void EdgePointXYCovPointXYCov::linearizeOplus() { const VertexPointXYCov* vi = static_cast<const VertexPointXYCov*>(_vertices[0]); const VertexPointXYCov* vj = static_cast<const VertexPointXYCov*>(_vertices[1]); const double& x1 = vi->estimate()[0]; const double& y1 = vi->estimate()[1]; const double& th1 = 0.0; //vi->estimate().rotation().angle(); const double& x2 = vj->estimate()[0]; const double& y2 = vj->estimate()[1]; double aux_1 = cos(th1) ; double aux_2 = -aux_1 ; double aux_3 = sin(th1) ; _jacobianOplusXi( 0 , 0 ) = aux_2 ; _jacobianOplusXi( 0 , 1 ) = -aux_3 ; _jacobianOplusXi( 1 , 0 ) = aux_3 ; _jacobianOplusXi( 1 , 1 ) = aux_2 ; _jacobianOplusXj( 0 , 0 ) = aux_1 ; _jacobianOplusXj( 0 , 1 ) = aux_3 ; _jacobianOplusXj( 1 , 0 ) = -aux_3 ; _jacobianOplusXj( 1 , 1 ) = aux_1 ; }
void EdgeSE2::linearizeOplus() { const VertexSE2* vi = static_cast<const VertexSE2*>(_vertices[0]); const VertexSE2* vj = static_cast<const VertexSE2*>(_vertices[1]); number_t thetai = vi->estimate().rotation().angle(); Vector2 dt = vj->estimate().translation() - vi->estimate().translation(); number_t si=std::sin(thetai), ci=std::cos(thetai); _jacobianOplusXi(0, 0) = -ci; _jacobianOplusXi(0, 1) = -si; _jacobianOplusXi(0, 2) = -si*dt.x()+ci*dt.y(); _jacobianOplusXi(1, 0) = si; _jacobianOplusXi(1, 1) = -ci; _jacobianOplusXi(1, 2) = -ci*dt.x()-si*dt.y(); _jacobianOplusXi(2, 0) = 0; _jacobianOplusXi(2, 1) = 0; _jacobianOplusXi(2, 2) = -1; _jacobianOplusXj(0, 0) = ci; _jacobianOplusXj(0, 1)= si; _jacobianOplusXj(0, 2)= 0; _jacobianOplusXj(1, 0) =-si; _jacobianOplusXj(1, 1)= ci; _jacobianOplusXj(1, 2)= 0; _jacobianOplusXj(2, 0) = 0; _jacobianOplusXj(2, 1)= 0; _jacobianOplusXj(2, 2)= 1; const SE2& rmean = _inverseMeasurement; Matrix3 z = Matrix3::Zero(); z.block<2, 2>(0, 0) = rmean.rotation().toRotationMatrix(); z(2, 2) = 1.; _jacobianOplusXi = z * _jacobianOplusXi; _jacobianOplusXj = z * _jacobianOplusXj; }
/** * \brief Jacobian for stereo projection */ void Edge_XYZ_VSC::linearizeOplus() { VertexSCam *vc = static_cast<VertexSCam *>(_vertices[1]); VertexSBAPointXYZ *vp = static_cast<VertexSBAPointXYZ *>(_vertices[0]); Vector4d pt, trans; pt.head<3>() = vp->estimate(); pt(3) = 1.0; trans.head<3>() = vc->estimate().translation(); trans(3) = 1.0; // first get the world point in camera coords Eigen::Matrix<double,3,1> pc = vc->w2n * pt; // Jacobians wrt camera parameters // set d(quat-x) values [ pz*dpx/dx - px*dpz/dx ] / pz^2 double px = pc(0); double py = pc(1); double pz = pc(2); double ipz2 = 1.0/(pz*pz); if (isnan(ipz2) ) { std::cout << "[SetJac] infinite jac" << std::endl; *(int *)0x0 = 0; } double ipz2fx = ipz2*vc->Kcam(0,0); // Fx double ipz2fy = ipz2*vc->Kcam(1,1); // Fy double b = vc->baseline; // stereo baseline Eigen::Matrix<double,3,1> pwt; // check for local vars pwt = (pt-trans).head<3>(); // transform translations, use differential rotation // dx Eigen::Matrix<double,3,1> dp = vc->dRdx * pwt; // dR'/dq * [pw - t] _jacobianOplusXj(0,3) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,3) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,3) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px // dy dp = vc->dRdy * pwt; // dR'/dq * [pw - t] _jacobianOplusXj(0,4) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,4) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,4) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px // dz dp = vc->dRdz * pwt; // dR'/dq * [pw - t] _jacobianOplusXj(0,5) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,5) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,5) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px // set d(t) values [ pz*dpx/dx - px*dpz/dx ] / pz^2 dp = -vc->w2n.col(0); // dpc / dx _jacobianOplusXj(0,0) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,0) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,0) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px dp = -vc->w2n.col(1); // dpc / dy _jacobianOplusXj(0,1) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,1) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,1) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px dp = -vc->w2n.col(2); // dpc / dz _jacobianOplusXj(0,2) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXj(1,2) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXj(2,2) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px // Jacobians wrt point parameters // set d(t) values [ pz*dpx/dx - px*dpz/dx ] / pz^2 dp = vc->w2n.col(0); // dpc / dx _jacobianOplusXi(0,0) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXi(1,0) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXi(2,0) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px dp = vc->w2n.col(1); // dpc / dy _jacobianOplusXi(0,1) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXi(1,1) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXi(2,1) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px dp = vc->w2n.col(2); // dpc / dz _jacobianOplusXi(0,2) = (pz*dp(0) - px*dp(2))*ipz2fx; _jacobianOplusXi(1,2) = (pz*dp(1) - py*dp(2))*ipz2fy; _jacobianOplusXi(2,2) = (pz*dp(0) - (px-b)*dp(2))*ipz2fx; // right image px }