Пример #1
0
        double cosh(double x)           /* wrapper cosh */
{
#ifdef CYGSEM_LIBM_COMPAT_IEEE_ONLY
        return __ieee754_cosh(x);
#else
        double z;
        z = __ieee754_cosh(x);
        if(cyg_libm_get_compat_mode() == CYGNUM_LIBM_COMPAT_IEEE || isnan(x)) return z;
        if(fabs(x)>7.10475860073943863426e+02) {        
                return __kernel_standard(x,x,5); /* cosh overflow */
        } else
            return z;
#endif
}
Пример #2
0
double
cosh(double x)		/* wrapper cosh */
{
#ifdef _IEEE_LIBM
	return __ieee754_cosh(x);
#else
	double z;
	z = __ieee754_cosh(x);
	if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
	if(fabs(x)>7.10475860073943863426e+02) {
	        return __kernel_standard(x,x,5); /* cosh overflow */
	} else
	    return z;
#endif
}
Пример #3
0
void
Math_cosh(void *fp)
{
	F_Math_cosh *f;

	f = fp;

	*f->ret = __ieee754_cosh(f->x);
}
Пример #4
0
double
__cosh (double x)
{
	double z = __ieee754_cosh (x);
	if (__builtin_expect (!isfinite (z), 0) && isfinite (x)
	    && _LIB_VERSION != _IEEE_)
		return __kernel_standard (x, x, 5); /* cosh overflow */

	return z;
}
Пример #5
0
__complex__ double
__ctanh (__complex__ double x)
{
  __complex__ double res;

  if (__builtin_expect (!isfinite (__real__ x) || !isfinite (__imag__ x), 0))
    {
      if (__isinf_ns (__real__ x))
	{
	  __real__ res = __copysign (1.0, __real__ x);
	  __imag__ res = __copysign (0.0, __imag__ x);
	}
      else if (__imag__ x == 0.0)
	{
	  res = x;
	}
      else
	{
	  __real__ res = __nan ("");
	  __imag__ res = __nan ("");

	  if (__isinf_ns (__imag__ x))
	    feraiseexcept (FE_INVALID);
	}
    }
  else
    {
      double sin2ix, cos2ix;
      double den;

      __sincos (2.0 * __imag__ x, &sin2ix, &cos2ix);

      den = (__ieee754_cosh (2.0 * __real__ x) + cos2ix);

      if (den == 0.0)
	{
	  __complex__ double ez = __cexp (x);
	  __complex__ double emz = __cexp (-x);

	  res = (ez - emz) / (ez + emz);
	}
      else
	{
	  __real__ res = __ieee754_sinh (2.0 * __real__ x) / den;
	  __imag__ res = sin2ix / den;
	}
    }

  return res;
}
Пример #6
0
EXPORT(sqInt) primitiveCosH(void) {
    double rcvr;
    double result;

	rcvr = interpreterProxy->stackFloatValue(0);
	if (interpreterProxy->failed()) {
		return null;
	}
	result = __ieee754_cosh(rcvr);
	if (isnan(result)) {
		return interpreterProxy->primitiveFail();
	}
	interpreterProxy->pop((interpreterProxy->methodArgumentCount()) + 1);
	interpreterProxy->pushFloat(result);
}
primitiveCosH(void)
{
	// FloatMathPlugin>>#primitiveCosH
    double rcvr;
    double result;

	rcvr = stackFloatValue(0);
	if (failed()) {
		return null;
	}
	result = __ieee754_cosh(rcvr);
	if (isnan(result)) {
		return primitiveFail();
	}
	pop((methodArgumentCount()) + 1);
	pushFloat(result);
}
Пример #8
0
__complex__ double
__ctanh (__complex__ double x)
{
  __complex__ double res;

  if (!isfinite (__real__ x) || !isfinite (__imag__ x))
    {
      if (__isinf (__real__ x))
	{
	  __real__ res = __copysign (1.0, __real__ x);
	  __imag__ res = __copysign (0.0, __imag__ x);
	}
      else if (__imag__ x == 0.0)
	{
	  res = x;
	}
      else
	{
	  __real__ res = __nan ("");
	  __imag__ res = __nan ("");

#ifdef FE_INVALID
	  if (__isinf (__imag__ x))
	    feraiseexcept (FE_INVALID);
#endif
	}
    }
  else
    {
      double sin2ix, cos2ix;
      double den;

      __sincos (2.0 * __imag__ x, &sin2ix, &cos2ix);

      den = (__ieee754_cosh (2.0 * __real__ x) + cos2ix);

      __real__ res = __ieee754_sinh (2.0 * __real__ x) / den;
      __imag__ res = sin2ix / den;
    }

  return res;
}
Пример #9
0
__complex__ double
__ccosh (__complex__ double x)
{
  __complex__ double retval;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__builtin_expect (rcls >= FP_ZERO, 1))
    {
      /* Real part is finite.  */
      if (__builtin_expect (icls >= FP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
	  double sinix, cosix;

	  if (__builtin_expect (icls != FP_SUBNORMAL, 1))
	    {
	      __sincos (__imag__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __imag__ x;
	      cosix = 1.0;
	    }

	  if (fabs (__real__ x) > t)
	    {
	      double exp_t = __ieee754_exp (t);
	      double rx = fabs (__real__ x);
	      if (signbit (__real__ x))
		sinix = -sinix;
	      rx -= t;
	      sinix *= exp_t / 2.0;
	      cosix *= exp_t / 2.0;
	      if (rx > t)
		{
		  rx -= t;
		  sinix *= exp_t;
		  cosix *= exp_t;
		}
	      if (rx > t)
		{
		  /* Overflow (original real part of x > 3t).  */
		  __real__ retval = DBL_MAX * cosix;
		  __imag__ retval = DBL_MAX * sinix;
		}
	      else
		{
		  double exp_val = __ieee754_exp (rx);
		  __real__ retval = exp_val * cosix;
		  __imag__ retval = exp_val * sinix;
		}
	    }
	  else
	    {
	      __real__ retval = __ieee754_cosh (__real__ x) * cosix;
	      __imag__ retval = __ieee754_sinh (__real__ x) * sinix;
	    }

	  if (fabs (__real__ retval) < DBL_MIN)
	    {
	      volatile double force_underflow
		= __real__ retval * __real__ retval;
	      (void) force_underflow;
	    }
	  if (fabs (__imag__ retval) < DBL_MIN)
	    {
	      volatile double force_underflow
		= __imag__ retval * __imag__ retval;
	      (void) force_underflow;
	    }
	}
      else
	{
	  __imag__ retval = __real__ x == 0.0 ? 0.0 : __nan ("");
	  __real__ retval = __nan ("") + __nan ("");

	  if (icls == FP_INFINITE)
	    feraiseexcept (FE_INVALID);
	}
    }
  else if (rcls == FP_INFINITE)
    {
      /* Real part is infinite.  */
      if (__builtin_expect (icls > FP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  double sinix, cosix;

	  if (__builtin_expect (icls != FP_SUBNORMAL, 1))
	    {
	      __sincos (__imag__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __imag__ x;
	      cosix = 1.0;
	    }

	  __real__ retval = __copysign (HUGE_VAL, cosix);
	  __imag__ retval = (__copysign (HUGE_VAL, sinix)
			     * __copysign (1.0, __real__ x));
	}
      else if (icls == FP_ZERO)
	{
	  /* Imaginary part is 0.0.  */
	  __real__ retval = HUGE_VAL;
	  __imag__ retval = __imag__ x * __copysign (1.0, __real__ x);
	}
      else
	{
	  /* The addition raises the invalid exception.  */
	  __real__ retval = HUGE_VAL;
	  __imag__ retval = __nan ("") + __nan ("");

	  if (icls == FP_INFINITE)
	    feraiseexcept (FE_INVALID);
	}
    }
  else
    {
      __real__ retval = __nan ("");
      __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan ("");
    }

  return retval;
}
Пример #10
0
__complex__ double
__ctanh (__complex__ double x)
{
  __complex__ double res;

  if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
    {
      if (isinf (__real__ x))
	{
	  __real__ res = __copysign (1.0, __real__ x);
	  if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0)
	    {
	      double sinix, cosix;
	      __sincos (__imag__ x, &sinix, &cosix);
	      __imag__ res = __copysign (0.0, sinix * cosix);
	    }
	  else
	    __imag__ res = __copysign (0.0, __imag__ x);
	}
      else if (__imag__ x == 0.0)
	{
	  res = x;
	}
      else
	{
	  __real__ res = __nan ("");
	  __imag__ res = __nan ("");

	  if (isinf (__imag__ x))
	    feraiseexcept (FE_INVALID);
	}
    }
  else
    {
      double sinix, cosix;
      double den;
      const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);

      /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
	 = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2).  */

      if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
	{
	  __sincos (__imag__ x, &sinix, &cosix);
	}
      else
	{
	  sinix = __imag__ x;
	  cosix = 1.0;
	}

      if (fabs (__real__ x) > t)
	{
	  /* Avoid intermediate overflow when the imaginary part of
	     the result may be subnormal.  Ignoring negligible terms,
	     the real part is +/- 1, the imaginary part is
	     sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x).  */
	  double exp_2t = __ieee754_exp (2 * t);

	  __real__ res = __copysign (1.0, __real__ x);
	  __imag__ res = 4 * sinix * cosix;
	  __real__ x = fabs (__real__ x);
	  __real__ x -= t;
	  __imag__ res /= exp_2t;
	  if (__real__ x > t)
	    {
	      /* Underflow (original real part of x has absolute value
		 > 2t).  */
	      __imag__ res /= exp_2t;
	    }
	  else
	    __imag__ res /= __ieee754_exp (2 * __real__ x);
	}
      else
	{
	  double sinhrx, coshrx;
	  if (fabs (__real__ x) > DBL_MIN)
	    {
	      sinhrx = __ieee754_sinh (__real__ x);
	      coshrx = __ieee754_cosh (__real__ x);
	    }
	  else
	    {
	      sinhrx = __real__ x;
	      coshrx = 1.0;
	    }

	  if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
	    den = sinhrx * sinhrx + cosix * cosix;
	  else
	    den = cosix * cosix;
	  __real__ res = sinhrx * coshrx / den;
	  __imag__ res = sinix * cosix / den;
	}
      math_check_force_underflow_complex (res);
    }

  return res;
}
Пример #11
0
Err mathlib_cosh(UInt16 refnum, double x, double *result) {
#pragma unused(refnum)
	*result = __ieee754_cosh(x);
	return mlErrNone;
}
Пример #12
0
__complex__ double
__csin (__complex__ double x)
{
  __complex__ double retval;
  int negate = signbit (__real__ x);
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  __real__ x = fabs (__real__ x);

  if (__glibc_likely (icls >= FP_ZERO))
    {
      /* Imaginary part is finite.  */
      if (__glibc_likely (rcls >= FP_ZERO))
	{
	  /* Real part is finite.  */
	  const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
	  double sinix, cosix;

	  if (__glibc_likely (rcls != FP_SUBNORMAL))
	    {
	      __sincos (__real__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __real__ x;
	      cosix = 1.0;
	    }

	  if (fabs (__imag__ x) > t)
	    {
	      double exp_t = __ieee754_exp (t);
	      double ix = fabs (__imag__ x);
	      if (signbit (__imag__ x))
		cosix = -cosix;
	      ix -= t;
	      sinix *= exp_t / 2.0;
	      cosix *= exp_t / 2.0;
	      if (ix > t)
		{
		  ix -= t;
		  sinix *= exp_t;
		  cosix *= exp_t;
		}
	      if (ix > t)
		{
		  /* Overflow (original imaginary part of x > 3t).  */
		  __real__ retval = DBL_MAX * sinix;
		  __imag__ retval = DBL_MAX * cosix;
		}
	      else
		{
		  double exp_val = __ieee754_exp (ix);
		  __real__ retval = exp_val * sinix;
		  __imag__ retval = exp_val * cosix;
		}
	    }
	  else
	    {
	      __real__ retval = __ieee754_cosh (__imag__ x) * sinix;
	      __imag__ retval = __ieee754_sinh (__imag__ x) * cosix;
	    }

	  if (negate)
	    __real__ retval = -__real__ retval;

	  if (fabs (__real__ retval) < DBL_MIN)
	    {
	      volatile double force_underflow
		= __real__ retval * __real__ retval;
	      (void) force_underflow;
	    }
	  if (fabs (__imag__ retval) < DBL_MIN)
	    {
	      volatile double force_underflow
		= __imag__ retval * __imag__ retval;
	      (void) force_underflow;
	    }
	}
      else
	{
	  if (icls == FP_ZERO)
	    {
	      /* Imaginary part is 0.0.  */
	      __real__ retval = __nan ("");
	      __imag__ retval = __imag__ x;

	      if (rcls == FP_INFINITE)
		feraiseexcept (FE_INVALID);
	    }
	  else
	    {
	      __real__ retval = __nan ("");
	      __imag__ retval = __nan ("");

	      feraiseexcept (FE_INVALID);
	    }
	}
    }
  else if (icls == FP_INFINITE)
    {
      /* Imaginary part is infinite.  */
      if (rcls == FP_ZERO)
	{
	  /* Real part is 0.0.  */
	  __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
	  __imag__ retval = __imag__ x;
	}
      else if (rcls > FP_ZERO)
	{
	  /* Real part is finite.  */
	  double sinix, cosix;

	  if (__glibc_likely (rcls != FP_SUBNORMAL))
	    {
	      __sincos (__real__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __real__ x;
	      cosix = 1.0;
	    }

	  __real__ retval = __copysign (HUGE_VAL, sinix);
	  __imag__ retval = __copysign (HUGE_VAL, cosix);

	  if (negate)
	    __real__ retval = -__real__ retval;
	  if (signbit (__imag__ x))
	    __imag__ retval = -__imag__ retval;
	}
      else
	{
	  /* The addition raises the invalid exception.  */
	  __real__ retval = __nan ("");
	  __imag__ retval = HUGE_VAL;

	  if (rcls == FP_INFINITE)
	    feraiseexcept (FE_INVALID);
	}
    }
  else
    {
      if (rcls == FP_ZERO)
	__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
      else
	__real__ retval = __nan ("");
      __imag__ retval = __nan ("");
    }

  return retval;
}
Пример #13
0
__complex__ double
__csinh (__complex__ double x)
{
  __complex__ double retval;
  int negate = signbit (__real__ x);
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  __real__ x = fabs (__real__ x);

  if (rcls >= FP_ZERO)
    {
      /* Real part is finite.  */
      if (icls >= FP_ZERO)
	{
	  /* Imaginary part is finite.  */
	  double sinh_val = __ieee754_sinh (__real__ x);
	  double cosh_val = __ieee754_cosh (__real__ x);
	  double sinix, cosix;

	  __sincos (__imag__ x, &sinix, &cosix);

	  __real__ retval = sinh_val * cosix;
	  __imag__ retval = cosh_val * sinix;

	  if (negate)
	    __real__ retval = -__real__ retval;
	}
      else
	{
	  if (rcls == FP_ZERO)
	    {
	      /* Real part is 0.0.  */
	      __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
	      __imag__ retval = __nan ("") + __nan ("");

#ifdef FE_INVALID
	      if (icls == FP_INFINITE)
		feraiseexcept (FE_INVALID);
#endif
	    }
	  else
	    {
	      __real__ retval = __nan ("");
	      __imag__ retval = __nan ("");

#ifdef FE_INVALID
	      feraiseexcept (FE_INVALID);
#endif
	    }
	}
    }
  else if (rcls == FP_INFINITE)
    {
      /* Real part is infinite.  */
      if (icls == FP_ZERO)
	{
	  /* Imaginary part is 0.0.  */
	  __real__ retval = negate ? -HUGE_VAL : HUGE_VAL;
	  __imag__ retval = __imag__ x;
	}
      else if (icls > FP_ZERO)
	{
	  /* Imaginary part is finite.  */
	  double sinix, cosix;

	  __sincos (__imag__ x, &sinix, &cosix);

	  __real__ retval = __copysign (HUGE_VAL, cosix);
	  __imag__ retval = __copysign (HUGE_VAL, sinix);

	  if (negate)
	    __real__ retval = -__real__ retval;
	}
      else
	{
	  /* The addition raises the invalid exception.  */
	  __real__ retval = HUGE_VAL;
	  __imag__ retval = __nan ("") + __nan ("");

#ifdef FE_INVALID
	  if (icls == FP_INFINITE)
	    feraiseexcept (FE_INVALID);
#endif
	}
    }
  else
    {
      __real__ retval = __nan ("");
      __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan ("");
    }

  return retval;
}