyREAL4Vector ( AMnew1.b );
  XLALDestroyREAL4Vector ( AMnew2.a );
  XLALDestroyREAL4Vector ( AMnew2.b );

  XLALDestroyREAL8Vector ( tSSB->DeltaT );
  XLALDestroyREAL8Vector ( tSSB->Tdot );
  XLALFree (tSSB);

  LALCheckMemoryLeaks();

  return 0;
} /* main */
Пример #6
0
int
main(int argc, char *argv[])
{

  ConfigVariables config = empty_ConfigVariables;
  UserVariables_t uvar = empty_UserVariables;


  /* register user-variables */

  XLAL_CHECK ( XLALInitUserVars ( &uvar ) == XLAL_SUCCESS, XLAL_EFUNC );

  /* read cmdline & cfgfile  */
  XLAL_CHECK ( XLALUserVarReadAllInput ( argc,argv ) == XLAL_SUCCESS, XLAL_EFUNC );

  if (uvar.help) { 	/* help requested: we're done */
    exit(0);
  }

  if ( uvar.version )
    {
      XLALOutputVersionString ( stdout, lalDebugLevel );
      exit(0);
    }

  /* basic setup and initializations */
  XLAL_CHECK ( XLALInitCode( &config, &uvar, argv[0] ) == XLAL_SUCCESS, XLAL_EFUNC );

  /* prepare output files */
  FILE *fpOutab = NULL;
  if ( uvar.outab ) {

      XLAL_CHECK ( (fpOutab = fopen (uvar.outab, "wb")) != NULL, XLAL_EIO, "Error opening file '%s' for writing...", uvar.outab );

      /* write header info in comments */
      XLAL_CHECK ( XLAL_SUCCESS == XLALOutputVersionString ( fpOutab, 0 ), XLAL_EFUNC );

      /* write the command-line */
      for (int a = 0; a < argc; a++)
        {
          fprintf(fpOutab,"%%%% argv[%d]: '%s'\n", a, argv[a]);
        }

      /* write column headings */
      fprintf(fpOutab, "%%%% columns:\n%%%% Alpha   Delta       tGPS ");
      if ( config.numDetectors == 1 ) {
        fprintf(fpOutab, "      a(t)         b(t)");
      }
      else {
        for ( UINT4 X=0; X < config.numDetectors; X++ ) {
          fprintf(fpOutab, "      a[%d](t)      b[%d](t)", X, X);
        }
      }
      fprintf(fpOutab, "\n");

  }

  FILE *fpOutABCD = NULL;
  if ( uvar.outABCD ) {

      XLAL_CHECK ( (fpOutABCD = fopen (uvar.outABCD, "wb")) != NULL, XLAL_EIO, "Error opening file '%s' for writing...", uvar.outABCD );

      /* write header info in comments */
      XLAL_CHECK ( XLAL_SUCCESS == XLALOutputVersionString ( fpOutABCD, 0 ), XLAL_EFUNC );

      /* write the command-line */
      for (int a = 0; a < argc; a++)
        {
          fprintf(fpOutABCD,"%%%% argv[%d]: '%s'\n", a, argv[a]);
        }

      /* write column headings */
      fprintf(fpOutABCD, "%%%% columns:\n%%%% Alpha   Delta");
      fprintf(fpOutABCD, "        A            B            C            D");
      if ( config.numDetectors > 1 ) {
        fprintf(fpOutABCD, "   ");
        for ( UINT4 X=0; X < config.numDetectors; X++ ) {
          fprintf(fpOutABCD, "         A[%d]         B[%d]         C[%d]         D[%d]", X, X, X, X);
        }
      }
      fprintf(fpOutABCD, "\n");

  }

  /* loop over sky positions (outer loop, could allow for buffering if necessary) */
  for (UINT4 n = 0; n < config.numSkyPoints; n++) {
    SkyPosition skypos;
    skypos.system = COORDINATESYSTEM_EQUATORIAL;
    skypos.longitude = config.Alpha->data[n];
    skypos.latitude  = config.Delta->data[n];

    /* do the actual computation of the antenna pattern functions */
    MultiAMCoeffs *multiAM;
    XLAL_CHECK ( ( multiAM = XLALComputeMultiAMCoeffs ( config.multiDetStates, config.multiNoiseWeights, skypos ) ) != NULL, XLAL_EFUNC, "XLALComputeAMCoeffs() failed." );

    /* for multi-IFO run with weights, do it again, without weights, to get single-IFO quantities consistent with single-IFO runs
     * FIXME: remove this temporary hack when MultiAmCoeffs have been changed to include non-weighted single-IFO quantities
     */
    MultiAMCoeffs *multiAMforSingle = NULL;
    MultiAMCoeffs *multiAMunweighted = NULL;
    if ( ( config.numDetectors > 1 ) && ( config.multiNoiseWeights != NULL ) ) {
      XLAL_CHECK ( ( multiAMunweighted = XLALComputeMultiAMCoeffs ( config.multiDetStates, NULL, skypos ) ) != NULL, XLAL_EFUNC, "XLALComputeAMCoeffs() failed." );
      multiAMforSingle = multiAMunweighted;
    }
    else {
      multiAMforSingle = multiAM;
    }

    /* write out the data for this sky point */
    if ( uvar.outab ) { // output a(t), b(t) at each timestamp
      for (UINT4 t = 0; t < config.numTimeStamps; t++) { // FIXME: does not work for different multi-IFO numTimeStampsX
         fprintf (fpOutab, "%.7f  %.7f  %d", config.Alpha->data[n], config.Delta->data[n], config.multiTimestamps->data[0]->data[t].gpsSeconds );
         for ( UINT4 X=0; X < config.numDetectors; X++ ) {
           fprintf(fpOutab, " %12.8f %12.8f", multiAMforSingle->data[X]->a->data[t], multiAMforSingle->data[X]->b->data[t]);
         } // for ( UINT4 X=0; X < config.numDetectors; X++ )
         fprintf(fpOutab, "\n");
       } // for (UINT4 t = 0; t < config.numTimeStamps; t++)
    } // if ( uvar.outab )

    if ( uvar.outABCD ) { // output ABCD averaged over all timestamps
      // FIXME: stop doing average manually when AMCoeffs is changed to contain averaged values
      REAL8 A = multiAM->Mmunu.Ad/config.numTimeStamps;
      REAL8 B = multiAM->Mmunu.Bd/config.numTimeStamps;
      REAL8 C = multiAM->Mmunu.Cd/config.numTimeStamps;
      REAL8 D = A*B-SQ(C);
      fprintf (fpOutABCD, "%.7f  %.7f %12.8f %12.8f %12.8f %12.8f", config.Alpha->data[n], config.Delta->data[n], A, B, C, D );
      if ( config.numDetectors > 1 ) {
        for ( UINT4 X=0; X < config.numDetectors; X++ ) {
          REAL4 AX = multiAMforSingle->data[X]->A/config.numTimeStampsX->data[X];
          REAL4 BX = multiAMforSingle->data[X]->B/config.numTimeStampsX->data[X];
          REAL4 CX = multiAMforSingle->data[X]->C/config.numTimeStampsX->data[X];
          REAL4 DX = AX*BX-SQ(CX);
          fprintf(fpOutABCD, " %12.8f %12.8f %12.8f %12.8f", AX, BX, CX, DX);
        }
      }
      fprintf(fpOutABCD, "\n");
    } // if ( uvar.outABCD )

    XLALDestroyMultiAMCoeffs ( multiAM );
    if ( multiAMunweighted ) {
      XLALDestroyMultiAMCoeffs ( multiAMunweighted );
    }

  } // for (UINT4 n = 0; n < config.numSkyPoints; n++)

  /* ----- close output files ----- */
  if ( fpOutab ) {
    fprintf (fpOutab, "\n");
    fclose ( fpOutab );
  }
  if ( fpOutABCD ) {
    fprintf (fpOutABCD, "\n");
    fclose ( fpOutABCD );
  }

  /* ----- done: free all memory */
  XLAL_CHECK ( XLALDestroyConfig( &config ) == XLAL_SUCCESS, XLAL_EFUNC );

  LALCheckMemoryLeaks();

  return 0;
} /* main */