__complex__ double __clog10 (__complex__ double x) { __complex__ double result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysign (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabs (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ __real__ result = __ieee754_log10 (__ieee754_hypot (__real__ x, __imag__ x)); __imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x); } else { __imag__ result = __nan (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VAL; else __real__ result = __nan (""); } return result; }
__complex__ double __clog (__complex__ double x) { __complex__ double result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysign (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabs (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ double d; int scale = 0; if (fabs (__real__ x) > DBL_MAX / 2.0 || fabs (__imag__ x) > DBL_MAX / 2.0) { scale = -1; __real__ x = __scalbn (__real__ x, scale); __imag__ x = __scalbn (__imag__ x, scale); } else if (fabs (__real__ x) < DBL_MIN && fabs (__imag__ x) < DBL_MIN) { scale = DBL_MANT_DIG; __real__ x = __scalbn (__real__ x, scale); __imag__ x = __scalbn (__imag__ x, scale); } d = __ieee754_hypot (__real__ x, __imag__ x); __real__ result = __ieee754_log (d) - scale * M_LN2; __imag__ result = __ieee754_atan2 (__imag__ x, __real__ x); } else { __imag__ result = __nan (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VAL; else __real__ result = __nan (""); } return result; }
__complex__ double __ctanh (__complex__ double x) { __complex__ double res; if (__builtin_expect (!isfinite (__real__ x) || !isfinite (__imag__ x), 0)) { if (__isinf_ns (__real__ x)) { __real__ res = __copysign (1.0, __real__ x); __imag__ res = __copysign (0.0, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nan (""); __imag__ res = __nan (""); if (__isinf_ns (__imag__ x)) feraiseexcept (FE_INVALID); } } else { double sin2ix, cos2ix; double den; __sincos (2.0 * __imag__ x, &sin2ix, &cos2ix); den = (__ieee754_cosh (2.0 * __real__ x) + cos2ix); if (den == 0.0) { __complex__ double ez = __cexp (x); __complex__ double emz = __cexp (-x); res = (ez - emz) / (ez + emz); } else { __real__ res = __ieee754_sinh (2.0 * __real__ x) / den; __imag__ res = sin2ix / den; } } return res; }
__complex__ double __ccos (__complex__ double x) { __complex__ double res; if (!isfinite (__real__ x) || __isnan (__imag__ x)) { if (__real__ x == 0.0 || __imag__ x == 0.0) { __real__ res = __nan (""); __imag__ res = 0.0; #ifdef FE_INVALID if (__isinf (__real__ x)) feraiseexcept (FE_INVALID); #endif } else if (__isinf (__imag__ x)) { __real__ res = HUGE_VAL; __imag__ res = __nan (""); #ifdef FE_INVALID if (__isinf (__real__ x)) feraiseexcept (FE_INVALID); #endif } else { __real__ res = __nan (""); __imag__ res = __nan (""); #ifdef FE_INVALID if (isfinite (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { __complex__ double y; __real__ y = -__imag__ x; __imag__ y = __real__ x; res = __ccosh (y); } return res; }
__complex__ double __casinh (__complex__ double x) { __complex__ double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = __copysign (HUGE_VAL, __real__ x); if (rcls == FP_NAN) __imag__ res = __nan (""); else __imag__ res = __copysign (rcls >= FP_ZERO ? M_PI_2 : M_PI_4, __imag__ x); } else if (rcls <= FP_INFINITE) { __real__ res = __real__ x; if ((rcls == FP_INFINITE && icls >= FP_ZERO) || (rcls == FP_NAN && icls == FP_ZERO)) __imag__ res = __copysign (0.0, __imag__ x); else __imag__ res = __nan (""); } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { res = x; } else { res = __kernel_casinh (x, 0); } return res; }
__complex__ double __ctanh (__complex__ double x) { __complex__ double res; if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { if (__isinf (__real__ x)) { __real__ res = __copysign (1.0, __real__ x); __imag__ res = __copysign (0.0, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nan (""); __imag__ res = __nan (""); #ifdef FE_INVALID if (__isinf (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { double sin2ix, cos2ix; double den; __sincos (2.0 * __imag__ x, &sin2ix, &cos2ix); den = (__ieee754_cosh (2.0 * __real__ x) + cos2ix); __real__ res = __ieee754_sinh (2.0 * __real__ x) / den; __imag__ res = sin2ix / den; } return res; }
invalid_fn (long double x, long double fn) { if (__rintl (fn) != fn) { feraiseexcept (FE_INVALID); return __nan (""); } else if (fn > 65000.0L) return __scalbnl (x, 65000); else return __scalbnl (x,-65000); }
__complex__ double __casin (__complex__ double x) { __complex__ double res; if (isnan (__real__ x) || isnan (__imag__ x)) { if (__real__ x == 0.0) { res = x; } else if (isinf (__real__ x) || isinf (__imag__ x)) { __real__ res = __nan (""); __imag__ res = __copysign (HUGE_VAL, __imag__ x); } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else { __complex__ double y; __real__ y = -__imag__ x; __imag__ y = __real__ x; y = __casinh (y); __real__ res = __imag__ y; __imag__ res = -__real__ y; } return res; }
// // atanh // double atanh(double x) { if(fabs(x) >= 1) {errno = EDOM; return __nan();} return log((1 + x) / (1 - x)) >> 1; }
__complex__ double __cacosh (__complex__ double x) { __complex__ double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = HUGE_VAL; if (rcls == FP_NAN) __imag__ res = __nan (""); else __imag__ res = __copysign ((rcls == FP_INFINITE ? (__real__ x < 0.0 ? M_PI - M_PI_4 : M_PI_4) : M_PI_2), __imag__ x); } else if (rcls == FP_INFINITE) { __real__ res = HUGE_VAL; if (icls >= FP_ZERO) __imag__ res = __copysign (signbit (__real__ x) ? M_PI : 0.0, __imag__ x); else __imag__ res = __nan (""); } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { __real__ res = 0.0; __imag__ res = __copysign (M_PI_2, __imag__ x); } else { __complex__ double y; __real__ y = (__real__ x - __imag__ x) * (__real__ x + __imag__ x) - 1.0; __imag__ y = 2.0 * __real__ x * __imag__ x; y = __csqrt (y); if (__real__ x < 0.0) y = -y; __real__ y += __real__ x; __imag__ y += __imag__ x; res = __clog (y); /* We have to use the positive branch. */ if (__real__ res < 0.0) res = -res; } return res; }
__complex__ double __cexp (__complex__ double x) { __complex__ double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); double sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (__real__ x > t) { double exp_t = __ieee754_exp (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = DBL_MAX * cosix; __imag__ retval = DBL_MAX * sinix; } else { double exp_val = __ieee754_exp (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } if (fabs (__real__ retval) < DBL_MIN) { volatile double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabs (__imag__ retval) < DBL_MIN) { volatile double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); feraiseexcept (FE_INVALID); } } else if (__builtin_expect (rcls == FP_INFINITE, 1)) { /* Real part is infinite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ double value = signbit (__real__ x) ? 0.0 : HUGE_VAL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { double sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } __real__ retval = __copysign (value, cosix); __imag__ retval = __copysign (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VAL; __imag__ retval = __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = 0.0; __imag__ retval = __copysign (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } return retval; }
__complex__ double __csin (__complex__ double x) { __complex__ double retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabs (__real__ x); if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); double sinix, cosix; if (__glibc_likely (rcls != FP_SUBNORMAL)) { __sincos (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } if (fabs (__imag__ x) > t) { double exp_t = __ieee754_exp (t); double ix = fabs (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; sinix *= exp_t / 2.0; cosix *= exp_t / 2.0; if (ix > t) { ix -= t; sinix *= exp_t; cosix *= exp_t; } if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ __real__ retval = DBL_MAX * sinix; __imag__ retval = DBL_MAX * cosix; } else { double exp_val = __ieee754_exp (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { __real__ retval = __ieee754_cosh (__imag__ x) * sinix; __imag__ retval = __ieee754_sinh (__imag__ x) * cosix; } if (negate) __real__ retval = -__real__ retval; if (fabs (__real__ retval) < DBL_MIN) { volatile double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabs (__imag__ retval) < DBL_MIN) { volatile double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = __nan (""); __imag__ retval = __imag__ x; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nan (""); __imag__ retval = __nan (""); feraiseexcept (FE_INVALID); } } } else if (icls == FP_INFINITE) { /* Imaginary part is infinite. */ if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ double sinix, cosix; if (__glibc_likely (rcls != FP_SUBNORMAL)) { __sincos (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } __real__ retval = __copysign (HUGE_VAL, sinix); __imag__ retval = __copysign (HUGE_VAL, cosix); if (negate) __real__ retval = -__real__ retval; if (signbit (__imag__ x)) __imag__ retval = -__imag__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = __nan (""); __imag__ retval = HUGE_VAL; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { if (rcls == FP_ZERO) __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); else __real__ retval = __nan (""); __imag__ retval = __nan (""); } return retval; }
__complex__ double __catanh (__complex__ double x) { __complex__ double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) { if (icls == FP_INFINITE) { __real__ res = __copysign (0.0, __real__ x); __imag__ res = __copysign (M_PI_2, __imag__ x); } else if (rcls == FP_INFINITE || rcls == FP_ZERO) { __real__ res = __copysign (0.0, __real__ x); if (icls >= FP_ZERO) __imag__ res = __copysign (M_PI_2, __imag__ x); else __imag__ res = __nan (""); } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { res = x; } else { if (fabs (__real__ x) >= 16.0 / DBL_EPSILON || fabs (__imag__ x) >= 16.0 / DBL_EPSILON) { __imag__ res = __copysign (M_PI_2, __imag__ x); if (fabs (__imag__ x) <= 1.0) __real__ res = 1.0 / __real__ x; else if (fabs (__real__ x) <= 1.0) __real__ res = __real__ x / __imag__ x / __imag__ x; else { double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0); __real__ res = __real__ x / h / h / 4.0; } } else { if (fabs (__real__ x) == 1.0 && fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON) __real__ res = (__copysign (0.5, __real__ x) * (M_LN2 - __ieee754_log (fabs (__imag__ x)))); else { double i2 = 0.0; if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON) i2 = __imag__ x * __imag__ x; double num = 1.0 + __real__ x; num = i2 + num * num; double den = 1.0 - __real__ x; den = i2 + den * den; double f = num / den; if (f < 0.5) __real__ res = 0.25 * __ieee754_log (f); else { num = 4.0 * __real__ x; __real__ res = 0.25 * __log1p (num / den); } } double absx, absy, den; absx = fabs (__real__ x); absy = fabs (__imag__ x); if (absx < absy) { double t = absx; absx = absy; absy = t; } if (absy < DBL_EPSILON / 2.0) { den = (1.0 - absx) * (1.0 + absx); if (den == -0.0) den = 0.0; } else if (absx >= 1.0) den = (1.0 - absx) * (1.0 + absx) - absy * absy; else if (absx >= 0.75 || absy >= 0.5) den = -__x2y2m1 (absx, absy); else den = (1.0 - absx) * (1.0 + absx) - absy * absy; __imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den); } math_check_force_underflow_complex (res); } return res; }
__complex__ double __clog10 (__complex__ double x) { __complex__ double result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysign (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabs (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ double absx = fabs (__real__ x), absy = fabs (__imag__ x); int scale = 0; if (absx < absy) { double t = absx; absx = absy; absy = t; } if (absx > DBL_MAX / 2.0) { scale = -1; absx = __scalbn (absx, scale); absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0); } else if (absx < DBL_MIN && absy < DBL_MIN) { scale = DBL_MANT_DIG; absx = __scalbn (absx, scale); absy = __scalbn (absy, scale); } if (absx == 1.0 && scale == 0) { double absy2 = absy * absy; if (absy2 <= DBL_MIN * 2.0 * M_LN10) { #if __FLT_EVAL_METHOD__ == 0 __real__ result = (absy2 / 2.0 - absy2 * absy2 / 4.0) * M_LOG10E; #else volatile double force_underflow = absy2 * absy2 / 4.0; __real__ result = (absy2 / 2.0 - force_underflow) * M_LOG10E; #endif } else __real__ result = __log1p (absy2) * (M_LOG10E / 2.0); } else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0) { double d2m1 = (absx - 1.0) * (absx + 1.0); if (absy >= DBL_EPSILON) d2m1 += absy * absy; __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); } else if (absx < 1.0 && absx >= 0.75 && absy < DBL_EPSILON / 2.0 && scale == 0) { double d2m1 = (absx - 1.0) * (absx + 1.0); __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); } else if (absx < 1.0 && (absx >= 0.75 || absy >= 0.5) && scale == 0) { double d2m1 = __x2y2m1 (absx, absy); __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); } else { double d = __ieee754_hypot (absx, absy); __real__ result = __ieee754_log10 (d) - scale * M_LOG10_2; } __imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x); } else { __imag__ result = __nan (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VAL; else __real__ result = __nan (""); } return result; }
__complex__ double __cexp (__complex__ double x) { __complex__ double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ double exp_val = __ieee754_exp (__real__ x); double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); if (isfinite (exp_val)) { __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } else { __real__ retval = __copysign (exp_val, cosix); __imag__ retval = __copysign (exp_val, sinix); } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); feraiseexcept (FE_INVALID); } } else if (__builtin_expect (rcls == FP_INFINITE, 1)) { /* Real part is infinite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ double value = signbit (__real__ x) ? 0.0 : HUGE_VAL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); __real__ retval = __copysign (value, cosix); __imag__ retval = __copysign (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VAL; __imag__ retval = __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = 0.0; __imag__ retval = __copysign (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } return retval; }
__complex__ double __clog (__complex__ double x) { __complex__ double result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysign (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabs (__real__ x); } else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) { /* Neither real nor imaginary part is NaN. */ double absx = fabs (__real__ x), absy = fabs (__imag__ x); int scale = 0; if (absx < absy) { double t = absx; absx = absy; absy = t; } if (absx > DBL_MAX / 2.0) { scale = -1; absx = __scalbn (absx, scale); absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0); } else if (absx < DBL_MIN && absy < DBL_MIN) { scale = DBL_MANT_DIG; absx = __scalbn (absx, scale); absy = __scalbn (absy, scale); } if (absx == 1.0 && scale == 0) { __real__ result = __log1p (absy * absy) / 2.0; math_check_force_underflow_nonneg (__real__ result); } else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0) { double d2m1 = (absx - 1.0) * (absx + 1.0); if (absy >= DBL_EPSILON) d2m1 += absy * absy; __real__ result = __log1p (d2m1) / 2.0; } else if (absx < 1.0 && absx >= 0.5 && absy < DBL_EPSILON / 2.0 && scale == 0) { double d2m1 = (absx - 1.0) * (absx + 1.0); __real__ result = __log1p (d2m1) / 2.0; } else if (absx < 1.0 && absx >= 0.5 && scale == 0 && absx * absx + absy * absy >= 0.5) { double d2m1 = __x2y2m1 (absx, absy); __real__ result = __log1p (d2m1) / 2.0; } else { double d = __ieee754_hypot (absx, absy); __real__ result = __ieee754_log (d) - scale * M_LN2; } __imag__ result = __ieee754_atan2 (__imag__ x, __real__ x); } else { __imag__ result = __nan (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VAL; else __real__ result = __nan (""); } return result; }
__complex__ double __ctanh (__complex__ double x) { __complex__ double res; if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) { if (isinf (__real__ x)) { __real__ res = __copysign (1.0, __real__ x); if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0) { double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); __imag__ res = __copysign (0.0, sinix * cosix); } else __imag__ res = __copysign (0.0, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nan (""); __imag__ res = __nan (""); if (isinf (__imag__ x)) feraiseexcept (FE_INVALID); } } else { double sinix, cosix; double den; const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (fabs (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ double exp_2t = __ieee754_exp (2 * t); __real__ res = __copysign (1.0, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabs (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= __ieee754_exp (2 * __real__ x); } else { double sinhrx, coshrx; if (fabs (__real__ x) > DBL_MIN) { sinhrx = __ieee754_sinh (__real__ x); coshrx = __ieee754_cosh (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0; } if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * coshrx / den; __imag__ res = sinix * cosix / den; } math_check_force_underflow_complex (res); } return res; }
// --------------------------------------------------------------------------- // // ------------ double bSubStyle::getclassbound(int idx){ double v=__nan(); _valbounds.get(idx,&v); return(v); }
// // nan // double nan(char const *tagp) { return __nan(); }
// // acosh // double acosh(double x) { if(x < 1) {errno = EDOM; return __nan();} return log(x + sqrt(x * x - 1)); }
__complex__ double __csqrt (__complex__ double x) { __complex__ double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls <= FP_INFINITE || icls <= FP_INFINITE, 0)) { if (icls == FP_INFINITE) { __real__ res = HUGE_VAL; __imag__ res = __imag__ x; } else if (rcls == FP_INFINITE) { if (__real__ x < 0.0) { __real__ res = icls == FP_NAN ? __nan ("") : 0; __imag__ res = __copysign (HUGE_VAL, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == FP_NAN ? __nan ("") : __copysign (0.0, __imag__ x)); } } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else { if (__builtin_expect (icls == FP_ZERO, 0)) { if (__real__ x < 0.0) { __real__ res = 0.0; __imag__ res = __copysign (__ieee754_sqrt (-__real__ x), __imag__ x); } else { __real__ res = fabs (__ieee754_sqrt (__real__ x)); __imag__ res = __copysign (0.0, __imag__ x); } } else if (__builtin_expect (rcls == FP_ZERO, 0)) { double r; if (fabs (__imag__ x) >= 2.0 * DBL_MIN) r = __ieee754_sqrt (0.5 * fabs (__imag__ x)); else r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x)); __real__ res = r; __imag__ res = __copysign (r, __imag__ x); } else { double d, r, s; int scale = 0; if (fabs (__real__ x) > DBL_MAX / 4.0) { scale = 1; __real__ x = __scalbn (__real__ x, -2 * scale); __imag__ x = __scalbn (__imag__ x, -2 * scale); } else if (fabs (__imag__ x) > DBL_MAX / 4.0) { scale = 1; if (fabs (__real__ x) >= 4.0 * DBL_MIN) __real__ x = __scalbn (__real__ x, -2 * scale); else __real__ x = 0.0; __imag__ x = __scalbn (__imag__ x, -2 * scale); } else if (fabs (__real__ x) < DBL_MIN && fabs (__imag__ x) < DBL_MIN) { scale = -(DBL_MANT_DIG / 2); __real__ x = __scalbn (__real__ x, -2 * scale); __imag__ x = __scalbn (__imag__ x, -2 * scale); } d = __ieee754_hypot (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = __ieee754_sqrt (0.5 * (d + __real__ x)); s = 0.5 * (__imag__ x / r); } else { s = __ieee754_sqrt (0.5 * (d - __real__ x)); r = fabs (0.5 * (__imag__ x / s)); } if (scale) { r = __scalbn (r, scale); s = __scalbn (s, scale); } __real__ res = r; __imag__ res = __copysign (s, __imag__ x); } } return res; }
__complex__ double __csinh (__complex__ double x) { __complex__ double retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabs (__real__ x); if (rcls >= FP_ZERO) { /* Real part is finite. */ if (icls >= FP_ZERO) { /* Imaginary part is finite. */ double sinh_val = __ieee754_sinh (__real__ x); double cosh_val = __ieee754_cosh (__real__ x); double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); __real__ retval = sinh_val * cosix; __imag__ retval = cosh_val * sinix; if (negate) __real__ retval = -__real__ retval; } else { if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); __imag__ retval = __nan ("") + __nan (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } else { __real__ retval = __nan (""); __imag__ retval = __nan (""); #ifdef FE_INVALID feraiseexcept (FE_INVALID); #endif } } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -HUGE_VAL : HUGE_VAL; __imag__ retval = __imag__ x; } else if (icls > FP_ZERO) { /* Imaginary part is finite. */ double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); __real__ retval = __copysign (HUGE_VAL, cosix); __imag__ retval = __copysign (HUGE_VAL, sinix); if (negate) __real__ retval = -__real__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VAL; __imag__ retval = __nan ("") + __nan (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } } else { __real__ retval = __nan (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan (""); } return retval; }
__complex__ double __ccosh (__complex__ double x) { __complex__ double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls >= FP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= FP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); double sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (fabs (__real__ x) > t) { double exp_t = __ieee754_exp (t); double rx = fabs (__real__ x); if (signbit (__real__ x)) sinix = -sinix; rx -= t; sinix *= exp_t / 2.0; cosix *= exp_t / 2.0; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = DBL_MAX * cosix; __imag__ retval = DBL_MAX * sinix; } else { double exp_val = __ieee754_exp (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = __ieee754_cosh (__real__ x) * cosix; __imag__ retval = __ieee754_sinh (__real__ x) * sinix; } if (fabs (__real__ retval) < DBL_MIN) { volatile double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabs (__imag__ retval) < DBL_MIN) { volatile double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { __imag__ retval = __real__ x == 0.0 ? 0.0 : __nan (""); __real__ retval = __nan ("") + __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (__builtin_expect (icls > FP_ZERO, 1)) { /* Imaginary part is finite. */ double sinix, cosix; if (__builtin_expect (icls != FP_SUBNORMAL, 1)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } __real__ retval = __copysign (HUGE_VAL, cosix); __imag__ retval = (__copysign (HUGE_VAL, sinix) * __copysign (1.0, __real__ x)); } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = HUGE_VAL; __imag__ retval = __imag__ x * __copysign (1.0, __real__ x); } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VAL; __imag__ retval = __nan ("") + __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { __real__ retval = __nan (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan (""); } return retval; }
__complex__ double __cacosh (__complex__ double x) { __complex__ double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = HUGE_VAL; if (rcls == FP_NAN) __imag__ res = __nan (""); else __imag__ res = __copysign ((rcls == FP_INFINITE ? (__real__ x < 0.0 ? M_PI - M_PI_4 : M_PI_4) : M_PI_2), __imag__ x); } else if (rcls == FP_INFINITE) { __real__ res = HUGE_VAL; if (icls >= FP_ZERO) __imag__ res = __copysign (signbit (__real__ x) ? M_PI : 0.0, __imag__ x); else __imag__ res = __nan (""); } else { __real__ res = __nan (""); __imag__ res = __nan (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { __real__ res = 0.0; __imag__ res = __copysign (M_PI_2, __imag__ x); } else { __complex__ double y; __real__ y = -__imag__ x; __imag__ y = __real__ x; y = __kernel_casinh (y, 1); if (signbit (__imag__ x)) { __real__ res = __real__ y; __imag__ res = -__imag__ y; } else { __real__ res = -__real__ y; __imag__ res = __imag__ y; } } return res; }