void fault_handler( void ) { INT32 device_id; INT32 status; INT32 Index = 0; // Get cause of interrupt MEM_READ(Z502InterruptDevice, &device_id ); // Set this device as target of our query MEM_WRITE(Z502InterruptDevice, &device_id ); // Now read the status of this device MEM_READ(Z502InterruptStatus, &status ); //printf( "Fault_handler: Found vector type %d with value %d\n", // device_id, status ); switch( device_id ) { case 2: FHMemoryFault(status); break; case 4: Z502Halt(); break; default: break; } // Clear out this device - we're done with it MEM_WRITE(Z502InterruptClear, &Index ); } /* End of fault_handler */
//**************************************************************************** void OnRedispatch(void) { while( 1 ) { INT32 Status; MEM_READ(Z502TimerStatus, &Status); // No more active processes, halt the machine. if( gProcessManager->IsAllDead() == 1 ) { Z502Halt(); } // Dispatch a process that is ready. if( gProcessManager->GetReadyQueueProcessCount() > 0 ) { MakeReadyToRun(); } } }
void sample_code(void) { INT32 i, j, k; /* Index & counters */ long Value; INT32 disk_id, sector; /* Used for disk requests */ char disk_buffer_write[PGSIZE ]; char disk_buffer_read[PGSIZE ]; char physical_memory_write[PGSIZE ]; char physical_memory_read[PGSIZE ]; void *context_pointer; /* Used for context commands*/ void *starting_address; BOOL kernel_or_user; short random_buckets[NUM_RAND_BUCKETS]; INT32 LockResult; INT32 Status; INT32 Temp, Temp1; /********************************************************************* Show the interface to the delay timer. Eventually the timer will interrupt ( in base.c there's a handler for this ), but here in sample_code.c we're merely showing the interface to start the call. *********************************************************************/ MEM_READ(Z502TimerStatus, &Status); if (Status == DEVICE_FREE) printf("Got expected result for Status of Timer\n"); else printf("Got erroneous result for Status of Timer\n"); Temp = 777; /* You pick the time units */ MEM_WRITE(Z502TimerStart, &Temp); MEM_READ(Z502TimerStatus, &Status); if (Status == DEVICE_IN_USE) printf("Got expected result for Status of Timer\n"); else printf("Got erroneous result for Status of Timer\n"); printf("The next output from the Interrupt Handler should report that \n"); printf(" interrupt of device 4 has occurred with no error.\n"); Z502Idle(); // Let the interrupt for this timer occur // Now we're going to try an illegal time and ensure that the fault // handler reports an illegal status. Temp = -77; /* You pick the time units */ printf("The next output from the Interrupt Handler should report that \n"); printf( " interrupt of device 4 has occurred with an ERR_BAD_PARAM = 1.\n"); MEM_WRITE(Z502TimerStart, &Temp); MEM_READ(Z502TimerStatus, &Status); if (Status == DEVICE_FREE) // Bogus value shouldn't start timer printf("Got expected result for Status of Timer\n"); else printf("Got erroneous result for Status of Timer\n"); fflush(stdout); // ZCALL( Z502_IDLE() ); // Let the interrupt for this timer occur /* The interrupt handler will have exercised the code doing Z502InterruptDevice, Z502InterruptStatus, and Z502InterruptClear. But they will have been tested only for "correct" usage. Let's try a few erroneous/illegal operations. */ // Set an illegal device as target of our query Temp = LARGEST_STAT_VECTOR_INDEX + 1; MEM_WRITE(Z502InterruptDevice, &Temp); // Now read the status of this device MEM_READ(Z502InterruptStatus, &Status); if (Status == ERR_BAD_DEVICE_ID) printf("Got expected result for Status of Illegal Device\n"); else printf("Got erroneous result for Status of Illegal Device\n"); /********************************************************************* Show the interface to the Z502_CLOCK. This is easy - all we're going to do is read it twice and make sure the time is incrementing. *********************************************************************/ MEM_READ(Z502ClockStatus, &Temp); MEM_READ(Z502ClockStatus, &Temp1); if (Temp1 > Temp) printf("The clock time incremented correctly - %d1, %d2\n", Temp, Temp1); else printf("The clock time did NOT increment correctly - %d1, %d2\n", Temp, Temp1); /********************************************************************* Show the interface to the disk read and write. Eventually the disk will interrupt ( in base.c there's a handler for this ), but here in sample_code.c we're merely showing the interface to start the call. *********************************************************************/ disk_id = 1; /* Pick arbitrary disk location */ sector = 3; /* Put data into the buffer being written */ strncpy(disk_buffer_write, "123456789abcdef", 15); /* Do the hardware call to put data on disk */ MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); if (Temp == DEVICE_FREE) // Disk hasn't been used - should be free printf("Got expected result for Disk Status\n"); else printf("Got erroneous result for Disk Status - Device not free.\n"); MEM_WRITE(Z502DiskSetSector, §or); MEM_WRITE(Z502DiskSetBuffer, (INT32 * )disk_buffer_write); Temp = 1; // Specify a write MEM_WRITE(Z502DiskSetAction, &Temp); Temp = 0; // Must be set to 0 MEM_WRITE(Z502DiskStart, &Temp); // Disk should now be started - let's see MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); if (Temp == DEVICE_IN_USE) // Disk should report being used printf("Got expected result for Disk Status\n"); else printf("Got erroneous result for Disk Status\n"); /* Wait until the disk "finishes" the write. the write is an "unpended-io", meaning the call returns before the work is completed. By doing the IDLE here, we wait for the disk action to complete. */ MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); while (Temp != DEVICE_FREE) { Z502Idle(); MEM_READ(Z502DiskStatus, &Temp); } /* Now we read the data back from the disk. If we're lucky, we'll read the same thing we wrote! */ MEM_WRITE(Z502DiskSetSector, §or); MEM_WRITE(Z502DiskSetBuffer, (INT32 * )disk_buffer_read); Temp = 0; // Specify a read MEM_WRITE(Z502DiskSetAction, &Temp); Temp = 0; // Must be set to 0 MEM_WRITE(Z502DiskStart, &Temp); /* wait for the disk action to complete. */ MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); while (Temp != DEVICE_FREE) { Z502Idle(); MEM_READ(Z502DiskStatus, &Temp); } printf("\n\nThe disk data written is: %s\n", disk_buffer_write); printf("The disk data read is: %s\n", disk_buffer_read); /********************************************************************* Let's try some intentional errors to see what happens *********************************************************************/ Temp = 0; // Must be set to 0 MEM_WRITE(Z502DiskStart, &Temp); // Try reading the status without setting an ID MEM_READ(Z502DiskStatus, &Temp); if (Temp == ERR_BAD_DEVICE_ID) printf("Got expected result for Disk Status when using no ID\n"); else printf("Got erroneous result for Disk Status when using no ID\n"); // Try entering a bad ID and then reading the status disk_id = 999; MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); if (Temp == ERR_BAD_DEVICE_ID) printf("Got expected result for Disk Status when using bad ID\n"); else printf("Got erroneous result for Disk Status when using bad ID\n"); // Try doing everything right EXCEPT entering the buffer address, disk_id = 1; /* Pick arbitrary disk location */ sector = 3; MEM_WRITE(Z502DiskSetID, &disk_id); MEM_WRITE(Z502DiskSetSector, §or); // Don't do this -> MEM_WRITE( Z502DiskSetBuffer, (INT32 *)disk_buffer_write ); Temp = 1; // Specify a write MEM_WRITE(Z502DiskSetAction, &Temp); Temp = 0; // Must be set to 0 MEM_WRITE(Z502DiskStart, &Temp); // Disk should now not be started - it was missing vital info MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); if (Temp == DEVICE_FREE) // Disk should report being free printf("Got expected result for Disk Status when missing data\n"); else printf("Got erroneous result for Disk Status when missing data\n"); /********************************************************************* Some of the tests put thousands of pages of data on the disk. Let's see if we can do that here. The pages ARE being written to the disk, but the interrupt handler doesn't show all of them happening because it's not catching multiple interrupts. *********************************************************************/ disk_id = 1; sector = 0; printf("The following section will take a few seconds\n"); for (j = 0; j < VIRTUAL_MEM_PGS + 100 /* arbitrary # */; j++) { MEM_WRITE(Z502DiskSetID, &disk_id); MEM_WRITE(Z502DiskSetSector, §or); MEM_WRITE(Z502DiskSetBuffer, (INT32 * )disk_buffer_write); Temp = 1; // Specify a write MEM_WRITE(Z502DiskSetAction, &Temp); Temp = 0; // Start the disk MEM_WRITE(Z502DiskStart, &Temp); MEM_WRITE(Z502DiskSetID, &disk_id); MEM_READ(Z502DiskStatus, &Temp); while (Temp == DEVICE_IN_USE) // Disk should report being used { //printf( "Got erroneous result for Disk Status when writing lots of blocks\n" ); Temp = 5; /* You pick the time units */ MEM_WRITE(Z502TimerStart, &Temp); MEM_READ(Z502DiskStatus, &Temp); } sector++; if (sector >= NUM_LOGICAL_SECTORS) { sector = 0; disk_id++; } } /********************************************************************* Do a physical memory access to check out that it works. *********************************************************************/ printf("\nStarting test of physical memory write and read.\n"); for (i = 0; i < PGSIZE ; i++) { physical_memory_write[i] = i; } Z502WritePhysicalMemory(17, (char *) physical_memory_write); Z502ReadPhysicalMemory(17, (char *) physical_memory_read); for (i = 0; i < PGSIZE ; i++) { if (physical_memory_write[i] != physical_memory_read[i]) printf("Error in Physical Memory Access\n"); } printf("Completed test of physical memory write and read.\n"); /********************************************************************* Start all of the disks at the same time and see what happens. *********************************************************************/ /* sector = 0; for ( disk_id = 1; disk_id <= MAX_NUMBER_OF_DISKS ; disk_id++ ) { MEM_WRITE( Z502DiskSetID, &disk_id ); MEM_WRITE( Z502DiskSetSector, §or ); MEM_WRITE( Z502DiskSetBuffer, (INT32 *)disk_buffer_write ); Temp = 1; // Specify a write MEM_WRITE( Z502DiskSetAction, &Temp ); Temp = 0; // Start the disk MEM_WRITE( Z502DiskStart, &Temp ); sector++; } // Now wait until all disks have finished for ( disk_id = 1; disk_id <= MAX_NUMBER_OF_DISKS ; disk_id++ ) { MEM_WRITE( Z502DiskSetID, &disk_id ); MEM_READ( Z502DiskStatus, &Temp ); while ( Temp == DEVICE_IN_USE ) // Disk should report being used { //ZCALL( Z502_IDLE() ); DoSleep(50); } } */ printf("Disk multiple-block test is complete\n\n"); /********************************************************************* Show the interface to read and write of real memory It turns out, that though these are hardware calls, the Z502 assumes the calls are being made in user mode. Because the process we're running here in "sample" is in kernel mode, the calls don't work correctly. For working examples of these calls, see test2a. *********************************************************************/ Z502_PAGE_TBL_LENGTH = 64; Z502_PAGE_TBL_ADDR = (UINT16 *) calloc(sizeof(UINT16), Z502_PAGE_TBL_LENGTH); i = PTBL_VALID_BIT; Z502_PAGE_TBL_ADDR[0] = (UINT16) i; i = 73; MEM_WRITE(0, &i); MEM_READ(0, &j); /* WE expect the data read back to be the same as what we wrote */ if (i == j) printf("Memory write and read completed successfully\n"); else printf("Memory write and read were NOT successful.\n"); /********************************************************************* This is the interface to the locking mechanism. These are hardware interlocks. We need to test that they work here. This is the interface we'll be using. void Z502_READ_MODIFY( INT32 VirtualAddress, INT32 NewLockValue, INT32 Suspend, INT32 *LockResult ) We've defined these above to help remember them. #define DO_LOCK 1 #define DO_UNLOCK 0 #define SUSPEND_UNTIL_LOCKED TRUE #define DO_NOT_SUSPEND FALSE *********************************************************************/ printf("++++ Starting Hardware Interlock Testing ++++\n"); // TRY A SERIES OF CALLS AS DESCRIBED HERE printf("These tests map into the matrix describing the Z502_READ_MODIFY\n"); printf(" described in Appendix A\n\n"); printf( "1. Start State = Unlocked: Action (Thread 1) = Lock: End State = Locked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "2. Start State = locked(1): Action (Thread 1) = unLock: End State = UnLocked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_UNLOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "3. Start State = Unlocked: Action (Thread 1) = unLock: End State = UnLocked\n"); printf(" An Error is Expected\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_UNLOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "4. Start State = unlocked: Action (Thread 1) = tryLock: End State = Locked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, DO_NOT_SUSPEND, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "5. Start State = Locked(1): Action (Thread 1) = tryLock: End State = Locked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, DO_NOT_SUSPEND, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "6. Start State = locked(1): Action (Thread 1) = unLock: End State = UnLocked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_UNLOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "7. Start State = Unlocked: Action (Thread 1) = Lock: End State = Locked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); // A thread that locks an item it has already locked will succeed printf( "8. Start State = locked(1): Action (Thread 1) = Lock: End State = Locked\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); // Locking a thread that's already locked - but do it with a thread // other than the one that did the locking. printf( "9. Start State = Locked(1): Action (Thread 2) = tryLock: End State = Locked\n"); printf(" An Error is Expected\n"); Status = CreateAThread((int *) DoOnelock, &Temp); DoSleep(100); /* Wait for that thread to finish */ // Unlock a thread that's already locked - but unlock it with a thread // other than the one that did the locking. printf( "10. Start State = Locked(1): Action (Thread 2) = unLock: End State = Locked\n"); printf(" An Error is Expected\n"); Status = CreateAThread((int *) DoOneUnlock, &Temp); DoSleep(100); /* Wait for that thread to finish */ // The second thread will try to get the lock held by the first thread. This is OK // but the second thread will suspend until the first thread releases the lock. printf( "11. Start State = Locked(1): Action (Thread 2) = Lock: End State = Locked\n"); Status = CreateAThread((int *) DoOneTrylock, &Temp); DoSleep(100); /* Wait for that thread to finish */ // The first thread does an unlock. This means the second thread is now able to get // the lock so there is a "relock" when thread two succeeds. printf( "12. Start State = locked(1): Action (Thread 1) = unLock: End State = Locked(by 2)\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_UNLOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); DoSleep(100); /* Wait for locking action of 2nd thread to finish */ printf( "13. Start State = Locked(2): Action (Thread 3) = unLock: End State = Locked(2)\n"); printf(" An Error is Expected\n"); Status = CreateAThread((int *) DoOneUnlock, &Temp); DoSleep(100); /* Wait for that thread to finish */ printf( "14. Start State = Locked(2): Action (Thread 1) = tryLock: End State = Locked(2)\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_LOCK, DO_NOT_SUSPEND, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf( "15. Start State = locked(2): Action (Thread 1) = unLock: End State = Locked(2)\n"); printf(" An Error is Expected\n"); READ_MODIFY(MEMORY_INTERLOCK_BASE, DO_UNLOCK, SUSPEND_UNTIL_LOCKED, &LockResult); printf("%s\n", &(Success[SPART * LockResult])); printf("++++ END of hardware interlock code ++++\n\n"); /********************************************************************* Show the interface to the CONTEXT calls. We aren't going to do a SWITCH_CONTEXT here, because that would cause us to start a process in a strange place and we might never return here. But we do all the setup required. *********************************************************************/ /* The context_pointer is returned by the MAKE_CONTEXT call. */ starting_address = (void *) starting_point_for_new_context; kernel_or_user = USER_MODE; Z502MakeContext(&context_pointer, starting_address, kernel_or_user); Z502DestroyContext(&context_pointer); /********************************************************************* Show the interface to the scheduler printer. *********************************************************************/ CALL(SP_setup( SP_TIME_MODE, 99999 )); CALL(SP_setup_action( SP_ACTION_MODE, "CREATE" )); CALL(SP_setup( SP_TARGET_MODE, 99L )); CALL(SP_setup( SP_RUNNING_MODE, 99L )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_READY_MODE, j )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_WAITING_MODE, j+20 )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_SUSPENDED_MODE, j+40 )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_SWAPPED_MODE, j+60 )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_TERMINATED_MODE, j+80 )); for (j = 0; j < SP_MAX_NUMBER_OF_PIDS ; j++) CALL(SP_setup( SP_NEW_MODE, j+50 )); CALL(SP_print_header()); CALL(SP_print_line()); /********************************************************************* Show the interface to the memory_printer. *********************************************************************/ for (j = 0; j < 64; j = j + 2) { MP_setup((INT32) (j), (INT32) (j / 2) % 10, (INT32) j * 16 + 10, (INT32) (j / 2) % 8); } MP_print_line(); /********************************************************************* Show how the skewed random numbers work on this platform. *********************************************************************/ for (j = 0; j < NUM_RAND_BUCKETS; j++) random_buckets[j] = 0; for (j = 0; j < 100000; j++) { get_skewed_random_number(&Value, NUM_RAND_BUCKETS); random_buckets[Value]++; } printf("\nTesting that your platform produces correctly skewed random\n"); printf("numbers. Each row should have higher count than the previous.\n"); printf(" Range: Counts in this range.\n"); for (j = 0; j < NUM_RAND_BUCKETS; j = j + 8) { k = 0; for (i = j; i < j + 8; i++) k += random_buckets[i]; printf("%3d - %3d: %d\n", j, j + 7, k); } /********************************************************************* Show the interface to the Z502Halt. Note that the program will end NOW, since we don't return from the command. *********************************************************************/ Z502Halt(); }
void svc( SYSTEM_CALL_DATA *SystemCallData ) { short call_type; static short do_print = 10; short i; INT32 Time; static long SleepTimer; INT32 atLock = -1; call_type = (short)SystemCallData->SystemCallNumber; if ( do_print > 0 ) { printf( "SVC handler: %s\n", call_names[call_type]); for (i = 0; i < SystemCallData->NumberOfArguments - 1; i++ ){ //Value = (long)*SystemCallData->Argument[i]; printf( "Arg %d: Contents = (Decimal) %8ld, (Hex) %8lX\n", i, (unsigned long )SystemCallData->Argument[i], (unsigned long )SystemCallData->Argument[i]); } do_print--; } switch (call_type){ //get time service call case SYSNUM_GET_TIME_OF_DAY: //This value is found in syscalls.h CALL(MEM_READ( Z502ClockStatus, &Time )); *SystemCallData->Argument[0] = Time; break; //terminate system call case SYSNUM_TERMINATE_PROCESS: CALL(MEM_READ( Z502ClockStatus, &Time )); if(SystemCallData->Argument[0] == -1) { if(current_PCB_PTR->p_id==0) { CALL(Z502Halt()); break; } else if(timerHead != NULL) { if(Time>TimerStatusTime) { start_timer(5); CALL(Dispatcher()); break; } else CALL(Dispatcher()); break; } else{ CALL(Dispatcher()); break;} break; } else if(SystemCallData->Argument[0] == -2) { *SystemCallData->Argument[1] = ERR_SUCCESS; CALL(Z502Halt()); break; } else { S_PCB *temp = readyHead; S_PCB *prev = NULL; while(temp != NULL) { if(temp->p_id ==SystemCallData->Argument[0]) { if(temp->next == NULL) { *SystemCallData->Argument[1] = ERR_SUCCESS; break; } else { *SystemCallData->Argument[1] = ERR_SUCCESS; prev->next = temp->next; break; } } else { prev = temp; temp = temp->next; *SystemCallData->Argument[1] = ERR_SUCCESS; break; } } if(temp == NULL) { *SystemCallData->Argument[1] = CANNOTTERMINATE ; } } break; case SYSNUM_SLEEP: //overTimeModify(); schedular_printer(SLEEP); SleepTimer = SystemCallData->Argument[0]; CALL(MEM_READ( Z502ClockStatus, &Time )); current_PCB_PTR->p_time = Time + SleepTimer; lockTimer(); CALL(addToTimerQ(current_PCB_PTR)); unlockTimer(); if(Time<(timerHead->p_time)) //compare the wake time with current time { CALL(start_timer(SleepTimer)); CALL(Dispatcher()); } else{ //if wake time is smaller than now, it need wake up immedately CALL(start_timer(5)); CALL(Dispatcher()); } break; case SYSNUM_CREATE_PROCESS: os_create_process(SystemCallData->Argument[0], SystemCallData->Argument[1],SystemCallData->Argument[2],SystemCallData->Argument[3],SystemCallData->Argument[4],NOTRUN); break; case SYSNUM_GET_PROCESS_ID: os_get_process_id(SystemCallData->Argument[0], SystemCallData->Argument[1],SystemCallData->Argument[2]); break; case SYSNUM_SUSPEND_PROCESS: os_suspend_process(SystemCallData->Argument[0], SystemCallData->Argument[1]); break; case SYSNUM_RESUME_PROCESS: os_resume_process(SystemCallData->Argument[0], SystemCallData->Argument[1]); break; case SYSNUM_CHANGE_PRIORITY: os_change_priority(SystemCallData->Argument[0], SystemCallData->Argument[1],SystemCallData->Argument[2]); break; case SYSNUM_SEND_MESSAGE: os_send_message(SystemCallData->Argument[0], SystemCallData->Argument[1],SystemCallData->Argument[2],SystemCallData->Argument[3]); break; case SYSNUM_RECEIVE_MESSAGE: os_receive_message(SystemCallData->Argument[0], SystemCallData->Argument[1],SystemCallData->Argument[2],SystemCallData->Argument[3],SystemCallData->Argument[4],SystemCallData->Argument[5]); break; default: printf( "ERROR! Call type not reconginzed!\n"); printf( "Call_type is - %i\n", call_type); } }
void svc( SYSTEM_CALL_DATA *SystemCallData ) { short call_type; static short do_print = 10; short i; int Time; int ID; int k=0,m=0,n=0; int PR; int sid,tid,mlen; int actual_length; long tmp; INT32 diskstatus; long tmpid; void *next_context; char *tmpmsg; PCB *head; PCB *head1; PCB *pcb = (PCB *)malloc(sizeof(PCB)); call_type = (short)SystemCallData->SystemCallNumber; if ( do_print > 0 ) { printf( "SVC handler: %s\n", call_names[call_type]); for (i = 0; i < SystemCallData->NumberOfArguments - 1; i++ ) { //Value = (long)*SystemCallData->Argument[i]; printf( "Arg %d: Contents = (Decimal) %8ld, (Hex) %8lX\n", i, (unsigned long )SystemCallData->Argument[i], (unsigned long )SystemCallData->Argument[i]); } } switch(call_type) { case SYSNUM_GET_TIME_OF_DAY: MEM_READ(Z502ClockStatus, &Time); //Z502_REG1=Time; *SystemCallData->Argument[0]=Time; break; case SYSNUM_TERMINATE_PROCESS: tmpid = (long)SystemCallData->Argument[0]; if(tmpid>=0) { os_delete_process_ready(tmpid); Z502_REG9 = ERR_SUCCESS; } else if(tmpid == -1) { head =Running; Running = NULL; while(readyfront==NULL&&timerfront==NULL) { Z502Halt(); } //free(head); dispatcher(); Z502SwitchContext( SWITCH_CONTEXT_SAVE_MODE, &(Running->context) ); } else Z502Halt(); break; //the execution of sleep(); case SYSNUM_SLEEP: start_timer( (int)SystemCallData->Argument[0] ); break; case SYSNUM_GET_PROCESS_ID: *SystemCallData->Argument[1] = os_get_process_id((char *)SystemCallData->Argument[0]); break; case SYSNUM_CREATE_PROCESS: strcpy(pcb->Processname , (char *)SystemCallData->Argument[0]); pcb->Priority = (long)SystemCallData->Argument[2]; head = readyfront; head1 = readyfront; if(Pid < 20) { if(pcb->Priority >0) { if(readyfront == NULL&&readyrear == NULL) { readyfront = pcb; readyrear = pcb; //*SystemCallData->Argument[4] = ERR_SUCCESS; Z502_REG9 = ERR_SUCCESS; pcb->pid = Pid; pcb->next=NULL; Toppriority = pcb->Priority; *SystemCallData->Argument[3] = Pid; //pcb->context = (void *)SystemCallData->Argument[1]; Z502MakeContext( &next_context, (void *)SystemCallData->Argument[1], USER_MODE ); pcb->context = next_context; Pid++; } else if(readyfront!=NULL&&readyrear!=NULL) { if(checkPCBname(pcb) == 1) { if(pcb->Priority < Toppriority) { Z502_REG9 = ERR_SUCCESS; pcb->next = readyfront; readyfront = pcb; pcb->pid = Pid; pcb->next=NULL; Z502MakeContext( &next_context, (void *)SystemCallData->Argument[1], USER_MODE ); pcb->context = next_context; *SystemCallData->Argument[3] = Pid; Pid++; } else { while(head->next!=NULL) { if(pcb->Priority < head->Priority) break; else head = head->next; } if(head->next!=NULL) { while(head1->next!=head) { head1=head1->next; } Z502_REG9 = ERR_SUCCESS; head1->next = pcb; pcb->next=head; pcb->pid = Pid; Z502MakeContext( &next_context, (void *)SystemCallData->Argument[1], USER_MODE ); pcb->context = next_context; *SystemCallData->Argument[3] = Pid; Pid++; } else { if(pcb->Priority < head->Priority) { while(head1->next!=head) { head1=head1->next; } Z502_REG9 = ERR_SUCCESS; head1->next=pcb; pcb->next=head; pcb->pid = Pid; Z502MakeContext( &next_context, (void *)SystemCallData->Argument[1], USER_MODE ); pcb->context = next_context; *SystemCallData->Argument[3] = Pid; Pid++; } else { Z502_REG9 = ERR_SUCCESS; head->next = pcb; readyrear = pcb; pcb->next=NULL; pcb->pid = Pid; Z502MakeContext( &next_context, (void *)SystemCallData->Argument[1], USER_MODE ); pcb->context = next_context; *SystemCallData->Argument[3] = Pid; Pid++; } } } } else free(pcb); } } else free(pcb); } else { Z502_REG9++; free(pcb); } break; case SYSNUM_SUSPEND_PROCESS: ID = (int)SystemCallData->Argument[0]; head = suspendfront; while(head!=NULL) { if(head->pid == ID) { n = 1; break; } else head = head->next; } if(n!=1) { head = readyfront; while(head!=NULL) { if(head->pid == ID) { Z502_REG9 = ERR_SUCCESS; suspend_process_ready(head); k = 1; break; } else head = head->next; } if(k == 0) { head = timerfront; while(head!=NULL) { if(head->pid == ID) { Z502_REG9 = ERR_SUCCESS; suspend_process_timer(head); m = 1; break; } else head=head->next; } if(m == 0&&k == 0) { printf("illegal PID\n"); } } } if(n == 1) { printf("can not suspend suspended process\n"); } break; case SYSNUM_RESUME_PROCESS: ID = (int)SystemCallData->Argument[0]; head = suspendfront; while(head!=NULL) { if(head->pid == ID) { k=1; break; } else head=head->next; } if(k==1) resume_process(head); else printf("error\n"); break; case SYSNUM_CHANGE_PRIORITY: ID = (int)SystemCallData->Argument[0]; PR = (int)SystemCallData->Argument[1]; if(ID == -1) { Running->Priority = PR; Z502_REG9 = ERR_SUCCESS; } else { if(PR < 100) { if(checkReady(ID) == 1) { head = readyfront; while(head->pid != ID) head=head->next; change_priority_ready(head,PR); Z502_REG9 = ERR_SUCCESS; } else if(checkTimer(ID) == 1) { head = timerfront; while(head->pid != ID) head=head->next; change_priority_timer(head,PR); Z502_REG9 = ERR_SUCCESS; } else if(checkSuspend(ID) == 1) { head = suspendfront; while(head->pid != ID) head = head->next; change_priority_suspend(head,PR); Z502_REG9 = ERR_SUCCESS; } else { printf("ID ERROR!\n"); } } else { printf("illegal Priority"); } } break; case SYSNUM_SEND_MESSAGE: sid = Running->pid; tid = (int)SystemCallData->Argument[0]; tmpmsg =(char *)SystemCallData->Argument[1]; mlen = (int)SystemCallData->Argument[2]; if(maxbuffer < 8) { if(tid < 100) { if(mlen < 100) { if(tid>0) { send_message(sid,tid,mlen,tmpmsg); maxbuffer++; } else if(tid == -1) { send_message_to_all(sid,mlen,tmpmsg); maxbuffer++; } } else { printf("illegal length!\n"); } } else printf("illegal id!\n"); } else { printf("no space!\n"); Z502_REG9++; } break; case SYSNUM_RECEIVE_MESSAGE: sid = (int)SystemCallData->Argument[0]; mlen = (int)SystemCallData->Argument[2]; if(sid < 100) { if(mlen < 100) { if(sid == -1) { receive_message_fromall(); if(msgnum>0) { actual_length = strlen(checkmsg->msg_buffer); if(mlen >actual_length) { msg_out_queue(checkmsg); *SystemCallData->Argument[3] = actual_length; *SystemCallData->Argument[4] = checkmsg->source_pid; strcpy((char *)SystemCallData->Argument[1] ,checkmsg->msg_buffer); Z502_REG9 = ERR_SUCCESS; } else { printf("small buffer!\n"); } } } else { receive_message_fromone(sid); if(msgnum>0) { actual_length = strlen(checkmsg->msg_buffer); if(mlen >actual_length) { msg_out_queue(checkmsg); *SystemCallData->Argument[3] = actual_length; *SystemCallData->Argument[4] = checkmsg->source_pid; strcpy((char *)SystemCallData->Argument[1], checkmsg->msg_buffer); Z502_REG9 = ERR_SUCCESS; } else { printf("small buffer!\n"); } } } } else printf("illegal length!\n"); } else printf("illegal id!\n"); break; case SYSNUM_DISK_READ: disk_read(SystemCallData->Argument[0],SystemCallData->Argument[1],SystemCallData->Argument[2]); break; case SYSNUM_DISK_WRITE: disk_write(SystemCallData->Argument[0],SystemCallData->Argument[1],SystemCallData->Argument[2]); break; default: printf("call_type %d cannot be recognized\n",call_type); break; } do_print--; }
void fault_handler( void ) { INT32 device_id; INT32 status; INT32 Index = 0; Frame *f; int i; int victim=0; int diskid; UINT16 pagenum; UINT16 framenum; UINT16 sectorID; // Get cause of interrupt MEM_READ(Z502InterruptDevice, &device_id ); // Set this device as target of our query MEM_WRITE(Z502InterruptDevice, &device_id ); // Now read the status of this device MEM_READ(Z502InterruptStatus, &status ); /* printf( "Fault_handler: Found vector type %d with value %d\n", device_id, status );*/ diskid = 1; if(device_id!=4) { if(status>=1024) { printf("page overflow!\n"); Z502Halt(); } if(Z502_PAGE_TBL_ADDR == NULL) { Z502_PAGE_TBL_LENGTH = 1024; Z502_PAGE_TBL_ADDR = (UINT16 *) calloc(sizeof(UINT16), Z502_PAGE_TBL_LENGTH); } //here we initialize the page table //f = get_free_frame(); if(FrameAllUsed != 1) { for(i=0; i<64; i++) { if(frame[i].framestatus == 0) { frame[i].pagenumber = status; frame[i].framestatus =1; frame[i].pid = Running->pid; Z502_PAGE_TBL_ADDR[frame[i].pagenumber] = (UINT16)frame[i].framenumber | 0x8000; break; } } if(i == 64) FrameAllUsed = 1; } else { i = victim; framenum = frame[i].framenumber; pagenum = frame[i].pagenumber; sectorID = pagenum; Z502_PAGE_TBL_ADDR[frame[i].pagenumber] = Z502_PAGE_TBL_ADDR[frame[i].pagenumber] & 0x7FFF; if(shadowTBL[pagenum].status == 0) { shadowTBL[pagenum].framenumber = framenum; shadowTBL[pagenum].diskID = diskid; shadowTBL[pagenum].sectorID = sectorID; shadowTBL[pagenum].status = 1; disk_write(shadowTBL[pagenum].diskID, shadowTBL[pagenum].sectorID,(char *)&MEMORY[shadowTBL[pagenum].framenumber * PGSIZE]); } if(shadowTBL[status].status == 1) { shadowTBL[status].status = 0; disk_read(shadowTBL[status].diskID, shadowTBL[status].sectorID,(char *)&MEMORY[shadowTBL[status].framenumber * PGSIZE]); } Z502_PAGE_TBL_ADDR[status] = (UINT16)framenum | 0x8000; frame[i].pagenumber = status; frame[i].pid = Running->pid; frame[i].framestatus = 1; victim = (victim + 1) % 64; } } if(device_id==4&&status==0) { Z502Halt(); } // Clear out this device - we're done with it MEM_WRITE(Z502InterruptClear, &Index ); } /* End of fault_handler */