static cairo_bool_t
pqueue_grow (pqueue_t *pq)
{
    rectangle_t **new_elements;
    pq->max_size *= 2;

    if (pq->elements == pq->elements_embedded) {
	new_elements = (rectangle_t **)_cairo_malloc_ab (pq->max_size,
					 sizeof (rectangle_t *));
	if (unlikely (new_elements == NULL))
	    return FALSE;

	memcpy (new_elements, pq->elements_embedded,
		sizeof (pq->elements_embedded));
    } else {
	new_elements = (rectangle_t **)_cairo_realloc_ab (pq->elements,
					  pq->max_size,
					  sizeof (rectangle_t *));
	if (unlikely (new_elements == NULL))
	    return FALSE;
    }

    pq->elements = new_elements;
    return TRUE;
}
Пример #2
0
/* make room for at least one more trap */
static cairo_bool_t
_cairo_traps_grow (cairo_traps_t *traps)
{
    cairo_trapezoid_t *new_traps;
    int new_size = 4 * traps->traps_size;

    if (CAIRO_INJECT_FAULT ()) {
	traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    if (traps->traps == traps->traps_embedded) {
	new_traps = _cairo_malloc_ab (new_size, sizeof (cairo_trapezoid_t));
	if (new_traps != NULL)
	    memcpy (new_traps, traps->traps, sizeof (traps->traps_embedded));
    } else {
	new_traps = _cairo_realloc_ab (traps->traps,
	                               new_size, sizeof (cairo_trapezoid_t));
    }

    if (unlikely (new_traps == NULL)) {
	traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    traps->traps = new_traps;
    traps->traps_size = new_size;
    return TRUE;
}
Пример #3
0
static cairo_status_t
_cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t	*stroker,
					cairo_point_t			*p1,
					cairo_point_t			*p2)
{

    if (stroker->num_segments == stroker->segments_size) {
	int new_size = stroker->segments_size * 2;
	cairo_line_t *new_segments;

	if (stroker->segments == stroker->segments_embedded) {
	    new_segments = _cairo_malloc_ab (new_size, sizeof (cairo_line_t));
	    if (new_segments == NULL)
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	    memcpy (new_segments, stroker->segments,
		    stroker->num_segments * sizeof (cairo_line_t));
	} else {
	    new_segments = _cairo_realloc_ab (stroker->segments,
					      new_size, sizeof (cairo_line_t));
	    if (new_segments == NULL)
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}

	stroker->segments_size = new_size;
	stroker->segments = new_segments;
    }

    stroker->segments[stroker->num_segments].p1 = *p1;
    stroker->segments[stroker->num_segments].p2 = *p2;
    stroker->num_segments++;

    return CAIRO_STATUS_SUCCESS;
}
Пример #4
0
static cairo_status_t
_pqueue_grow (pqueue_t *pq)
{
    cairo_bo_event_t **new_elements;
    pq->max_size *= 2;

    if (pq->elements == pq->elements_embedded) {
	new_elements = _cairo_malloc_ab (pq->max_size,
					 sizeof (cairo_bo_event_t *));
	if (unlikely (new_elements == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	memcpy (new_elements, pq->elements_embedded,
		sizeof (pq->elements_embedded));
    } else {
	new_elements = _cairo_realloc_ab (pq->elements,
					  pq->max_size,
					  sizeof (cairo_bo_event_t *));
	if (unlikely (new_elements == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    pq->elements = new_elements;
    return CAIRO_STATUS_SUCCESS;
}
Пример #5
0
/* make room for at least one more edge */
static cairo_bool_t
_cairo_polygon_grow (cairo_polygon_t *polygon)
{
    cairo_edge_t *new_edges;
    int old_size = polygon->edges_size;
    int new_size = 4 * old_size;

    if (CAIRO_INJECT_FAULT ()) {
	polygon->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    if (polygon->edges == polygon->edges_embedded) {
	new_edges = _cairo_malloc_ab (new_size, sizeof (cairo_edge_t));
	if (new_edges != XNULL)
	    xmemory_copy (new_edges, polygon->edges, old_size * sizeof (cairo_edge_t));
    } else {
	new_edges = _cairo_realloc_ab (polygon->edges,
		                       new_size, sizeof (cairo_edge_t));
    }

    if (unlikely (new_edges == XNULL)) {
	polygon->status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	return FALSE;
    }

    polygon->edges = new_edges;
    polygon->edges_size = new_size;

    return TRUE;
}
Пример #6
0
/* make room for at least one more trap */
static cairo_status_t
_cairo_traps_grow (cairo_traps_t *traps)
{
    cairo_trapezoid_t *new_traps;
    int new_size = 2 * MAX (traps->traps_size, 16);

    if (traps->status)
	return traps->status;

    if (traps->traps == traps->traps_embedded) {
	new_traps = _cairo_malloc_ab (new_size, sizeof (cairo_trapezoid_t));
	if (new_traps)
	    memcpy (new_traps, traps->traps, sizeof (traps->traps_embedded));
    } else {
	new_traps = _cairo_realloc_ab (traps->traps,
				       new_size, sizeof (cairo_trapezoid_t));
    }

    if (new_traps == NULL) {
	traps->status = CAIRO_STATUS_NO_MEMORY;
	return traps->status;
    }

    traps->traps = new_traps;
    traps->traps_size = new_size;

    return CAIRO_STATUS_SUCCESS;
}
Пример #7
0
cairo_status_t
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
{
    cairo_pen_vertex_t *vertices;
    cairo_status_t status;
    int num_vertices;
    int i;

    num_vertices = pen->num_vertices + num_points;
    vertices = _cairo_realloc_ab (pen->vertices,
				  num_vertices, sizeof (cairo_pen_vertex_t));
    if (vertices == NULL)
	return CAIRO_STATUS_NO_MEMORY;

    pen->vertices = vertices;
    pen->num_vertices = num_vertices;

    /* initialize new vertices */
    for (i=0; i < num_points; i++)
	pen->vertices[pen->num_vertices-num_points+i].point = point[i];

    status = _cairo_hull_compute (pen->vertices, &pen->num_vertices);
    if (status)
	return status;

    _cairo_pen_compute_slopes (pen);

    return CAIRO_STATUS_SUCCESS;
}
Пример #8
0
cairo_status_t
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
{
    cairo_status_t status;
    int num_vertices;
    int i;

    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    num_vertices = pen->num_vertices + num_points;
    if (num_vertices > ARRAY_LENGTH (pen->vertices_embedded) ||
	pen->vertices != pen->vertices_embedded)
    {
	cairo_pen_vertex_t *vertices;

	if (pen->vertices == pen->vertices_embedded) {
	    vertices = _cairo_malloc_ab (num_vertices,
		                         sizeof (cairo_pen_vertex_t));
	    if (unlikely (vertices == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	    memcpy (vertices, pen->vertices,
		    pen->num_vertices * sizeof (cairo_pen_vertex_t));
	} else {
	    vertices = _cairo_realloc_ab (pen->vertices,
					  num_vertices,
					  sizeof (cairo_pen_vertex_t));
	    if (unlikely (vertices == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}

	pen->vertices = vertices;
    }

    pen->num_vertices = num_vertices;

    /* initialize new vertices */
    for (i=0; i < num_points; i++)
	pen->vertices[pen->num_vertices-num_points+i].point = point[i];

    status = _cairo_hull_compute (pen->vertices, &pen->num_vertices);
    if (unlikely (status))
	return status;

    _cairo_pen_compute_slopes (pen);

    return CAIRO_STATUS_SUCCESS;
}
Пример #9
0
/**
 * _cairo_array_grow_by:
 * @array: a #cairo_array_t
 *
 * Increase the size of @array (if needed) so that there are at least
 * @additional free spaces in the array. The actual size of the array
 * is always increased by doubling as many times as necessary.
 **/
cairo_status_t
_cairo_array_grow_by (cairo_array_t *array, unsigned int additional)
{
    char *new_elements;
    unsigned int old_size = array->size;
    unsigned int required_size = array->num_elements + additional;
    unsigned int new_size;

    assert (! array->is_snapshot);

    /* check for integer overflow */
    if (required_size > INT_MAX || required_size < array->num_elements)
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (required_size <= old_size)
	return CAIRO_STATUS_SUCCESS;

    if (old_size == 0)
	new_size = 1;
    else
	new_size = old_size * 2;

    while (new_size < required_size)
	new_size = new_size * 2;

    if (array->elements == NULL) {
        //+EAWebKitChange
        //11/10/2011
        array->elements = cairo_malloc (sizeof (char *));
        //-EAWebKitChange
	if (array->elements == NULL)
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	*array->elements = NULL;
    }

    array->size = new_size;
    new_elements = _cairo_realloc_ab (*array->elements,
			              array->size, array->element_size);

    if (new_elements == NULL) {
	array->size = old_size;
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    *array->elements = new_elements;

    return CAIRO_STATUS_SUCCESS;
}
Пример #10
0
/**
 * _cairo_array_grow_by:
 * @array: a #cairo_array_t
 *
 * Increase the size of @array (if needed) so that there are at least
 * @additional free spaces in the array. The actual size of the array
 * is always increased by doubling as many times as necessary.
 **/
cairo_status_t
_cairo_array_grow_by (cairo_array_t *array, unsigned int additional)
{
    char *new_elements;
    unsigned int old_size = array->size;
    unsigned int required_size = array->num_elements + additional;
    unsigned int new_size;

    /* check for integer overflow */
    if (required_size > INT_MAX || required_size < array->num_elements)
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (required_size <= old_size)
	return CAIRO_STATUS_SUCCESS;

    if (old_size == 0)
	new_size = 1;
    else
	new_size = old_size * 2;

    while (new_size < required_size)
	new_size = new_size * 2;

    array->size = new_size;
    new_elements = _cairo_realloc_ab (array->elements,
			              array->size, array->element_size);

    if (unlikely (new_elements == NULL)) {
	array->size = old_size;
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    array->elements = new_elements;

    return CAIRO_STATUS_SUCCESS;
}
Пример #11
0
static cairo_status_t
_cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t *stroker,
					const cairo_point_t	*p1,
					const cairo_point_t	*p2,
					unsigned		 flags)
{
    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (stroker->num_segments == stroker->segments_size) {
	int new_size = stroker->segments_size * 2;
	segment_t *new_segments;

	if (stroker->segments == stroker->segments_embedded) {
	    new_segments = _cairo_malloc_ab (new_size, sizeof (segment_t));
	    if (unlikely (new_segments == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	    memcpy (new_segments, stroker->segments,
		    stroker->num_segments * sizeof (segment_t));
	} else {
	    new_segments = _cairo_realloc_ab (stroker->segments,
					      new_size, sizeof (segment_t));
	    if (unlikely (new_segments == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}

	stroker->segments_size = new_size;
	stroker->segments = new_segments;
    }

    stroker->segments[stroker->num_segments].p1 = *p1;
    stroker->segments[stroker->num_segments].p2 = *p2;
    stroker->segments[stroker->num_segments].flags = flags;
    stroker->num_segments++;

    return CAIRO_STATUS_SUCCESS;
}
Пример #12
0
static cairo_status_t
_cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t *stroker,
					const cairo_point_t	*p1,
					const cairo_point_t	*p2,
					cairo_bool_t		 is_horizontal,
					cairo_bool_t		 has_join)
{

    if (stroker->num_segments == stroker->segments_size) {
	int new_size = stroker->segments_size * 2;
	segment_t *new_segments;

	if (stroker->segments == stroker->segments_embedded) {
	    new_segments = _cairo_malloc_ab (new_size, sizeof (segment_t));
	    if (unlikely (new_segments == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	    memcpy (new_segments, stroker->segments,
		    stroker->num_segments * sizeof (segment_t));
	} else {
	    new_segments = _cairo_realloc_ab (stroker->segments,
					      new_size, sizeof (segment_t));
	    if (unlikely (new_segments == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}

	stroker->segments_size = new_size;
	stroker->segments = new_segments;
    }

    stroker->segments[stroker->num_segments].p1 = *p1;
    stroker->segments[stroker->num_segments].p2 = *p2;
    stroker->segments[stroker->num_segments].has_join = has_join;
    stroker->segments[stroker->num_segments].is_horizontal = is_horizontal;
    stroker->num_segments++;

    return CAIRO_STATUS_SUCCESS;
}
/* This special-case filler supports only a path that describes a
 * device-axis aligned rectangle. It exists to avoid the overhead of
 * the general tessellator when drawing very common rectangles.
 *
 * If the path described anything but a device-axis aligned rectangle,
 * this function will abort.
 */
cairo_region_t *
_cairo_path_fixed_fill_rectilinear_to_region (const cairo_path_fixed_t	*path,
					      cairo_fill_rule_t	 fill_rule,
					      const cairo_rectangle_int_t *extents)
{
    cairo_rectangle_int_t rectangle_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_rectangle_int_t)];
    cairo_box_t box;
    cairo_region_t *region = NULL;

    assert (path->maybe_fill_region);
    assert (! path->is_empty_fill);

    if (_cairo_path_fixed_is_box (path, &box)) {
	rectangle_stack[0].x = _cairo_fixed_integer_part (box.p1.x);
	rectangle_stack[0].y = _cairo_fixed_integer_part (box.p1.y);
	rectangle_stack[0].width = _cairo_fixed_integer_part (box.p2.x) -
	                            rectangle_stack[0].x;
	rectangle_stack[0].height = _cairo_fixed_integer_part (box.p2.y) -
	                            rectangle_stack[0].y;
	if (! _cairo_rectangle_intersect (&rectangle_stack[0], extents))
	    region = cairo_region_create ();
	else
	    region = cairo_region_create_rectangle (&rectangle_stack[0]);
    } else if (fill_rule == CAIRO_FILL_RULE_WINDING) {
	cairo_rectangle_int_t *rects = rectangle_stack;
	cairo_path_fixed_iter_t iter;
	int last_cw = -1;
	int size = ARRAY_LENGTH (rectangle_stack);
	int count = 0;

	/* Support a series of rectangles as can be expected to describe a
	 * GdkRegion clip region during exposes.
	 */
	_cairo_path_fixed_iter_init (&iter, path);
	while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) {
	    int cw = 0;

	    if (box.p1.x > box.p2.x) {
		cairo_fixed_t t;

		t = box.p1.x;
		box.p1.x = box.p2.x;
		box.p2.x = t;

		cw = ! cw;
	    }

	    if (box.p1.y > box.p2.y) {
		cairo_fixed_t t;

		t = box.p1.y;
		box.p1.y = box.p2.y;
		box.p2.y = t;

		cw = ! cw;
	    }

	    if (last_cw < 0)
		last_cw = cw;
	    else if (last_cw != cw)
		goto TESSELLATE;

	    if (count == size) {
		cairo_rectangle_int_t *new_rects;

		size *= 4;
		if (rects == rectangle_stack) {
		    new_rects = _cairo_malloc_ab (size,
						  sizeof (cairo_rectangle_int_t));
		    if (unlikely (new_rects == NULL)) {
			/* XXX _cairo_region_nil */
			break;
		    }
		    memcpy (new_rects, rects, sizeof (rectangle_stack));
		} else {
		    new_rects = _cairo_realloc_ab (rects, size,
						   sizeof (cairo_rectangle_int_t));
		    if (unlikely (new_rects == NULL)) {
			/* XXX _cairo_region_nil */
			break;
		    }
		}
		rects = new_rects;
	    }

	    rects[count].x = _cairo_fixed_integer_part (box.p1.x);
	    rects[count].y = _cairo_fixed_integer_part (box.p1.y);
	    rects[count].width = _cairo_fixed_integer_part (box.p2.x) - rects[count].x;
	    rects[count].height = _cairo_fixed_integer_part (box.p2.y) - rects[count].y;
	    if (_cairo_rectangle_intersect (&rects[count], extents))
		count++;
	}

	if (_cairo_path_fixed_iter_at_end (&iter))
	    region = cairo_region_create_rectangles (rects, count);

TESSELLATE:
	if (rects != rectangle_stack)
	    free (rects);
    }

    if (region == NULL) {
	/* Hmm, complex polygon */
	region = _cairo_path_fixed_fill_rectilinear_tessellate_to_region (path,
									  fill_rule,
									  extents);


    }

    return region;
}